caddy/listeners.go

700 lines
23 KiB
Go
Raw Permalink Normal View History

2019-07-01 01:07:58 +03:00
// Copyright 2015 Matthew Holt and The Caddy Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package caddy
2019-03-27 00:45:51 +03:00
import (
"context"
"crypto/tls"
"errors"
2019-03-27 00:45:51 +03:00
"fmt"
"io"
"io/fs"
2019-03-27 00:45:51 +03:00
"net"
"net/netip"
"os"
"strconv"
"strings"
"sync"
2019-03-27 00:45:51 +03:00
"sync/atomic"
"github.com/quic-go/quic-go"
"github.com/quic-go/quic-go/http3"
"github.com/quic-go/quic-go/qlog"
"go.uber.org/zap"
"golang.org/x/time/rate"
"github.com/caddyserver/caddy/v2/internal"
2019-03-27 00:45:51 +03:00
)
// NetworkAddress represents one or more network addresses.
// It contains the individual components for a parsed network
// address of the form accepted by ParseNetworkAddress().
type NetworkAddress struct {
// Should be a network value accepted by Go's net package or
// by a plugin providing a listener for that network type.
Network string
// The "main" part of the network address is the host, which
// often takes the form of a hostname, DNS name, IP address,
// or socket path.
Host string
// For addresses that contain a port, ranges are given by
// [StartPort, EndPort]; i.e. for a single port, StartPort
// and EndPort are the same. For no port, they are 0.
StartPort uint
EndPort uint
2019-03-27 00:45:51 +03:00
}
// ListenAll calls Listen for all addresses represented by this struct, i.e. all ports in the range.
// (If the address doesn't use ports or has 1 port only, then only 1 listener will be created.)
// It returns an error if any listener failed to bind, and closes any listeners opened up to that point.
func (na NetworkAddress) ListenAll(ctx context.Context, config net.ListenConfig) ([]any, error) {
var listeners []any
var err error
// if one of the addresses has a failure, we need to close
// any that did open a socket to avoid leaking resources
defer func() {
if err == nil {
return
}
for _, ln := range listeners {
if cl, ok := ln.(io.Closer); ok {
cl.Close()
}
}
}()
// an address can contain a port range, which represents multiple addresses;
// some addresses don't use ports at all and have a port range size of 1;
// whatever the case, iterate each address represented and bind a socket
for portOffset := uint(0); portOffset < na.PortRangeSize(); portOffset++ {
select {
case <-ctx.Done():
return nil, ctx.Err()
default:
}
// create (or reuse) the listener ourselves
var ln any
ln, err = na.Listen(ctx, portOffset, config)
if err != nil {
return nil, err
}
listeners = append(listeners, ln)
}
return listeners, nil
}
// Listen is similar to net.Listen, with a few differences:
//
// Listen announces on the network address using the port calculated by adding
// portOffset to the start port. (For network types that do not use ports, the
// portOffset is ignored.)
//
// First Listen checks if a plugin can provide a listener from this address. Otherwise,
// the provided ListenConfig is used to create the listener. Its Control function,
// if set, may be wrapped by an internally-used Control function. The provided
// context may be used to cancel long operations early. The context is not used
// to close the listener after it has been created.
//
// Caddy's listeners can overlap each other: multiple listeners may be created on
// the same socket at the same time. This is useful because during config changes,
// the new config is started while the old config is still running. How this is
// accomplished varies by platform and network type. For example, on Unix, SO_REUSEPORT
// is set except on Unix sockets, for which the file descriptor is duplicated and
// reused; on Windows, the close logic is virtualized using timeouts. Like normal
// listeners, be sure to Close() them when you are done.
//
// This method returns any type, as the implementations of listeners for various
// network types are not interchangeable. The type of listener returned is switched
// on the network type. Stream-based networks ("tcp", "unix", "unixpacket", etc.)
// return a net.Listener; datagram-based networks ("udp", "unixgram", etc.) return
// a net.PacketConn; and so forth. The actual concrete types are not guaranteed to
// be standard, exported types (wrapping is necessary to provide graceful reloads).
//
// Unix sockets will be unlinked before being created, to ensure we can bind to
// it even if the previous program using it exited uncleanly; it will also be
// unlinked upon a graceful exit (or when a new config does not use that socket).
