1
0
Fork 0
mirror of https://github.com/mjl-/mox.git synced 2025-01-16 18:36:27 +03:00
mox/dmarc/parse.go
Mechiel Lukkien cb229cb6cf
mox!
2023-01-30 14:27:06 +01:00

343 lines
7.5 KiB
Go

package dmarc
import (
"fmt"
"net/url"
"strconv"
"strings"
)
type parseErr string
func (e parseErr) Error() string {
return string(e)
}
// ParseRecord parses a DMARC TXT record.
//
// Fields and values are are case-insensitive in DMARC are returned in lower case
// for easy comparison.
//
// DefaultRecord provides default values for tags not present in s.
func ParseRecord(s string) (record *Record, isdmarc bool, rerr error) {
defer func() {
x := recover()
if x == nil {
return
}
if err, ok := x.(parseErr); ok {
rerr = err
return
}
panic(x)
}()
r := DefaultRecord
p := newParser(s)
// v= is required and must be first. ../rfc/7489:1099
p.xtake("v")
p.wsp()
p.xtake("=")
p.wsp()
r.Version = p.xtakecase("DMARC1")
p.wsp()
p.xtake(";")
isdmarc = true
seen := map[string]bool{}
for {
p.wsp()
if p.empty() {
break
}
W := p.xword()
w := strings.ToLower(W)
if seen[w] {
// RFC does not say anything about duplicate tags. They can only confuse, so we
// don't allow them.
p.xerrorf("duplicate tag %q", W)
}
seen[w] = true
p.wsp()
p.xtake("=")
p.wsp()
switch w {
default:
// ../rfc/7489:924 implies that we should know how to parse unknown tags.
// The formal definition at ../rfc/7489:1127 does not allow for unknown tags.
// We just parse until the next semicolon or end.
for !p.empty() {
if p.peek(';') {
break
}
p.xtaken(1)
}
case "p":
if len(seen) != 1 {
// ../rfc/7489:1105
p.xerrorf("p= (policy) must be first tag")
}
r.Policy = DMARCPolicy(p.xtakelist("none", "quarantine", "reject"))
case "sp":
r.SubdomainPolicy = DMARCPolicy(p.xkeyword())
// note: we check if the value is valid before returning.
case "rua":
r.AggregateReportAddresses = append(r.AggregateReportAddresses, p.xuri())
p.wsp()
for p.take(",") {
p.wsp()
r.AggregateReportAddresses = append(r.AggregateReportAddresses, p.xuri())
p.wsp()
}
case "ruf":
r.FailureReportAddresses = append(r.FailureReportAddresses, p.xuri())
p.wsp()
for p.take(",") {
p.wsp()
r.FailureReportAddresses = append(r.FailureReportAddresses, p.xuri())
p.wsp()
}
case "adkim":
r.ADKIM = Align(p.xtakelist("r", "s"))
case "aspf":
r.ASPF = Align(p.xtakelist("r", "s"))
case "ri":
r.AggregateReportingInterval = p.xnumber()
case "fo":
r.FailureReportingOptions = []string{p.xtakelist("0", "1", "d", "s")}
p.wsp()
for p.take(":") {
p.wsp()
r.FailureReportingOptions = append(r.FailureReportingOptions, p.xtakelist("0", "1", "d", "s"))
p.wsp()
}
case "rf":
r.ReportingFormat = []string{p.xkeyword()}
p.wsp()
for p.take(":") {
p.wsp()
r.ReportingFormat = append(r.ReportingFormat, p.xkeyword())
p.wsp()
}
case "pct":
r.Percentage = p.xnumber()
if r.Percentage > 100 {
p.xerrorf("bad percentage %d", r.Percentage)
}
}
p.wsp()
if !p.take(";") && !p.empty() {
p.xerrorf("expected ;")
}
}
// ../rfc/7489:1106 says "p" is required, but ../rfc/7489:1407 implies we must be
// able to parse a record without a "p" or with invalid "sp" tag.
sp := r.SubdomainPolicy
if !seen["p"] || sp != PolicyEmpty && sp != PolicyNone && sp != PolicyQuarantine && sp != PolicyReject {
if len(r.AggregateReportAddresses) > 0 {
r.Policy = PolicyNone
r.SubdomainPolicy = PolicyEmpty
} else {
p.xerrorf("invalid (subdomain)policy and no valid aggregate reporting address")
}
}
return &r, true, nil
}
type parser struct {
s string
lower string
o int
}
// toLower lower cases bytes that are A-Z. strings.ToLower does too much. and
// would replace invalid bytes with unicode replacement characters, which would
// break our requirement that offsets into the original and upper case strings
// point to the same character.
