mox/junk/filter.go
Mechiel Lukkien 5c33640aea
consistently use log.Check for logging errors that "should not happen", don't influence application flow
sooner or later, someone will notice one of these messages, which will lead us
to a bug.
2023-02-16 13:22:00 +01:00

745 lines
19 KiB
Go

// Package junk implements a bayesian spam filter.
//
// A message can be parsed into words. Words (or pairs or triplets) can be used
// to train the filter or to classify the message as ham or spam. Training
// records the words in the database as ham/spam. Classifying consists of
// calculating the ham/spam probability by combining the words in the message
// with their ham/spam status.
package junk
// todo: look at inverse chi-square function? see https://www.linuxjournal.com/article/6467
// todo: perhaps: whether anchor text in links in html are different from the url
import (
"errors"
"fmt"
"io"
"math"
"os"
"sort"
"time"
"github.com/mjl-/bstore"
"github.com/mjl-/mox/message"
"github.com/mjl-/mox/mlog"
)
var (
xlog = mlog.New("junk")
errBadContentType = errors.New("bad content-type") // sure sign of spam
errClosed = errors.New("filter is closed")
)
type word struct {
Ham uint32
Spam uint32
}
type wordscore struct {
Word string
Ham uint32
Spam uint32
}
// Params holds parameters for the filter. Most are at test-time. The first are
// used during parsing and training.
type Params struct {
Onegrams bool `sconf:"optional" sconf-doc:"Track ham/spam ranking for single words."`
Twograms bool `sconf:"optional" sconf-doc:"Track ham/spam ranking for each two consecutive words."`
Threegrams bool `sconf:"optional" sconf-doc:"Track ham/spam ranking for each three consecutive words."`
MaxPower float64 `sconf-doc:"Maximum power a word (combination) can have. If spaminess is 0.99, and max power is 0.1, spaminess of the word will be set to 0.9. Similar for ham words."`
TopWords int `sconf-doc:"Number of most spammy/hammy words to use for calculating probability. E.g. 10."`
IgnoreWords float64 `sconf:"optional" sconf-doc:"Ignore words that are this much away from 0.5 haminess/spaminess. E.g. 0.1, causing word (combinations) of 0.4 to 0.6 to be ignored."`
RareWords int `sconf:"optional" sconf-doc:"Occurrences in word database until a word is considered rare and its influence in calculating probability reduced. E.g. 1 or 2."`
}
type Filter struct {
Params
log *mlog.Log // For logging cid.
closed bool
modified bool // Whether any modifications are pending. Cleared by Save.
hams, spams uint32 // Message count, stored in db under word "-".
cache map[string]word // Words read from database or during training.
changed map[string]word // Words modified during training.
dbPath, bloomPath string
db *bstore.DB // Always open on a filter.
bloom *Bloom // Only opened when writing.
isNew bool // Set for new filters until their first sync to disk. For faster writing.
}
func (f *Filter) ensureBloom() error {
if f.bloom != nil {
return nil
}
var err error
f.bloom, err = openBloom(f.bloomPath)
return err
}
// CloseDiscard closes the filter, discarding any changes.
func (f *Filter) CloseDiscard() error {
if f.closed {
return errClosed
}
err := f.db.Close()
*f = Filter{log: f.log, closed: true}
return err
}
// Close first saves the filter if it has modifications, then closes the database
// connection and releases the bloom filter.
func (f *Filter) Close() error {
if f.closed {
return errClosed
}
var err error
if f.modified {
err = f.Save()
}
if err != nil {
f.db.Close()
} else {
err = f.db.Close()
}
*f = Filter{log: f.log, closed: true}
return err
}
func OpenFilter(log *mlog.Log, params Params, dbPath, bloomPath string, loadBloom bool) (*Filter, error) {
var bloom *Bloom
if loadBloom {
var err error
bloom, err = openBloom(bloomPath)
if err != nil {
return nil, err
}
} else if fi, err := os.Stat(bloomPath); err == nil {
if err := BloomValid(int(fi.Size()), bloomK); err != nil {
return nil, fmt.Errorf("bloom: %s", err)
}
}
db, err := openDB(dbPath)
if err != nil {
return nil, fmt.Errorf("open database: %s", err)
}
f := &Filter{
Params: params,
log: log,
cache: map[string]word{},
changed: map[string]word{},
dbPath: dbPath,
bloomPath: bloomPath,
db: db,
bloom: bloom,
}
err = f.db.Read(func(tx *bstore.Tx) error {
wc := wordscore{Word: "-"}
err := tx.Get(&wc)
f.hams = wc.Ham
f.spams = wc.Spam
return err
})
if err != nil {
cerr := f.Close()
log.Check(cerr, "closing filter after error")
return nil, fmt.Errorf("looking up ham/spam message count: %s", err)
}
return f, nil
}
// NewFilter creates a new filter with empty bloom filter and database files. The
// filter is marked as new until the first save, will be done automatically if
// TrainDirs is called. If the bloom and/or database files exist, an error is
// returned.