// Listen synchronizes binds to unix domain sockets to avoid race conditions
// while an existing socket is unlinked.
func (na NetworkAddress) Listen(ctx context.Context, portOffset uint, config net.ListenConfig) (any, error) {
if na.IsUnixNetwork() {
unixSocketsMu.Lock()
defer unixSocketsMu.Unlock()
2022-09-08 21:36:31 +03:00
}
// check to see if plugin provides listener
if ln, err := getListenerFromPlugin(ctx, na.Network, na.Host, na.port(), portOffset, config); ln != nil || err != nil {
return ln, err
}
// create (or reuse) the listener ourselves
return na.listen(ctx, portOffset, config)
}
func (na NetworkAddress) listen(ctx context.Context, portOffset uint, config net.ListenConfig) (any, error) {
core: Apply SO_REUSEPORT to UDP sockets (#5725) * core: Apply SO_REUSEPORT to UDP sockets For some reason, 10 months ago when I implemented SO_REUSEPORT for TCP, I didn't realize, or forgot, that it can be used for UDP too. It is a much better solution than using deadline hacks to reuse a socket, at least for TCP. Then https://github.com/mholt/caddy-l4/issues/132 was posted, in which we see that UDP servers never actually stopped when the L4 app was stopped. I verified this using this command: $ nc -u 127.0.0.1 55353 combined with POSTing configs to the /load admin endpoint (which alternated between an echo server and a proxy server so I could tell which config was being used). I refactored the code to use SO_REUSEPORT for UDP, but of course we still need graceful reloads on all platforms, not just Unix, so I also implemented a deadline hack similar to what we used for TCP before. That implementation for TCP was not perfect, possibly having a logical (not data) race condition; but for UDP so far it seems to be working. Verified the same way I verified that SO_REUSEPORT works. I think this code is slightly cleaner and I'm fairly confident this code is effective. * Check error * Fix return * Fix var name * implement Unwrap interface and clean up * move unix packet conn to platform specific file * implement Unwrap for unix packet conn * Move sharedPacketConn into proper file * Fix Windows * move sharedPacketConn and fakeClosePacketConn to proper file --------- Co-authored-by: Weidi Deng <weidi_deng@icloud.com>
2023-10-17 07:17:32 +03:00
var (
ln any
err error
address string
unixFileMode fs.FileMode
core: Apply SO_REUSEPORT to UDP sockets (#5725) * core: Apply SO_REUSEPORT to UDP sockets For some reason, 10 months ago when I implemented SO_REUSEPORT for TCP, I didn't realize, or forgot, that it can be used for UDP too. It is a much better solution than using deadline hacks to reuse a socket, at least for TCP. Then https://github.com/mholt/caddy-l4/issues/132 was posted, in which we see that UDP servers never actually stopped when the L4 app was stopped. I verified this using this command: $ nc -u 127.0.0.1 55353 combined with POSTing configs to the /load admin endpoint (which alternated between an echo server and a proxy server so I could tell which config was being used). I refactored the code to use SO_REUSEPORT for UDP, but of course we still need graceful reloads on all platforms, not just Unix, so I also implemented a deadline hack similar to what we used for TCP before. That implementation for TCP was not perfect, possibly having a logical (not data) race condition; but for UDP so far it seems to be working. Verified the same way I verified that SO_REUSEPORT works. I think this code is slightly cleaner and I'm fairly confident this code is effective. * Check error * Fix return * Fix var name * implement Unwrap interface and clean up * move unix packet conn to platform specific file * implement Unwrap for unix packet conn * Move sharedPacketConn into proper file * Fix Windows * move sharedPacketConn and fakeClosePacketConn to proper file --------- Co-authored-by: Weidi Deng <weidi_deng@icloud.com>
2023-10-17 07:17:32 +03:00
)
2019-03-27 00:45:51 +03:00
// split unix socket addr early so lnKey
// is independent of permissions bits
if na.IsUnixNetwork() {
address, unixFileMode, err = internal.SplitUnixSocketPermissionsBits(na.Host)
if err != nil {
return nil, err
}
} else if na.IsFdNetwork() {
address = na.Host
} else {
address = na.JoinHostPort(portOffset)
}
if strings.HasPrefix(na.Network, "ip") {
ln, err = config.ListenPacket(ctx, na.Network, address)
