mirror of
https://github.com/mjl-/mox.git
synced 2025-01-15 18:06:27 +03:00
17baf9a883
after seeing some junk messages pass the filter, i investigated word counts in junkfilter.db. i had seen suspicious counts that were just around powers of two. did not make sense at the time. more investigating makes it clear: instead of setting new word counts when updating the junk filter, we were adding the new value to the current value (instead of just setting the new value). so the counts got approximately doubled when being updated. users should retrain the junk filter after this update using the "retrain" subcommand. this also adds logging for the hypothetical case where numbers would get decreased below zero (which would wrap around due to uints). and this fixes junk filter tests that were passing wrong parameters to train/untrain...
204 lines
5.6 KiB
Go
204 lines
5.6 KiB
Go
package junk
|
|
|
|
import (
|
|
"context"
|
|
"fmt"
|
|
"math"
|
|
"os"
|
|
"path/filepath"
|
|
"testing"
|
|
|
|
"github.com/mjl-/mox/mlog"
|
|
)
|
|
|
|
var ctxbg = context.Background()
|
|
|
|
func tcheck(t *testing.T, err error, msg string) {
|
|
t.Helper()
|
|
if err != nil {
|
|
t.Fatalf("%s: %s", msg, err)
|
|
}
|
|
}
|
|
|
|
func tlistdir(t *testing.T, name string) []string {
|
|
t.Helper()
|
|
l, err := os.ReadDir(name)
|
|
tcheck(t, err, "readdir")
|
|
names := make([]string, len(l))
|
|
for i, e := range l {
|
|
names[i] = e.Name()
|
|
}
|
|
return names
|
|
}
|
|
|
|
func TestFilter(t *testing.T) {
|
|
log := mlog.New("junk", nil)
|
|
params := Params{
|
|
Onegrams: true,
|
|
Twograms: true,
|
|
Threegrams: false,
|
|
MaxPower: 0.1,
|
|
TopWords: 10,
|
|
IgnoreWords: 0.1,
|
|
RareWords: 1,
|
|
}
|
|
dbPath := filepath.FromSlash("../testdata/junk/filter.db")
|
|
bloomPath := filepath.FromSlash("../testdata/junk/filter.bloom")
|
|
os.Remove(dbPath)
|
|
os.Remove(bloomPath)
|
|
f, err := NewFilter(ctxbg, log, params, dbPath, bloomPath)
|
|
tcheck(t, err, "new filter")
|
|
err = f.Close()
|
|
tcheck(t, err, "close filter")
|
|
|
|
f, err = OpenFilter(ctxbg, log, params, dbPath, bloomPath, true)
|
|
tcheck(t, err, "open filter")
|
|
|
|
// Ensure these dirs exist. Developers should bring their own ham/spam example
|
|
// emails.
|
|
os.MkdirAll("../testdata/train/ham", 0770)
|
|
os.MkdirAll("../testdata/train/spam", 0770)
|
|
|
|
hamdir := filepath.FromSlash("../testdata/train/ham")
|
|
spamdir := filepath.FromSlash("../testdata/train/spam")
|
|
hamfiles := tlistdir(t, hamdir)
|
|
if len(hamfiles) > 100 {
|
|
hamfiles = hamfiles[:100]
|
|
}
|
|
spamfiles := tlistdir(t, spamdir)
|
|
if len(spamfiles) > 100 {
|
|
spamfiles = spamfiles[:100]
|
|
}
|
|
|
|
err = f.TrainDirs(hamdir, "", spamdir, hamfiles, nil, spamfiles)
|
|
tcheck(t, err, "train dirs")
|
|
|
|
if len(hamfiles) == 0 || len(spamfiles) == 0 {
|
|
fmt.Println("not training, no ham and/or spam messages, add them to testdata/train/ham and testdata/train/spam")
|
|
return
|
|
}
|
|
|
|
prob, _, _, _, err := f.ClassifyMessagePath(ctxbg, filepath.Join(hamdir, hamfiles[0]))
|
|
tcheck(t, err, "classify ham message")
|
|
if prob > 0.1 {
|
|
t.Fatalf("trained ham file has prob %v, expected <= 0.1", prob)
|
|
}
|
|
|
|
prob, _, _, _, err = f.ClassifyMessagePath(ctxbg, filepath.Join(spamdir, spamfiles[0]))
|
|
tcheck(t, err, "classify spam message")
|
|
if prob < 0.9 {
|
|
t.Fatalf("trained spam file has prob %v, expected > 0.9", prob)
|
|
}
|
|
|
|
err = f.Close()
|
|
tcheck(t, err, "close filter")
|
|
|
|
// Start again with empty filter. We'll train a few messages and check they are
|
|
// classified as ham/spam. Then we untrain to see they are no longer classified.
