mox/vendor/github.com/mjl-/bstore/exec.go
Mechiel Lukkien cb229cb6cf
mox!
2023-01-30 14:27:06 +01:00

568 lines
12 KiB
Go

package bstore
import (
"bytes"
"fmt"
"reflect"
"sort"
"time"
bolt "go.etcd.io/bbolt"
)
// exec represents the execution of a query plan.
type exec[T any] struct {
q *Query[T]
plan *plan[T]
// For queries with explicit PKs filtered on.
// See plan.keys. We remove items from the list when we looked one up, but we keep the slice non-nil.
keys [][]byte
// If -1, no limit is set. This is different from Query where 0 means
// no limit. We count back and 0 means the end.
limit int
data []pair[T] // If not nil (even if empty), serve nextKey requests from here.
ib *bolt.Bucket
rb *bolt.Bucket
forward func() (bk, bv []byte) // Once we start scanning, we prepare forward to next/prev to the following value.
}
// exec creates a new execution for the plan, registering statistics.
func (p *plan[T]) exec(q *Query[T]) *exec[T] {
q.stats.Queries++
if p.idx == nil {
if p.keys != nil {
q.stats.PlanPK++
} else if p.start != nil || p.stop != nil {
q.stats.PlanPKScan++
} else {
q.stats.PlanTableScan++
}
q.stats.LastIndex = ""
} else {
if p.keys != nil {
q.stats.PlanUnique++
} else {
q.stats.PlanIndexScan++
}
q.stats.LastIndex = p.idx.Name
}
if len(p.orders) > 0 {
q.stats.Sort++
}
q.stats.LastOrdered = p.start != nil || p.stop != nil
q.stats.LastAsc = !p.desc
limit := -1
if q.xlimit > 0 {
limit = q.xlimit
}
return &exec[T]{q: q, plan: p, keys: p.keys, limit: limit}
}
// incr treats buf as a bigendian number, increasing it by one. used for reverse
// scans, where we must start beyond the key prefix we are looking for.
func incr(buf []byte) bool {
for i := len(buf) - 1; i >= 0; i-- {
if buf[i] < 255 {
buf[i]++
return true
}
buf[i] = 0
}
return false
}
func cutoff(b []byte, n int) []byte {
if len(b) <= n {
return b
}
return b[:n]
}
// nextKey returns the key and optionally value for the next selected record.
//
// ErrAbsent is returned if there is no more record.
//
// If an error occurs, an error is set on query, except in the case of
// ErrAbsent. ErrAbsent does not finish the query because a Delete or Update
// could follow.
func (e *exec[T]) nextKey(write, value bool) ([]byte, T, error) {
var zero T
q := e.q
if q.err != nil {
return nil, zero, q.err
}
// We collected & sorted data previously. Return from it until done.
// Limit was already applied.
if e.data != nil {
if len(e.data) == 0 {
return nil, zero, ErrAbsent
}
p := e.data[0]
e.data = e.data[1:]
var v T
if value {
var err error
v, err = p.Value(e)
if err != nil {
q.error(err)
return nil, zero, err
}
}
return p.bk, v, nil
}
if e.limit == 0 {
return nil, zero, ErrAbsent
}
// First time we are going to need buckets.
if e.rb == nil {
tx, err := q.tx(write)
if err != nil {
q.error(err)
return nil, zero, err
}
e.rb, err = tx.recordsBucket(q.st.Name, q.st.Current.fillPercent)
if err != nil {
return nil, zero, err
}
if e.plan.idx != nil {
e.ib, err = tx.indexBucket(e.plan.idx)
if err != nil {
return nil, zero, err
}
}
}
// List of IDs (records) or full unique index equality match.
// We can get the records/index value by a simple "get" on the key.
if e.keys != nil {
collect := len(e.plan.orders) > 0
if collect {
e.data = []pair[T]{} // Must be non-nil to get into e.data branch!
}
for i, xk := range e.keys {
var bk, bv []byte
// For indices, we need look up the PK through the index.
if e.plan.idx != nil {
c := e.ib.Cursor()
q.stats.Index.Cursor++
bki, _ := c.Seek(xk)
if !bytes.HasPrefix(bki, xk) {
continue
}
// log.Printf("seek %x, bki %x", xk, bki)
bk = bki[len(xk):]
} else {
bk = xk
}
// We don't need to fetch the full record now if it isn't needed by
// caller. It may be fetch below for more filters.
if value || e.plan.idx == nil {
q.stats.Records.Get++
bv = e.rb.Get(bk)
if bv == nil {
if e.plan.idx != nil {
return nil, zero, fmt.Errorf("%w: record with pk %x referenced through index %q not found", ErrStore, bk, e.plan.idx.Name)
}
continue
}
}
p := pair[T]{bk, bv, nil}
if ok, err := e.checkFilter(&p); err != nil {
return nil, zero, err
} else if !ok {
continue
}
if collect {
e.data = append(e.data, p)
continue
}
// Again, only fetch value if needed.