func toLower(s string) string {
r := []byte(s)
for i, c := range r {
if c >= 'A' && c <= 'Z' {
r[i] = c + 0x20
}
}
return string(r)
}
func newParser(s string) *parser {
return &parser{
s: s,
lower: toLower(s),
}
}
func (p *parser) xerrorf(format string, args ...any) {
msg := fmt.Sprintf(format, args...)
if p.o < len(p.s) {
msg += fmt.Sprintf(" (remain %q)", p.s[p.o:])
}
panic(parseErr(msg))
}
func (p *parser) empty() bool {
return p.o >= len(p.s)
}
func (p *parser) peek(b byte) bool {
return p.o < len(p.s) && p.s[p.o] == b
}
// case insensitive prefix
func (p *parser) prefix(s string) bool {
return strings.HasPrefix(p.lower[p.o:], s)
}
func (p *parser) take(s string) bool {
if p.prefix(s) {
p.o += len(s)
return true
}
return false
}
func (p *parser) xtaken(n int) string {
r := p.lower[p.o : p.o+n]
p.o += n
return r
}
func (p *parser) xtake(s string) string {
if !p.prefix(s) {
p.xerrorf("expected %q", s)
}
return p.xtaken(len(s))
}
func (p *parser) xtakecase(s string) string {
if !strings.HasPrefix(p.s[p.o:], s) {
p.xerrorf("expected %q", s)
}
r := p.s[p.o : p.o+len(s)]
p.o += len(s)
return r
}
// *WSP
func (p *parser) wsp() {
for !p.empty() && (p.s[p.o] == ' ' || p.s[p.o] == '\t') {
p.o++
}
}
// take one of the strings in l.
func (p *parser) xtakelist(l ...string) string {
for _, s := range l {
if p.prefix(s) {
return p.xtaken(len(s))
}
}
p.xerrorf("expected on one %v", l)
panic("not reached")
}
func (p *parser) xtakefn1case(fn func(byte, int) bool) string {
for i, b := range []byte(p.lower[p.o:]) {
if !fn(b, i) {
if i == 0 {
p.xerrorf("expected at least one char")
}
return p.xtaken(i)
}
}
if p.empty() {
p.xerrorf("expected at least 1 char")
}
r := p.s[p.o:]
p.o += len(r)
return r
}
// used for the tag keys.
func (p *parser) xword() string {
return p.xtakefn1case(func(c byte, i int) bool {
return c >= 'a' && c <= 'z' || c >= 'A' && c <= 'Z' || c >= '0' && c <= '9'
})
}
func (p *parser) xdigits() string {
return p.xtakefn1case(func(b byte, i int) bool {
return isdigit(b)
})
}
// ../rfc/7489:883
// Syntax: ../rfc/7489:1132
func (p *parser) xuri() URI {
// Ideally, we would simply parse an URI here. But a URI can contain a semicolon so
// could consume the rest of the DMARC record. Instead, we'll assume no one uses
// semicolons in URIs in DMARC records and first collect
// space/comma/semicolon/end-separated characters, then parse.
// ../rfc/3986:684
v := p.xtakefn1case(func(b byte, i int) bool {
return b != ',' && b != ' ' && b != '\t' && b != ';'
})
t := strings.SplitN(v, "!", 2)
u, err := url.Parse(t[0])
if err != nil {
p.xerrorf("parsing uri %q: %s", t[0], err)
}
if u.Scheme == "" {
p.xerrorf("missing scheme in uri")
}
uri := URI{
Address: t[0],
}
if len(t) == 2 {
o := t[1]
if o != "" {
c := o[len(o)-1]
switch c {
case 'k', 'K', 'm', 'M', 'g', 'G', 't', 'T':
uri.Unit = strings.ToLower(o[len(o)-1:])
o = o[:len(o)-1]
}
}
uri.MaxSize, err = strconv.ParseUint(o, 10, 64)
if err != nil {
p.xerrorf("parsing max size for uri: %s", err)
}
}
return uri
}
func (p *parser) xnumber() int {
digits := p.xdigits()
v, err := strconv.Atoi(digits)
if err != nil {
p.xerrorf("parsing %q: %s", digits, err)
}
return v
}
func (p *parser) xkeyword() string {
// ../rfc/7489:1195, keyword is imported from smtp.
// ../rfc/5321:2287
n := len(p.s) - p.o
return p.xtakefn1case(func(b byte, i int) bool {
return isalphadigit(b) || (b == '-' && i < n-1 && isalphadigit(p.s[p.o+i+1]))
})
}
func isdigit(b byte) bool {
return b >= '0' && b <= '9'
}
func isalpha(b byte) bool {
return b >= 'a' && b <= 'z' || b >= 'A' && b <= 'Z'
}
func isalphadigit(b byte) bool {
return isdigit(b) || isalpha(b)
}