core: Apply SO_REUSEPORT to UDP sockets (#5725) * core: Apply SO_REUSEPORT to UDP sockets For some reason, 10 months ago when I implemented SO_REUSEPORT for TCP, I didn't realize, or forgot, that it can be used for UDP too. It is a much better solution than using deadline hacks to reuse a socket, at least for TCP. Then https://github.com/mholt/caddy-l4/issues/132 was posted, in which we see that UDP servers never actually stopped when the L4 app was stopped. I verified this using this command: $ nc -u 127.0.0.1 55353 combined with POSTing configs to the /load admin endpoint (which alternated between an echo server and a proxy server so I could tell which config was being used). I refactored the code to use SO_REUSEPORT for UDP, but of course we still need graceful reloads on all platforms, not just Unix, so I also implemented a deadline hack similar to what we used for TCP before. That implementation for TCP was not perfect, possibly having a logical (not data) race condition; but for UDP so far it seems to be working. Verified the same way I verified that SO_REUSEPORT works. I think this code is slightly cleaner and I'm fairly confident this code is effective. * Check error * Fix return * Fix var name * implement Unwrap interface and clean up * move unix packet conn to platform specific file * implement Unwrap for unix packet conn * Move sharedPacketConn into proper file * Fix Windows * move sharedPacketConn and fakeClosePacketConn to proper file --------- Co-authored-by: Weidi Deng <weidi_deng@icloud.com>
2023-10-17 07:17:32 +03:00
} else {
if na.IsUnixNetwork() {
// if this is a unix socket, see if we already have it open
ln, err = reuseUnixSocket(na.Network, address)
}
if ln == nil && err == nil {
// otherwise, create a new listener
lnKey := listenerKey(na.Network, address)
ln, err = listenReusable(ctx, lnKey, na.Network, address, config)
}
}
if err != nil {
return nil, err
}
if ln == nil {
return nil, fmt.Errorf("unsupported network type: %s", na.Network)
}
if IsUnixNetwork(na.Network) {
isAbstractUnixSocket := strings.HasPrefix(address, "@")
if !isAbstractUnixSocket {
err = os.Chmod(address, unixFileMode)
if err != nil {
return nil, fmt.Errorf("unable to set permissions (%s) on %s: %v", unixFileMode, address, err)
}
}
}
return ln, nil
}
// IsUnixNetwork returns true if na.Network is
// unix, unixgram, or unixpacket.
func (na NetworkAddress) IsUnixNetwork() bool {
return IsUnixNetwork(na.Network)
}
// IsUnixNetwork returns true if na.Network is
// fd or fdgram.
func (na NetworkAddress) IsFdNetwork() bool {
return IsFdNetwork(na.Network)
}
// JoinHostPort is like net.JoinHostPort, but where the port
// is StartPort + offset.
func (na NetworkAddress) JoinHostPort(offset uint) string {
if na.IsUnixNetwork() || na.IsFdNetwork() {
return na.Host
}
return net.JoinHostPort(na.Host, strconv.FormatUint(uint64(na.StartPort+offset), 10))
}
// Expand returns one NetworkAddress for each port in the port range.
func (na NetworkAddress) Expand() []NetworkAddress {
size := na.PortRangeSize()
addrs := make([]NetworkAddress, size)
for portOffset := uint(0); portOffset < size; portOffset++ {
addrs[portOffset] = na.At(portOffset)
}
return addrs
}
// At returns a NetworkAddress with a port range of just 1
// at the given port offset; i.e. a NetworkAddress that
// represents precisely 1 address only.
func (na NetworkAddress) At(portOffset uint) NetworkAddress {
na2 := na
na2.StartPort, na2.EndPort = na.StartPort+portOffset, na.StartPort+portOffset
return na2
}
// PortRangeSize returns how many ports are in
// pa's port range. Port ranges are inclusive,
// so the size is the difference of start and
// end ports plus one.
func (na NetworkAddress) PortRangeSize() uint {
if na.EndPort < na.StartPort {
return 0
}
return (na.EndPort - na.StartPort) + 1
}
func (na NetworkAddress) isLoopback() bool {
if na.IsUnixNetwork() || na.IsFdNetwork() {
return true
}
if na.Host == "localhost" {
return true
}
if ip, err := netip.ParseAddr(na.Host); err == nil {
return ip.IsLoopback()
}
return false
}
func (na NetworkAddress) isWildcardInterface() bool {
if na.Host == "" {
return true
}
if ip, err := netip.ParseAddr(na.Host); err == nil {
return ip.IsUnspecified()
}
return false
}
func (na NetworkAddress) port() string {
if na.StartPort == na.EndPort {
return strconv.FormatUint(uint64(na.StartPort), 10)
}
return fmt.Sprintf("%d-%d", na.StartPort, na.EndPort)
}
// String reconstructs the address string for human display.
