13 KiB
Object Types
Table of Contents
Tengo Objects
In Tengo, all object types (both runtime types and user types) must implement Object interface. And some types may implement other optional interfaces (Callable, Indexable, IndexAssignable, Iterable) to support additional language features.
Object Interface
TypeName() string
TypeName method should return the name of the type. Type names are not directly used by the runtime (except when it reports a run-time error), but, it is generally a good idea to keep it short but distinguishable from other types.
String() string
String method should return a string representation of the underlying value. The value returned by String method will be used whenever string formatting for the value is required, most commonly when being converted into String value.
BinaryOp(op token.Token, rhs Object) (res Object, err error)
In Tengo, a type can overload binary operators (+
, -
, *
, /
, %
, &
, |
, ^
, &^
, >>
, <<
, >
, >=
; note that <
and <=
operators are not overloadable as they're simply implemented by switching left-hand side and right-hand side of >
/>=
operator) by implementing BinaryOp method. BinaryOp method takes the operator op
and the right-hand side object rhs
, and, should return a resulting value res
.
Error value vs runtime error
If BinaryOp method returns an error err
(the second return value), it will be treated as a run-time error, which will halt the execution (VM.Run() error
) and will return the error to the user. All runtime type implementations, for example, will return an ErrInvalidOperator
error when the given operator is not supported by the type.
Alternatively the method can return an Error
value as its result res
(the first return value), which will not halt the runtime and will be treated like any other values. As a dynamically typed language, the receiver (another expression or statement) can determine how to translate Error
value returned from binary operator expression.
IsFalsy() bool
IsFalsy method should return true if the underlying value is considered to be falsy.
Equals(o Object) bool
Equals method should return true if the underlying value is considered to be equal to the underlying value of another object o
. When comparing values of different types, the runtime does not guarantee or force anything, but, it's generally a good idea to make the result consistent. For example, a custom integer type may return true when comparing against String value, but, it should return the same result for the same inputs.
Copy() Object
Copy method should return a new copy of the object. Builtin function copy
uses this method to copy values. Default implementation of all runtime types return a deep-copy values, but, it's not a requirement by the runtime.
Callable Interface
If the type implements Callable interface, its values can be invoked as if they were functions.
type Callable interface {
Call(args ...Object) (ret Object, err error)
}
Indexable Interface
If the type implements Indexable interface, its values support dot selector (value = object.index
) and indexer (value = object[index]
) syntax.
type Indexable interface {
IndexGet(index Object) (value Object, err error)
}
If IndexGet
returns an error (err
), the VM will treat it as a run-time error.
Array and Map implementation forces the type of index Object to be Int and String respectively, but, it's not a required behavior of the VM. It is completely okay to take various index types as long as it is consistent.
By convention, Array or Array-like types and Map or Map-like types return Undefined
value when the key does not exist. But, again, this is not a required behavior.
Index-Assignable Interface
If the type implements IndexAssignable interface, its values support assignment using dot selector (object.index = value
) and indexer (object[index] = value
) in the assignment statements.
type IndexAssignable interface {
IndexSet(index, value Object) error
}
Array and Map implementation forces the type of index Object to be Int and String respectively, but, it's not a required behavior of the VM. It is completely okay to take various index types as long as it is consistent.
Iterable Interface
If the type implements Iterable interface, its values can be used in for-in
statements (for key, value in object { ... }
).
type Iterable interface {
Iterate() Iterator
}
This Iterate method should return another object that implements Iterator interface.
Iterator Interface
Next() bool
Next method should return true if there are more elements to iterate. When used with for-in
statements, the compiler uses Key and Value methods to populate the current element's key (or index) and value from the object that this iterator represents. The runtime will stop iterating in for-in
statement when this method returns false.
Key() Object
Key method should return a key (or an index) Object for the current element of the underlying object. It should return the same value until Next method is called again. By convention, iterators for the map or map-like objects returns the String key, and, iterators for array or array-like objects returns the Int index. But, it's not a requirement by the VM.
Value() Object
Value method should return a value Object for the current element of the underlying object. It should return the same value until Next method is called again.
Runtime Object Types
These are the basic types Tengo runtime supports out of the box:
- Primitive value types: Int, String, Float, Bool, Char, Bytes, Time
- Composite value types: Array, ImmutableArray, Map, ImmutableMap
- Functions: CompiledFunction, BuiltinFunction, UserFunction
- Iterators: StringIterator, ArrayIterator, MapIterator, ImmutableMapIterator
- Error
- Undefined
- Other internal objects: Closure, Break, Continue, ReturnValue
See Runtime Types for more details on these runtime types.