func NewFilter(log *mlog.Log, params Params, dbPath, bloomPath string) (*Filter, error) {
var err error
if _, err := os.Stat(bloomPath); err == nil {
return nil, fmt.Errorf("bloom filter already exists on disk: %s", bloomPath)
} else if _, err := os.Stat(dbPath); err == nil {
return nil, fmt.Errorf("database file already exists on disk: %s", dbPath)
}
bloomSizeBytes := 4 * 1024 * 1024
if err := BloomValid(bloomSizeBytes, bloomK); err != nil {
return nil, fmt.Errorf("bloom: %s", err)
}
bf, err := os.Create(bloomPath)
if err != nil {
return nil, fmt.Errorf("creating bloom file: %w", err)
}
if err := bf.Truncate(4 * 1024 * 1024); err != nil {
xerr := bf.Close()
log.Check(xerr, "closing bloom filter file after truncate error")
xerr = os.Remove(bloomPath)
log.Check(xerr, "removing bloom filter file after truncate error")
return nil, fmt.Errorf("making empty bloom filter: %s", err)
}
err = bf.Close()
log.Check(err, "closing bloomfilter file")
db, err := newDB(log, dbPath)
if err != nil {
xerr := os.Remove(bloomPath)
log.Check(xerr, "removing bloom filter file after db init error")
xerr = os.Remove(dbPath)
log.Check(xerr, "removing database file after db init error")
return nil, fmt.Errorf("open database: %s", err)
}
words := map[string]word{} // f.changed is set to new map after training
f := &Filter{
Params: params,
log: log,
modified: true, // Ensure ham/spam message count is added for new filter.
cache: words,
changed: words,
dbPath: dbPath,
bloomPath: bloomPath,
db: db,
isNew: true,
}
return f, nil
}
const bloomK = 10
func openBloom(path string) (*Bloom, error) {
buf, err := os.ReadFile(path)
if err != nil {
return nil, fmt.Errorf("reading bloom file: %w", err)
}
return NewBloom(buf, bloomK)
}
func newDB(log *mlog.Log, path string) (db *bstore.DB, rerr error) {
// Remove any existing files.
os.Remove(path)
defer func() {
if rerr != nil {
err := os.Remove(path)
log.Check(err, "removing db file after init error")
}
}()
db, err := bstore.Open(path, &bstore.Options{Timeout: 5 * time.Second, Perm: 0660}, wordscore{})
if err != nil {
return nil, fmt.Errorf("open new database: %w", err)
}
return db, nil
}
func openDB(path string) (*bstore.DB, error) {
if _, err := os.Stat(path); err != nil {
return nil, fmt.Errorf("stat db file: %w", err)
}
return bstore.Open(path, &bstore.Options{Timeout: 5 * time.Second, Perm: 0660}, wordscore{})
}
// Save stores modifications, e.g. from training, to the database and bloom
// filter files.
func (f *Filter) Save() error {
if f.closed {
return errClosed
}
if !f.modified {
return nil
}
if f.bloom != nil && f.bloom.Modified() {
if err := f.bloom.Write(f.bloomPath); err != nil {
return fmt.Errorf("writing bloom filter: %w", err)
}
}
// We need to insert sequentially for reasonable performance.
