mox/vendor/golang.org/x/exp/slices/slices.go
Mechiel Lukkien 40163bd145
implement storing non-system/well-known flags (keywords) for messages and mailboxes, with imap
the mailbox select/examine responses now return all flags used in a mailbox in
the FLAGS response. and indicate in the PERMANENTFLAGS response that clients
can set new keywords. we store these values on the new Message.Keywords field.
system/well-known flags are still in Message.Flags, so we're recognizing those
and handling them separately.

the imap store command handles the new flags. as does the append command, and
the search command.

we store keywords in a mailbox when a message in that mailbox gets the keyword.
we don't automatically remove the keywords from a mailbox. there is currently
no way at all to remove a keyword from a mailbox.

the import commands now handle non-system/well-known keywords too, when
importing from mbox/maildir.

jmap requires keyword support, so best to get it out of the way now.
2023-06-24 00:24:43 +02:00

258 lines
7.3 KiB
Go

// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package slices defines various functions useful with slices of any type.
// Unless otherwise specified, these functions all apply to the elements
// of a slice at index 0 <= i < len(s).
//
// Note that the less function in IsSortedFunc, SortFunc, SortStableFunc requires a
// strict weak ordering (https://en.wikipedia.org/wiki/Weak_ordering#Strict_weak_orderings),
// or the sorting may fail to sort correctly. A common case is when sorting slices of
// floating-point numbers containing NaN values.
package slices
import "golang.org/x/exp/constraints"
// Equal reports whether two slices are equal: the same length and all
// elements equal. If the lengths are different, Equal returns false.
// Otherwise, the elements are compared in increasing index order, and the
// comparison stops at the first unequal pair.
// Floating point NaNs are not considered equal.
func Equal[E comparable](s1, s2 []E) bool {
if len(s1) != len(s2) {
return false
}
for i := range s1 {
if s1[i] != s2[i] {
return false
}
}
return true
}
// EqualFunc reports whether two slices are equal using a comparison
// function on each pair of elements. If the lengths are different,
// EqualFunc returns false. Otherwise, the elements are compared in
// increasing index order, and the comparison stops at the first index
// for which eq returns false.
func EqualFunc[E1, E2 any](s1 []E1, s2 []E2, eq func(E1, E2) bool) bool {
if len(s1) != len(s2) {
return false
}
for i, v1 := range s1 {
v2 := s2[i]
if !eq(v1, v2) {
return false
}
}
return true
}
// Compare compares the elements of s1 and s2.
// The elements are compared sequentially, starting at index 0,
// until one element is not equal to the other.
// The result of comparing the first non-matching elements is returned.
// If both slices are equal until one of them ends, the shorter slice is
// considered less than the longer one.
// The result is 0 if s1 == s2, -1 if s1 < s2, and +1 if s1 > s2.
// Comparisons involving floating point NaNs are ignored.
func Compare[E constraints.Ordered](s1, s2 []E) int {
s2len := len(s2)
for i, v1 := range s1 {
if i >= s2len {
return +1
}
v2 := s2[i]
switch {
case v1 < v2:
return -1
case v1 > v2:
return +1
}
}
if len(s1) < s2len {
return -1
}
return 0
}
// CompareFunc is like Compare but uses a comparison function
// on each pair of elements. The elements are compared in increasing
// index order, and the comparisons stop after the first time cmp
// returns non-zero.
// The result is the first non-zero result of cmp; if cmp always
// returns 0 the result is 0 if len(s1) == len(s2), -1 if len(s1) < len(s2),
// and +1 if len(s1) > len(s2).
func CompareFunc[E1, E2 any](s1 []E1, s2 []E2, cmp func(E1, E2) int) int {
s2len := len(s2)
for i, v1 := range s1 {
if i >= s2len {
return +1
}
v2 := s2[i]
if c := cmp(v1, v2); c != 0 {
return c
}
}
if len(s1) < s2len {
return -1
}
return 0
}
// Index returns the index of the first occurrence of v in s,
// or -1 if not present.