// The output can be parsed by ParseNetworkAddress(). If the
// address is a unix socket, any non-zero port will be dropped.
func (na NetworkAddress) String() string {
if na.Network == "tcp" && (na.Host != "" || na.port() != "") {
na.Network = "" // omit default network value for brevity
}
return JoinNetworkAddress(na.Network, na.Host, na.port())
}
// IsUnixNetwork returns true if the netw is a unix network.
func IsUnixNetwork(netw string) bool {
return strings.HasPrefix(netw, "unix")
}
// IsFdNetwork returns true if the netw is a fd network.
func IsFdNetwork(netw string) bool {
return strings.HasPrefix(netw, "fd")
}
// ParseNetworkAddress parses addr into its individual
// components. The input string is expected to be of
// the form "network/host:port-range" where any part is
// optional. The default network, if unspecified, is tcp.
// Port ranges are inclusive.
//
// Network addresses are distinct from URLs and do not
// use URL syntax.
func ParseNetworkAddress(addr string) (NetworkAddress, error) {
return ParseNetworkAddressWithDefaults(addr, "tcp", 0)
}
// ParseNetworkAddressWithDefaults is like ParseNetworkAddress but allows
// the default network and port to be specified.
func ParseNetworkAddressWithDefaults(addr, defaultNetwork string, defaultPort uint) (NetworkAddress, error) {
var host, port string
network, host, port, err := SplitNetworkAddress(addr)
if err != nil {
return NetworkAddress{}, err
}
if network == "" {
network = defaultNetwork
}
if IsUnixNetwork(network) {
_, _, err := internal.SplitUnixSocketPermissionsBits(host)
return NetworkAddress{
Network: network,
Host: host,
}, err
}
if IsFdNetwork(network) {
return NetworkAddress{
Network: network,
Host: host,
}, nil
}
var start, end uint64
if port == "" {
start = uint64(defaultPort)
end = uint64(defaultPort)
} else {
before, after, found := strings.Cut(port, "-")
if !found {
after = before
}
start, err = strconv.ParseUint(before, 10, 16)
if err != nil {
return NetworkAddress{}, fmt.Errorf("invalid start port: %v", err)
}
end, err = strconv.ParseUint(after, 10, 16)
if err != nil {
return NetworkAddress{}, fmt.Errorf("invalid end port: %v", err)
}
if end < start {
return NetworkAddress{}, fmt.Errorf("end port must not be less than start port")
}
if (end - start) > maxPortSpan {
return NetworkAddress{}, fmt.Errorf("port range exceeds %d ports", maxPortSpan)
}
}
return NetworkAddress{
Network: network,
Host: host,
StartPort: uint(start),
EndPort: uint(end),
}, nil
}
// SplitNetworkAddress splits a into its network, host, and port components.
// Note that port may be a port range (:X-Y), or omitted for unix sockets.
func SplitNetworkAddress(a string) (network, host, port string, err error) {
beforeSlash, afterSlash, slashFound := strings.Cut(a, "/")
if slashFound {
network = strings.ToLower(strings.TrimSpace(beforeSlash))
a = afterSlash
if IsUnixNetwork(network) || IsFdNetwork(network) {
host = a
return
}
}
host, port, err = net.SplitHostPort(a)
firstErr := err
if err != nil {
// in general, if there was an error, it was likely "missing port",
// so try removing square brackets around an IPv6 host, adding a bogus
// port to take advantage of standard library's robust parser, then
// strip the artificial port.
host, _, err = net.SplitHostPort(net.JoinHostPort(strings.Trim(a, "[]"), "0"))
port = ""
}
if err != nil {
err = errors.Join(firstErr, err)
}
return
}
// JoinNetworkAddress combines network, host, and port into a single
// address string of the form accepted by ParseNetworkAddress(). For
// unix sockets, the network should be "unix" (or "unixgram" or
// "unixpacket") and the path to the socket should be given as the
// host parameter.
func JoinNetworkAddress(network, host, port string) string {
var a string
if network != "" {
a = network + "/"
}
if (host != "" && port == "") || IsUnixNetwork(network) || IsFdNetwork(network) {
a += host
} else if port != "" {
a += net.JoinHostPort(host, port)
}
return a
}
// ListenQUIC returns a http3.QUICEarlyListener suitable for use in a Caddy module.