User Object Types
Users can easily extend and add their own types by implementing the same Object interface, and, Tengo runtime will treat them in the same way as its runtime types with no performance overhead.
Here's an example user type implementation, StringArray
:
type StringArray struct {
Value []string
}
func (o *StringArray) String() string {
return strings.Join(o.Value, ", ")
}
func (o *StringArray) BinaryOp(op token.Token, rhs objects.Object) (objects.Object, error) {
if rhs, ok := rhs.(*StringArray); ok {
switch op {
case token.Add:
if len(rhs.Value) == 0 {
return o, nil
}
return &StringArray{Value: append(o.Value, rhs.Value...)}, nil
}
}
return nil, objects.ErrInvalidOperator
}
func (o *StringArray) IsFalsy() bool {
return len(o.Value) == 0
}
func (o *StringArray) Equals(x objects.Object) bool {
if x, ok := x.(*StringArray); ok {
if len(o.Value) != len(x.Value) {
return false
}
for i, v := range o.Value {
if v != x.Value[i] {
return false
}
}
return true
}
return false
}
func (o *StringArray) Copy() objects.Object {
return &StringArray{
Value: append([]string{}, o.Value...),
}
}
func (o *StringArray) TypeName() string {
return "string-array"
}
You can use a user type via either Script.Add or by directly manipulating the symbol table and the global variables. Here's an example code to add StringArray
to the script:
// script that uses 'my_list'
s := script.New([]byte(`
print(my_list + "three")
`))
myList := &StringArray{Value: []string{"one", "two"}}
s.Add("my_list", myList) // add StringArray value 'my_list'
s.Run() // prints "one, two, three"
It can also implement Indexable
and IndexAssinable
interfaces:
func (o *StringArray) IndexGet(index objects.Object) (objects.Object, error) {
intIdx, ok := index.(*objects.Int)
if ok {
if intIdx.Value >= 0 && intIdx.Value < int64(len(o.Value)) {
return &objects.String{Value: o.Value[intIdx.Value]}, nil
}
return nil, objects.ErrIndexOutOfBounds
}
strIdx, ok := index.(*objects.String)
if ok {
for vidx, str := range o.Value {
if strIdx.Value == str {
return &objects.Int{Value: int64(vidx)}, nil
}
}
return objects.UndefinedValue, nil
}
return nil, objects.ErrInvalidIndexType
}
func (o *StringArray) IndexSet(index, value objects.Object) error {
strVal, ok := objects.ToString(value)
if !ok {
return objects.ErrInvalidIndexValueType
}
intIdx, ok := index.(*objects.Int)
if ok {
if intIdx.Value >= 0 && intIdx.Value < int64(len(o.Value)) {
o.Value[intIdx.Value] = strVal
return nil
}
return objects.ErrIndexOutOfBounds
}
return objects.ErrInvalidIndexType
}
If we implement Callabale
interface:
func (o *StringArray) Call(args ...objects.Object) (ret objects.Object, err error) {
if len(args) != 1 {
return nil, objects.ErrWrongNumArguments
}
s1, ok := objects.ToString(args[0])
if !ok {
return nil, objects.ErrInvalidArgumentType{
Name: "first",
Expected: "string",
Found: args[0].TypeName(),
}
}
for i, v := range o.Value {
if v == s1 {
return &objects.Int{Value: int64(i)}, nil
}
}
return objects.UndefinedValue, nil
}
Then it can be "invoked":
s := script.New([]byte(`
print(my_list("two"))
`))
myList := &StringArray{Value: []string{"one", "two", "three"}}
s.Add("my_list", myList) // add StringArray value 'my_list'
s.Run() // prints "1" (index of "two")
We can also make StringArray
iterable:
func (o *StringArray) Iterate() objects.Iterator {
return &StringArrayIterator{
strArr: o,
}
}
type StringArrayIterator struct {
objectImpl
strArr *StringArray
idx int
}
func (i *StringArrayIterator) TypeName() string {
return "string-array-iterator"
}
func (i *StringArrayIterator) Next() bool {
i.idx++
return i.idx <= len(i.strArr.Value)
}
func (i *StringArrayIterator) Key() objects.Object {
return &objects.Int{Value: int64(i.idx - 1)}
}
func (i *StringArrayIterator) Value() objects.Object {
return &objects.String{Value: i.strArr.Value[i.idx-1]}
}