words := make([]string, len(f.changed))
i := 0
for w := range f.changed {
words[i] = w
i++
}
sort.Slice(words, func(i, j int) bool {
return words[i] < words[j]
})
f.log.Debug("inserting words in junkfilter db", mlog.Field("words", len(f.changed)))
// start := time.Now()
if f.isNew {
if err := f.db.HintAppend(true, wordscore{}); err != nil {
f.log.Errorx("hint appendonly", err)
} else {
defer func() {
err := f.db.HintAppend(false, wordscore{})
f.log.Check(err, "restoring append hint")
}()
}
}
err := f.db.Write(func(tx *bstore.Tx) error {
update := func(w string, ham, spam uint32) error {
if f.isNew {
return tx.Insert(&wordscore{w, ham, spam})
}
wc := wordscore{w, 0, 0}
err := tx.Get(&wc)
if err == bstore.ErrAbsent {
return tx.Insert(&wordscore{w, ham, spam})
} else if err != nil {
return err
}
return tx.Update(&wordscore{w, wc.Ham + ham, wc.Spam + spam})
}
if err := update("-", f.hams, f.spams); err != nil {
return fmt.Errorf("storing total ham/spam message count: %s", err)
}
for _, w := range words {
c := f.changed[w]
if err := update(w, c.Ham, c.Spam); err != nil {
return fmt.Errorf("updating ham/spam count: %s", err)
}
}
return nil
})
if err != nil {
return fmt.Errorf("updating database: %w", err)
}
f.changed = map[string]word{}
f.modified = false
f.isNew = false
// f.log.Info("wrote filter to db", mlog.Field("duration", time.Since(start)))
return nil
}
func loadWords(db *bstore.DB, l []string, dst map[string]word) error {
sort.Slice(l, func(i, j int) bool {
return l[i] < l[j]
})
err := db.Read(func(tx *bstore.Tx) error {
for _, w := range l {
wc := wordscore{Word: w}
if err := tx.Get(&wc); err == nil {
dst[w] = word{wc.Ham, wc.Spam}
}
}
return nil
})
if err != nil {
return fmt.Errorf("fetching words: %s", err)
}
return nil
}
// ClassifyWords returns the spam probability for the given words, and number of recognized ham and spam words.
func (f *Filter) ClassifyWords(words map[string]struct{}) (probability float64, nham, nspam int, rerr error) {
if f.closed {
return 0, 0, 0, errClosed
}
type xword struct {
Word string
R float64
}
var hamHigh float64 = 0
var spamLow float64 = 1
var topHam []xword
var topSpam []xword
// Find words that should be in the database.
lookupWords := []string{}
expect := map[string]struct{}{}
unknowns := map[string]struct{}{}
totalUnknown := 0
for w := range words {
if f.bloom != nil && !f.bloom.Has(w) {
totalUnknown++
if len(unknowns) < 50 {
unknowns[w] = struct{}{}
}
continue
}
if _, ok := f.cache[w]; ok {
continue
}
lookupWords = append(lookupWords, w)
expect[w] = struct{}{}
}
if len(unknowns) > 0 {
f.log.Debug("unknown words in bloom filter, showing max 50", mlog.Field("words", unknowns), mlog.Field("totalunknown", totalUnknown), mlog.Field("totalwords", len(words)))
}
// Fetch words from database.
fetched := map[string]word{}
if len(lookupWords) > 0 {
if err := loadWords(f.db, lookupWords, fetched); err != nil {
return 0, 0, 0, err
}
for w, c := range fetched {
delete(expect, w)
f.cache[w] = c
}
f.log.Debug("unknown words in db", mlog.Field("words", expect), mlog.Field("totalunknown", len(expect)), mlog.Field("totalwords", len(words)))
}
for w := range words {
c, ok := f.cache[w]
if !ok {
continue
}
var wS, wH float64
if f.spams > 0 {
wS = float64(c.Spam) / float64(f.spams)
}
if f.hams > 0 {
wH = float64(c.Ham) / float64(f.hams)
}
r := wS / (wS + wH)
if r < f.MaxPower {
r = f.MaxPower
} else if r >= 1-f.MaxPower {
r = 1 - f.MaxPower
}
if c.Ham+c.Spam <= uint32(f.RareWords) {
// Reduce the power of rare words.