//
// The network will be transformed into a QUIC-compatible type if the same address can be used with
// different networks. Currently this just means that for tcp, udp will be used with the same
// address instead.
//
// NOTE: This API is EXPERIMENTAL and may be changed or removed.
func (na NetworkAddress) ListenQUIC(ctx context.Context, portOffset uint, config net.ListenConfig, tlsConf *tls.Config) (http3.QUICEarlyListener, error) {
lnKey := listenerKey("quic"+na.Network, na.JoinHostPort(portOffset))
sharedEarlyListener, _, err := listenerPool.LoadOrNew(lnKey, func() (Destructor, error) {
lnAny, err := na.Listen(ctx, portOffset, config)
if err != nil {
return nil, err
}
ln := lnAny.(net.PacketConn)
h3ln := ln
for {
// retrieve the underlying socket, so quic-go can optimize.
if unwrapper, ok := h3ln.(interface{ Unwrap() net.PacketConn }); ok {
h3ln = unwrapper.Unwrap()
} else {
break
}
}
sqs := newSharedQUICState(tlsConf)
// http3.ConfigureTLSConfig only uses this field and tls App sets this field as well
//nolint:gosec
quicTlsConfig := &tls.Config{GetConfigForClient: sqs.getConfigForClient}
// Require clients to verify their source address when we're handling more than 1000 handshakes per second.
// TODO: make tunable?
limiter := rate.NewLimiter(1000, 1000)
tr := &quic.Transport{
Conn: h3ln,
VerifySourceAddress: func(addr net.Addr) bool { return !limiter.Allow() },
}
earlyLn, err := tr.ListenEarly(
http3.ConfigureTLSConfig(quicTlsConfig),
&quic.Config{
Allow0RTT: true,
Tracer: qlog.DefaultConnectionTracer,
},
)
if err != nil {
return nil, err
}
// TODO: figure out when to close the listener and the transport
// using the original net.PacketConn to close them properly
return &sharedQuicListener{EarlyListener: earlyLn, packetConn: ln, sqs: sqs, key: lnKey}, nil
})
if err != nil {
return nil, err
}
sql := sharedEarlyListener.(*sharedQuicListener)
// add current tls.Config to sqs, so GetConfigForClient will always return the latest tls.Config in case of context cancellation
ctx, cancel := sql.sqs.addState(tlsConf)
return &fakeCloseQuicListener{
sharedQuicListener: sql,
context: ctx,
contextCancel: cancel,
}, nil
}
// ListenerUsage returns the current usage count of the given listener address.
func ListenerUsage(network, addr string) int {
count, _ := listenerPool.References(listenerKey(network, addr))
return count
}
// contextAndCancelFunc groups context and its cancelFunc
type contextAndCancelFunc struct {
context.Context
context.CancelFunc
}
// sharedQUICState manages GetConfigForClient
// see issue: https://github.com/caddyserver/caddy/pull/4849
type sharedQUICState struct {
rmu sync.RWMutex
tlsConfs map[*tls.Config]contextAndCancelFunc
activeTlsConf *tls.Config
}
// newSharedQUICState creates a new sharedQUICState
func newSharedQUICState(tlsConfig *tls.Config) *sharedQUICState {
sqtc := &sharedQUICState{
tlsConfs: make(map[*tls.Config]contextAndCancelFunc),
activeTlsConf: tlsConfig,
}
sqtc.addState(tlsConfig)
return sqtc
}
// getConfigForClient is used as tls.Config's GetConfigForClient field
func (sqs *sharedQUICState) getConfigForClient(ch *tls.ClientHelloInfo) (*tls.Config, error) {
sqs.rmu.RLock()
defer sqs.rmu.RUnlock()
return sqs.activeTlsConf.GetConfigForClient(ch)
}
// addState adds tls.Config and activeRequests to the map if not present and returns the corresponding context and its cancelFunc
// so that when cancelled, the active tls.Config will change
func (sqs *sharedQUICState) addState(tlsConfig *tls.Config) (context.Context, context.CancelFunc) {
sqs.rmu.Lock()
defer sqs.rmu.Unlock()
if cacc, ok := sqs.tlsConfs[tlsConfig]; ok {
return cacc.Context, cacc.CancelFunc
}
ctx, cancel := context.WithCancel(context.Background())
wrappedCancel := func() {
cancel()
sqs.rmu.Lock()
defer sqs.rmu.Unlock()
delete(sqs.tlsConfs, tlsConfig)
if sqs.activeTlsConf == tlsConfig {
// select another tls.Config, if there is none,
// related sharedQuicListener will be destroyed anyway
for tc := range sqs.tlsConfs {
sqs.activeTlsConf = tc
break
}
}
}
sqs.tlsConfs[tlsConfig] = contextAndCancelFunc{ctx, wrappedCancel}
// there should be at most 2 tls.Configs
if len(sqs.tlsConfs) > 2 {
Log().Warn("quic listener tls configs are more than 2", zap.Int("number of configs", len(sqs.tlsConfs)))
}
return ctx, wrappedCancel
}
// sharedQuicListener is like sharedListener, but for quic.EarlyListeners.