|
|
os.Remove(dbPath)
|
|
os.Remove(bloomPath)
|
|
f, err = NewFilter(ctxbg, log, params, dbPath, bloomPath)
|
|
tcheck(t, err, "open filter")
|
|
|
|
hamf, err := os.Open(filepath.Join(hamdir, hamfiles[0]))
|
|
tcheck(t, err, "open hamfile")
|
|
defer hamf.Close()
|
|
hamstat, err := hamf.Stat()
|
|
tcheck(t, err, "stat hamfile")
|
|
hamsize := hamstat.Size()
|
|
|
|
spamf, err := os.Open(filepath.Join(spamdir, spamfiles[0]))
|
|
tcheck(t, err, "open spamfile")
|
|
defer spamf.Close()
|
|
spamstat, err := spamf.Stat()
|
|
tcheck(t, err, "stat spamfile")
|
|
spamsize := spamstat.Size()
|
|
|
|
// Train each message twice, to prevent single occurrences from being ignored.
|
|
err = f.TrainMessage(ctxbg, hamf, hamsize, true)
|
|
tcheck(t, err, "train ham message")
|
|
_, err = hamf.Seek(0, 0)
|
|
tcheck(t, err, "seek ham message")
|
|
err = f.TrainMessage(ctxbg, hamf, hamsize, true)
|
|
tcheck(t, err, "train ham message")
|
|
|
|
err = f.TrainMessage(ctxbg, spamf, spamsize, false)
|
|
tcheck(t, err, "train spam message")
|
|
_, err = spamf.Seek(0, 0)
|
|
tcheck(t, err, "seek spam message")
|
|
err = f.TrainMessage(ctxbg, spamf, spamsize, false)
|
|
tcheck(t, err, "train spam message")
|
|
|
|
if !f.modified {
|
|
t.Fatalf("filter not modified after training")
|
|
}
|
|
if !f.bloom.Modified() {
|
|
t.Fatalf("bloom filter not modified after training")
|
|
}
|
|
|
|
err = f.Save()
|
|
tcheck(t, err, "save filter")
|
|
if f.modified || f.bloom.Modified() {
|
|
t.Fatalf("filter or bloom filter still modified after save")
|
|
}
|
|
|
|
// Classify and verify.
|
|
_, err = hamf.Seek(0, 0)
|
|
tcheck(t, err, "seek ham message")
|
|
prob, _, _, _, err = f.ClassifyMessageReader(ctxbg, hamf, hamsize)
|
|
tcheck(t, err, "classify ham")
|
|
if prob > 0.1 {
|
|
t.Fatalf("got prob %v, expected <= 0.1", prob)
|
|
}
|
|
|
|
_, err = spamf.Seek(0, 0)
|
|
tcheck(t, err, "seek spam message")
|
|
prob, _, _, _, err = f.ClassifyMessageReader(ctxbg, spamf, spamsize)
|
|
tcheck(t, err, "classify spam")
|
|
if prob < 0.9 {
|
|
t.Fatalf("got prob %v, expected >= 0.9", prob)
|
|
}
|
|
|
|
// Untrain ham & spam.
|
|
_, err = hamf.Seek(0, 0)
|
|
tcheck(t, err, "seek ham message")
|
|
err = f.UntrainMessage(ctxbg, hamf, hamsize, true)
|
|
tcheck(t, err, "untrain ham message")
|
|
_, err = hamf.Seek(0, 0)
|
|
tcheck(t, err, "seek ham message")
|
|
err = f.UntrainMessage(ctxbg, hamf, hamsize, true)
|
|
tcheck(t, err, "untrain ham message")
|
|
|
|
_, err = spamf.Seek(0, 0)
|
|
tcheck(t, err, "seek spam message")
|
|
err = f.UntrainMessage(ctxbg, spamf, spamsize, false)
|
|
tcheck(t, err, "untrain spam message")
|
|
_, err = spamf.Seek(0, 0)
|
|
tcheck(t, err, "seek spam message")
|
|
err = f.UntrainMessage(ctxbg, spamf, spamsize, false)
|
|
tcheck(t, err, "untrain spam message")
|
|
|
|
if !f.modified {
|
|
t.Fatalf("filter not modified after untraining")
|
|
}
|
|
|
|
// Classify again, should be unknown.
|
|
_, err = hamf.Seek(0, 0)
|
|
tcheck(t, err, "seek ham message")
|
|
prob, _, _, _, err = f.ClassifyMessageReader(ctxbg, hamf, hamsize)
|
|
tcheck(t, err, "classify ham")
|
|
if math.Abs(prob-0.5) > 0.1 {
|
|
t.Fatalf("got prob %v, expected 0.5 +-0.1", prob)
|
|
}
|
|
|
|
_, err = spamf.Seek(0, 0)
|
|
tcheck(t, err, "seek spam message")
|
|
prob, _, _, _, err = f.ClassifyMessageReader(ctxbg, spamf, spamsize)
|
|
tcheck(t, err, "classify spam")
|
|
if math.Abs(prob-0.5) > 0.1 {
|
|
t.Fatalf("got prob %v, expected 0.5 +-0.1", prob)
|
|
}
|
|
|
|
err = f.Close()
|
|
tcheck(t, err, "close filter")
|
|
}
|