func Index[E comparable](s []E, v E) int {
for i := range s {
if v == s[i] {
return i
}
}
return -1
}
// IndexFunc returns the first index i satisfying f(s[i]),
// or -1 if none do.
func IndexFunc[E any](s []E, f func(E) bool) int {
for i := range s {
if f(s[i]) {
return i
}
}
return -1
}
// Contains reports whether v is present in s.
func Contains[E comparable](s []E, v E) bool {
return Index(s, v) >= 0
}
// ContainsFunc reports whether at least one
// element e of s satisfies f(e).
func ContainsFunc[E any](s []E, f func(E) bool) bool {
return IndexFunc(s, f) >= 0
}
// Insert inserts the values v... into s at index i,
// returning the modified slice.
// In the returned slice r, r[i] == v[0].
// Insert panics if i is out of range.
// This function is O(len(s) + len(v)).
func Insert[S ~[]E, E any](s S, i int, v ...E) S {
tot := len(s) + len(v)
if tot <= cap(s) {
s2 := s[:tot]
copy(s2[i+len(v):], s[i:])
copy(s2[i:], v)
return s2
}
s2 := make(S, tot)
copy(s2, s[:i])
copy(s2[i:], v)
copy(s2[i+len(v):], s[i:])
return s2
}
// Delete removes the elements s[i:j] from s, returning the modified slice.
// Delete panics if s[i:j] is not a valid slice of s.
// Delete modifies the contents of the slice s; it does not create a new slice.
// Delete is O(len(s)-j), so if many items must be deleted, it is better to
// make a single call deleting them all together than to delete one at a time.
// Delete might not modify the elements s[len(s)-(j-i):len(s)]. If those
// elements contain pointers you might consider zeroing those elements so that
// objects they reference can be garbage collected.
func Delete[S ~[]E, E any](s S, i, j int) S {
_ = s[i:j] // bounds check
return append(s[:i], s[j:]...)
}
// Replace replaces the elements s[i:j] by the given v, and returns the
// modified slice. Replace panics if s[i:j] is not a valid slice of s.
func Replace[S ~[]E, E any](s S, i, j int, v ...E) S {
_ = s[i:j] // verify that i:j is a valid subslice
tot := len(s[:i]) + len(v) + len(s[j:])
if tot <= cap(s) {
s2 := s[:tot]
copy(s2[i+len(v):], s[j:])
copy(s2[i:], v)
return s2
}
s2 := make(S, tot)
copy(s2, s[:i])
copy(s2[i:], v)
copy(s2[i+len(v):], s[j:])
return s2
}
// Clone returns a copy of the slice.
// The elements are copied using assignment, so this is a shallow clone.
func Clone[S ~[]E, E any](s S) S {
// Preserve nil in case it matters.
if s == nil {
return nil
}
return append(S([]E{}), s...)
}
// Compact replaces consecutive runs of equal elements with a single copy.
// This is like the uniq command found on Unix.
// Compact modifies the contents of the slice s; it does not create a new slice.
// When Compact discards m elements in total, it might not modify the elements
// s[len(s)-m:len(s)]. If those elements contain pointers you might consider
// zeroing those elements so that objects they reference can be garbage collected.
func Compact[S ~[]E, E comparable](s S) S {
if len(s) < 2 {
return s
}
i := 1
for k := 1; k < len(s); k++ {
if s[k] != s[k-1] {
if i != k {
s[i] = s[k]
}
i++
}
}
return s[:i]
}
// CompactFunc is like Compact but uses a comparison function.
func CompactFunc[S ~[]E, E any](s S, eq func(E, E) bool) S {
if len(s) < 2 {
return s
}
i := 1
for k := 1; k < len(s); k++ {
if !eq(s[k], s[k-1]) {
if i != k {
s[i] = s[k]
}
i++
}
}
return s[:i]
}
// Grow increases the slice's capacity, if necessary, to guarantee space for
// another n elements. After Grow(n), at least n elements can be appended
// to the slice without another allocation. If n is negative or too large to
// allocate the memory, Grow panics.
func Grow[S ~[]E, E any](s S, n int) S {
if n < 0 {
panic("cannot be negative")
}
if n -= cap(s) - len(s); n > 0 {
// TODO(https://go.dev/issue/53888): Make using []E instead of S
// to workaround a compiler bug where the runtime.growslice optimization
// does not take effect. Revert when the compiler is fixed.
s = append([]E(s)[:cap(s)], make([]E, n)...)[:len(s)]
}
return s
}
// Clip removes unused capacity from the slice, returning s[:len(s):len(s)].
func Clip[S ~[]E, E any](s S) S {
return s[:len(s):len(s)]
}