var v T
if value {
var err error
v, err = p.Value(e)
if err != nil {
q.error(err)
return nil, zero, err
}
}
if e.limit > 0 {
e.limit--
}
e.keys = e.keys[i+1:]
return bk, v, nil
}
if !collect {
return nil, zero, ErrAbsent
}
// Restart, now with data.
e.keys = [][]byte{}
e.sort()
if e.limit > 0 && len(e.data) > e.limit {
e.data = e.data[:e.limit]
}
return q.nextKey(write, value)
}
// We are going to do a scan, either over the records or an index. We may have a start and stop key.
collect := len(e.plan.orders) > 0
if collect {
e.data = []pair[T]{} // Must be non-nil to get into e.data branch on function restart.
}
for {
var xk, xv []byte
if e.forward == nil {
// First time we are in this loop, we set up a cursor and e.forward.
var c *bolt.Cursor
var statsKV *StatsKV
if e.plan.idx == nil {
c = e.rb.Cursor()
statsKV = &q.stats.Records
} else {
c = e.ib.Cursor()
statsKV = &q.stats.Index
}
if !e.plan.desc {
e.forward = c.Next
if e.plan.start != nil {
statsKV.Cursor++
// If e.plan.start does not exist, seek will skip to the
// next value after. Fine because this is ascending order.
xk, xv = c.Seek(e.plan.start)
} else {
statsKV.Cursor++
xk, xv = c.First()
}
} else {
e.forward = c.Prev
if e.plan.start == nil {
statsKV.Cursor++
xk, xv = c.Last()
} else {
start := make([]byte, len(e.plan.start))
copy(start, e.plan.start)
ok := incr(start)
if !ok {
statsKV.Cursor++
// We were at the last representable value. So we simply start at the end.
xk, xv = c.Last()
} else {
statsKV.Cursor++
xk, xv = c.Seek(start)
if xk == nil {
statsKV.Cursor++
xk, xv = c.Last()
}
// We started at the value after where we were requested to start, so we have to
// move until we find a matching key.
// todo: we could take e.plan.stop into account (if set). right now we may be
// seeking all the way to the front without ever seeing a match to stop.
for xk != nil && bytes.Compare(cutoff(xk, len(e.plan.start)), e.plan.start) > 0 {
statsKV.Cursor++
xk, xv = e.forward()
}
}
}
}
} else {
if e.plan.idx == nil {
q.stats.Records.Cursor++
} else {
q.stats.Index.Cursor++
}
xk, xv = e.forward()
// log.Printf("forwarded, %x %x", xk, xv)
}
if xk == nil {
break
}
if e.plan.start != nil && !e.plan.startInclusive && bytes.HasPrefix(xk, e.plan.start) {
continue
}
if e.plan.stop != nil {
cmp := bytes.Compare(cutoff(xk, len(e.plan.stop)), e.plan.stop)
if !e.plan.desc && (e.plan.stopInclusive && cmp > 0 || !e.plan.stopInclusive && cmp >= 0) {
break
} else if e.plan.desc && (e.plan.stopInclusive && cmp < 0 || !e.plan.stopInclusive && cmp <= 0) {
break
}
}
var pk, bv []byte
if e.plan.idx == nil {
pk = xk
bv = xv
} else {
var err error
pk, _, err = e.plan.idx.parseKey(xk, false)
if err != nil {
q.error(err)
return nil, zero, err
}
}
p := pair[T]{pk, bv, nil}
if ok, err := e.checkFilter(&p); err != nil {
return nil, zero, err
} else if !ok {
continue
}
//log.Printf("have kv, %x %x", p.bk, p.bv)
var v T
var err error
if value {
v, err = p.Value(e)
if err != nil {
q.error(err)
return nil, zero, err
}
}
if collect {
e.data = append(e.data, p)
continue
}
if e.limit > 0 {
e.limit--
}
return p.bk, v, nil
}
if !collect {
return nil, zero, ErrAbsent
}
// Restart, now with data.
e.sort()
if e.limit > 0 && len(e.data) > e.limit {
e.data = e.data[:e.limit]
}
return e.nextKey(write, value)
}
// checkFilter checks against the filters for the plan.
func (e *exec[T]) checkFilter(p *pair[T]) (rok bool, rerr error) {
q := e.q
for _, ff := range e.plan.filters {
switch f := ff.(type) {
// note: filterIDs is not here, it is handled earlier to fetch records.