r += float64(1+uint32(f.RareWords)-(c.Ham+c.Spam)) * (0.5 - r) / 10
}
if math.Abs(0.5-r) < f.IgnoreWords {
continue
}
if r < 0.5 {
if len(topHam) >= f.TopWords && r > hamHigh {
continue
}
topHam = append(topHam, xword{w, r})
if r > hamHigh {
hamHigh = r
}
} else if r > 0.5 {
if len(topSpam) >= f.TopWords && r < spamLow {
continue
}
topSpam = append(topSpam, xword{w, r})
if r < spamLow {
spamLow = r
}
}
}
sort.Slice(topHam, func(i, j int) bool {
a, b := topHam[i], topHam[j]
if a.R == b.R {
return len(a.Word) > len(b.Word)
}
return a.R < b.R
})
sort.Slice(topSpam, func(i, j int) bool {
a, b := topSpam[i], topSpam[j]
if a.R == b.R {
return len(a.Word) > len(b.Word)
}
return a.R > b.R
})
nham = f.TopWords
if nham > len(topHam) {
nham = len(topHam)
}
nspam = f.TopWords
if nspam > len(topSpam) {
nspam = len(topSpam)
}
topHam = topHam[:nham]
topSpam = topSpam[:nspam]
var eta float64
for _, x := range topHam {
eta += math.Log(1-x.R) - math.Log(x.R)
}
for _, x := range topSpam {
eta += math.Log(1-x.R) - math.Log(x.R)
}
f.log.Debug("top words", mlog.Field("hams", topHam), mlog.Field("spams", topSpam))
prob := 1 / (1 + math.Pow(math.E, eta))
return prob, len(topHam), len(topSpam), nil
}
// ClassifyMessagePath is a convenience wrapper for calling ClassifyMessage on a file.
func (f *Filter) ClassifyMessagePath(path string) (probability float64, words map[string]struct{}, nham, nspam int, rerr error) {
if f.closed {
return 0, nil, 0, 0, errClosed
}
mf, err := os.Open(path)
if err != nil {
return 0, nil, 0, 0, err
}
defer func() {
err := mf.Close()
f.log.Check(err, "closing file after classify")
}()
fi, err := mf.Stat()
if err != nil {
return 0, nil, 0, 0, err
}
return f.ClassifyMessageReader(mf, fi.Size())
}
func (f *Filter) ClassifyMessageReader(mf io.ReaderAt, size int64) (probability float64, words map[string]struct{}, nham, nspam int, rerr error) {
m, err := message.EnsurePart(mf, size)
if err != nil && errors.Is(err, message.ErrBadContentType) {
// Invalid content-type header is a sure sign of spam.
//f.log.Infox("parsing content", err)
return 1, nil, 0, 0, nil
}
return f.ClassifyMessage(m)
}
// ClassifyMessage parses the mail message in r and returns the spam probability
// (between 0 and 1), along with the tokenized words found in the message, and the
// number of recognized ham and spam words.
func (f *Filter) ClassifyMessage(m message.Part) (probability float64, words map[string]struct{}, nham, nspam int, rerr error) {
var err error
words, err = f.ParseMessage(m)
if err != nil {
return 0, nil, 0, 0, err
}
probability, nham, nspam, err = f.ClassifyWords(words)
return probability, words, nham, nspam, err
}
// Train adds the words of a single message to the filter.
func (f *Filter) Train(ham bool, words map[string]struct{}) error {
if err := f.ensureBloom(); err != nil {
return err
}
var lwords []string
for w := range words {
if !f.bloom.Has(w) {
f.bloom.Add(w)
continue
}
if _, ok := f.cache[w]; !ok {
lwords = append(lwords, w)
}
}
if err := f.loadCache(lwords); err != nil {
return err
}
f.modified = true
if ham {
f.hams++
} else {
f.spams++
}
for w := range words {
c := f.cache[w]
if ham {
c.Ham++
} else {
c.Spam++
}
f.cache[w] = c
f.changed[w] = c
}
return nil
}
func (f *Filter) TrainMessage(r io.ReaderAt, size int64, ham bool) error {
p, _ := message.EnsurePart(r, size)
words, err := f.ParseMessage(p)
if err != nil {
return fmt.Errorf("parsing mail contents: %v", err)
}
return f.Train(ham, words)
}
func (f *Filter) UntrainMessage(r io.ReaderAt, size int64, ham bool) error {
p, _ := message.EnsurePart(r, size)
words, err := f.ParseMessage(p)
if err != nil {
return fmt.Errorf("parsing mail contents: %v", err)
}
return f.Untrain(ham, words)
}
func (f *Filter) loadCache(lwords []string) error {
if len(lwords) == 0 {
return nil
}
return loadWords(f.db, lwords, f.cache)
}
// Untrain adjusts the filter to undo a previous training of the words.