type sharedQuicListener struct {
2023-05-30 12:41:57 +03:00
*quic.EarlyListener
packetConn net.PacketConn // we have to hold these because quic-go won't close listeners it didn't create
sqs *sharedQUICState
key string
}
// Destruct closes the underlying QUIC listener and its associated net.PacketConn.
func (sql *sharedQuicListener) Destruct() error {
// close EarlyListener first to stop any operations being done to the net.PacketConn
_ = sql.EarlyListener.Close()
// then close the net.PacketConn
return sql.packetConn.Close()
}
// fakeClosedErr returns an error value that is not temporary
// nor a timeout, suitable for making the caller think the
// listener is actually closed
func fakeClosedErr(l interface{ Addr() net.Addr }) error {
return &net.OpError{
Op: "accept",
Net: l.Addr().Network(),
Addr: l.Addr(),
Err: errFakeClosed,
}
}
// errFakeClosed is the underlying error value returned by
// fakeCloseListener.Accept() after Close() has been called,
// indicating that it is pretending to be closed so that the
// server using it can terminate, while the underlying
// socket is actually left open.
var errFakeClosed = fmt.Errorf("listener 'closed' 😉")
type fakeCloseQuicListener struct {
core: Apply SO_REUSEPORT to UDP sockets (#5725) * core: Apply SO_REUSEPORT to UDP sockets For some reason, 10 months ago when I implemented SO_REUSEPORT for TCP, I didn't realize, or forgot, that it can be used for UDP too. It is a much better solution than using deadline hacks to reuse a socket, at least for TCP. Then https://github.com/mholt/caddy-l4/issues/132 was posted, in which we see that UDP servers never actually stopped when the L4 app was stopped. I verified this using this command: $ nc -u 127.0.0.1 55353 combined with POSTing configs to the /load admin endpoint (which alternated between an echo server and a proxy server so I could tell which config was being used). I refactored the code to use SO_REUSEPORT for UDP, but of course we still need graceful reloads on all platforms, not just Unix, so I also implemented a deadline hack similar to what we used for TCP before. That implementation for TCP was not perfect, possibly having a logical (not data) race condition; but for UDP so far it seems to be working. Verified the same way I verified that SO_REUSEPORT works. I think this code is slightly cleaner and I'm fairly confident this code is effective. * Check error * Fix return * Fix var name * implement Unwrap interface and clean up * move unix packet conn to platform specific file * implement Unwrap for unix packet conn * Move sharedPacketConn into proper file * Fix Windows * move sharedPacketConn and fakeClosePacketConn to proper file --------- Co-authored-by: Weidi Deng <weidi_deng@icloud.com>
2023-10-17 07:17:32 +03:00
closed int32 // accessed atomically; belongs to this struct only
*sharedQuicListener // embedded, so we also become a quic.EarlyListener
context context.Context
contextCancel context.CancelFunc
}
// Currently Accept ignores the passed context, however a situation where
// someone would need a hotswappable QUIC-only (not http3, since it uses context.Background here)
// server on which Accept would be called with non-empty contexts
// (mind that the default net listeners' Accept doesn't take a context argument)
// sounds way too rare for us to sacrifice efficiency here.
func (fcql *fakeCloseQuicListener) Accept(_ context.Context) (quic.EarlyConnection, error) {
conn, err := fcql.sharedQuicListener.Accept(fcql.context)
if err == nil {
return conn, nil
}
// if the listener is "closed", return a fake closed error instead
if atomic.LoadInt32(&fcql.closed) == 1 && errors.Is(err, context.Canceled) {
return nil, fakeClosedErr(fcql)
}
return nil, err
}
func (fcql *fakeCloseQuicListener) Close() error {
if atomic.CompareAndSwapInt32(&fcql.closed, 0, 1) {
fcql.contextCancel()
_, _ = listenerPool.Delete(fcql.sharedQuicListener.key)
}
return nil
}
// RegisterNetwork registers a network type with Caddy so that if a listener is
// created for that network type, getListener will be invoked to get the listener.