case filterFn[T]:
v, err := p.Value(e)
if err != nil {
q.error(err)
return false, err
}
if !f.fn(v) {
return
}
case filterEqual[T]:
v, err := p.Value(e)
if err != nil {
q.error(err)
return false, err
}
rv := reflect.ValueOf(v)
frv := rv.FieldByIndex(f.field.structField.Index)
if !f.field.Type.equal(frv, f.rvalue) {
return
}
case filterNotEqual[T]:
v, err := p.Value(e)
if err != nil {
q.error(err)
return false, err
}
rv := reflect.ValueOf(v)
frv := rv.FieldByIndex(f.field.structField.Index)
if f.field.Type.equal(frv, f.rvalue) {
return
}
case filterIn[T]:
v, err := p.Value(e)
if err != nil {
q.error(err)
return false, err
}
rv := reflect.ValueOf(v)
frv := rv.FieldByIndex(f.field.structField.Index)
var have bool
for _, xrv := range f.rvalues {
if f.field.Type.equal(frv, xrv) {
have = true
break
}
}
if !have {
return
}
case filterNotIn[T]:
v, err := p.Value(e)
if err != nil {
q.error(err)
return false, err
}
rv := reflect.ValueOf(v)
frv := rv.FieldByIndex(f.field.structField.Index)
for _, xrv := range f.rvalues {
if f.field.Type.equal(frv, xrv) {
return
}
}
case filterCompare[T]:
v, err := p.Value(e)
if err != nil {
q.error(err)
return false, err
}
rv := reflect.ValueOf(v)
fv := rv.FieldByIndex(f.field.structField.Index)
cmp := compare(f.field.Type.Kind, fv, f.value)
switch {
case cmp == 0 && (f.op == opGreaterEqual || f.op == opLessEqual):
case cmp < 0 && (f.op == opLess || f.op == opLessEqual):
case cmp > 0 && (f.op == opGreater || f.op == opGreaterEqual):
default:
return
}
default:
q.errorf("internal error: missing case for filter %T", ff)
return false, q.err
}
}
return true, nil
}
// if type can be compared for filterCompare, eg for greater/less comparison.
func comparable(ft fieldType) bool {
if ft.Ptr {
return false
}
switch ft.Kind {
case kindBytes, kindString, kindBool, kindInt8, kindInt16, kindInt32, kindInt64, kindInt, kindUint8, kindUint16, kindUint32, kindUint64, kindUint, kindFloat32, kindFloat64, kindTime:
return true
default:
return false
}
}
func compare(k kind, a, b reflect.Value) int {
switch k {
case kindBytes:
return bytes.Compare(a.Bytes(), b.Bytes())
case kindString:
sa := a.String()
sb := b.String()
if sa < sb {
return -1
} else if sa > sb {
return 1
}
return 0
case kindBool:
ba := a.Bool()
bb := b.Bool()
if !ba && bb {
return -1
} else if ba && !bb {
return 1
}
return 0
case kindInt8, kindInt16, kindInt32, kindInt64, kindInt:
ia := a.Int()
ib := b.Int()
if ia < ib {
return -1
} else if ia > ib {
return 1
}
return 0
case kindUint8, kindUint16, kindUint32, kindUint64, kindUint:
ia := a.Uint()
ib := b.Uint()
if ia < ib {
return -1
} else if ia > ib {
return 1
}
return 0
case kindFloat32, kindFloat64:
fa := a.Float()
fb := b.Float()
if fa < fb {
return -1
} else if fa > fb {
return 1
}
return 0
case kindTime:
ta := a.Interface().(time.Time)
tb := b.Interface().(time.Time)
if ta.Before(tb) {
return -1
} else if ta.After(tb) {
return 1
}
return 0
}
// todo: internal error, cannot happen
return 0
}
func (e *exec[T]) sort() {
// todo: We should check whether we actually need to load values. We're just
// always it now for the time being because SortStableFunc isn't going to
// give us a *pair (even though it could because of the slice) so we
// couldn't set/cache the value T during sorting.
q := e.q
for i := range e.data {
p := &e.data[i]
if p.value != nil {
continue
}
_, err := p.Value(e)
if err != nil {
q.error(err)
return
}
}
sort.SliceStable(e.data, func(i, j int) bool {
a := e.data[i]
b := e.data[j]
for _, o := range e.plan.orders {
ra := reflect.ValueOf(*a.value)
rb := reflect.ValueOf(*b.value)
rva := ra.FieldByIndex(o.field.structField.Index)
rvb := rb.FieldByIndex(o.field.structField.Index)
cmp := compare(o.field.Type.Kind, rva, rvb)
if cmp == 0 {
continue
}
return cmp < 0 && o.asc || cmp > 0 && !o.asc
}
return false
})
}