func (f *Filter) Untrain(ham bool, words map[string]struct{}) error {
if err := f.ensureBloom(); err != nil {
return err
}
// Lookup any words from the db that aren't in the cache and put them in the cache for modification.
var lwords []string
for w := range words {
if _, ok := f.cache[w]; !ok {
lwords = append(lwords, w)
}
}
if err := f.loadCache(lwords); err != nil {
return err
}
// Modify the message count.
f.modified = true
if ham {
f.hams--
} else {
f.spams--
}
// Decrease the word counts.
for w := range words {
c, ok := f.cache[w]
if !ok {
continue
}
if ham {
c.Ham--
} else {
c.Spam--
}
f.cache[w] = c
f.changed[w] = c
}
return nil
}
// TrainDir parses mail messages from files and trains the filter.
func (f *Filter) TrainDir(dir string, files []string, ham bool) (n, malformed uint32, rerr error) {
if f.closed {
return 0, 0, errClosed
}
if err := f.ensureBloom(); err != nil {
return 0, 0, err
}
for _, name := range files {
p := fmt.Sprintf("%s/%s", dir, name)
valid, words, err := f.tokenizeMail(p)
if err != nil {
// f.log.Infox("tokenizing mail", err, mlog.Field("path", p))
malformed++
continue
}
if !valid {
continue
}
n++
for w := range words {
if !f.bloom.Has(w) {
f.bloom.Add(w)
continue
}
c := f.cache[w]
f.modified = true
if ham {
c.Ham++
} else {
c.Spam++
}
f.cache[w] = c
f.changed[w] = c
}
}
return
}
// TrainDirs trains and saves a filter with mail messages from different types
// of directories.
func (f *Filter) TrainDirs(hamDir, sentDir, spamDir string, hamFiles, sentFiles, spamFiles []string) error {
if f.closed {
return errClosed
}
var err error
var start time.Time
var hamMalformed, sentMalformed, spamMalformed uint32
start = time.Now()
f.hams, hamMalformed, err = f.TrainDir(hamDir, hamFiles, true)
if err != nil {
return err
}
tham := time.Since(start)
var sent uint32
start = time.Now()
if sentDir != "" {
sent, sentMalformed, err = f.TrainDir(sentDir, sentFiles, true)
if err != nil {
return err
}
}
tsent := time.Since(start)
start = time.Now()
f.spams, spamMalformed, err = f.TrainDir(spamDir, spamFiles, false)
if err != nil {
return err
}
tspam := time.Since(start)
hams := f.hams
f.hams += sent
if err := f.Save(); err != nil {
return fmt.Errorf("saving filter: %s", err)
}
dbSize := f.fileSize(f.dbPath)
bloomSize := f.fileSize(f.bloomPath)
fields := []mlog.Pair{
mlog.Field("hams", hams),
mlog.Field("hamTime", tham),
mlog.Field("hamMalformed", hamMalformed),
mlog.Field("sent", sent),
mlog.Field("sentTime", tsent),
mlog.Field("sentMalformed", sentMalformed),
mlog.Field("spams", f.spams),
mlog.Field("spamTime", tspam),
mlog.Field("spamMalformed", spamMalformed),
mlog.Field("dbsize", fmt.Sprintf("%.1fmb", float64(dbSize)/(1024*1024))),
mlog.Field("bloomsize", fmt.Sprintf("%.1fmb", float64(bloomSize)/(1024*1024))),
mlog.Field("bloom1ratio", fmt.Sprintf("%.4f", float64(f.bloom.Ones())/float64(len(f.bloom.Bytes())*8))),
}
xlog.Print("training done", fields...)
return nil
}
func (f *Filter) fileSize(p string) int {
fi, err := os.Stat(p)
if err != nil {
f.log.Infox("stat", err, mlog.Field("path", p))
return 0
}
return int(fi.Size())
}