// This should be called during init() and will panic if the network type is standard
// or reserved, or if it is already registered. EXPERIMENTAL and subject to change.
func RegisterNetwork(network string, getListener ListenerFunc) {
network = strings.TrimSpace(strings.ToLower(network))
if network == "tcp" || network == "tcp4" || network == "tcp6" ||
network == "udp" || network == "udp4" || network == "udp6" ||
network == "unix" || network == "unixpacket" || network == "unixgram" ||
strings.HasPrefix("ip:", network) || strings.HasPrefix("ip4:", network) || strings.HasPrefix("ip6:", network) ||
network == "fd" || network == "fdgram" {
panic("network type " + network + " is reserved")
}
if _, ok := networkTypes[strings.ToLower(network)]; ok {
panic("network type " + network + " is already registered")
}
networkTypes[network] = getListener
}
core: Apply SO_REUSEPORT to UDP sockets (#5725) * core: Apply SO_REUSEPORT to UDP sockets For some reason, 10 months ago when I implemented SO_REUSEPORT for TCP, I didn't realize, or forgot, that it can be used for UDP too. It is a much better solution than using deadline hacks to reuse a socket, at least for TCP. Then https://github.com/mholt/caddy-l4/issues/132 was posted, in which we see that UDP servers never actually stopped when the L4 app was stopped. I verified this using this command: $ nc -u 127.0.0.1 55353 combined with POSTing configs to the /load admin endpoint (which alternated between an echo server and a proxy server so I could tell which config was being used). I refactored the code to use SO_REUSEPORT for UDP, but of course we still need graceful reloads on all platforms, not just Unix, so I also implemented a deadline hack similar to what we used for TCP before. That implementation for TCP was not perfect, possibly having a logical (not data) race condition; but for UDP so far it seems to be working. Verified the same way I verified that SO_REUSEPORT works. I think this code is slightly cleaner and I'm fairly confident this code is effective. * Check error * Fix return * Fix var name * implement Unwrap interface and clean up * move unix packet conn to platform specific file * implement Unwrap for unix packet conn * Move sharedPacketConn into proper file * Fix Windows * move sharedPacketConn and fakeClosePacketConn to proper file --------- Co-authored-by: Weidi Deng <weidi_deng@icloud.com>
2023-10-17 07:17:32 +03:00
var unixSocketsMu sync.Mutex
// getListenerFromPlugin returns a listener on the given network and address
// if a plugin has registered the network name. It may return (nil, nil) if
// no plugin can provide a listener.
func getListenerFromPlugin(ctx context.Context, network, host, port string, portOffset uint, config net.ListenConfig) (any, error) {
// get listener from plugin if network type is registered
if getListener, ok := networkTypes[network]; ok {
Log().Debug("getting listener from plugin", zap.String("network", network))
return getListener(ctx, network, host, port, portOffset, config)
}
return nil, nil
}
func listenerKey(network, addr string) string {
return network + "/" + addr
}
// ListenerFunc is a function that can return a listener given a network and address.
// The listeners must be capable of overlapping: with Caddy, new configs are loaded
// before old ones are unloaded, so listeners may overlap briefly if the configs
// both need the same listener. EXPERIMENTAL and subject to change.
type ListenerFunc func(ctx context.Context, network, host, portRange string, portOffset uint, cfg net.ListenConfig) (any, error)
var networkTypes = map[string]ListenerFunc{}
// ListenerWrapper is a type that wraps a listener
// so it can modify the input listener's methods.
// Modules that implement this interface are found
// in the caddy.listeners namespace. Usually, to
// wrap a listener, you will define your own struct
// type that embeds the input listener, then
// implement your own methods that you want to wrap,
// calling the underlying listener's methods where
// appropriate.
type ListenerWrapper interface {
WrapListener(net.Listener) net.Listener
}
// listenerPool stores and allows reuse of active listeners.
var listenerPool = NewUsagePool()
const maxPortSpan = 65535