mirror of
https://github.com/mjl-/mox.git
synced 2025-01-01 03:13:48 +03:00
849b4ec9e9
it was far down on the roadmap, but implemented earlier, because it's interesting, and to help prepare for a jmap implementation. for jmap we need to implement more client-like functionality than with just imap. internal data structures need to change. jmap has lots of other requirements, so it's already a big project. by implementing a webmail now, some of the required data structure changes become clear and can be made now, so the later jmap implementation can do things similarly to the webmail code. the webmail frontend and webmail are written together, making their interface/api much smaller and simpler than jmap. one of the internal changes is that we now keep track of per-mailbox total/unread/unseen/deleted message counts and mailbox sizes. keeping this data consistent after any change to the stored messages (through the code base) is tricky, so mox now has a consistency check that verifies the counts are correct, which runs only during tests, each time an internal account reference is closed. we have a few more internal "changes" that are propagated for the webmail frontend (that imap doesn't have a way to propagate on a connection), like changes to the special-use flags on mailboxes, and used keywords in a mailbox. more changes that will be required have revealed themselves while implementing the webmail, and will be implemented next. the webmail user interface is modeled after the mail clients i use or have used: thunderbird, macos mail, mutt; and webmails i normally only use for testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed, but still the goal is to make this webmail client easy to use for everyone. the user interface looks like most other mail clients: a list of mailboxes, a search bar, a message list view, and message details. there is a top/bottom and a left/right layout for the list/message view, default is automatic based on screen size. the panes can be resized by the user. buttons for actions are just text, not icons. clicking a button briefly shows the shortcut for the action in the bottom right, helping with learning to operate quickly. any text that is underdotted has a title attribute that causes more information to be displayed, e.g. what a button does or a field is about. to highlight potential phishing attempts, any text (anywhere in the webclient) that switches unicode "blocks" (a rough approximation to (language) scripts) within a word is underlined orange. multiple messages can be selected with familiar ui interaction: clicking while holding control and/or shift keys. keyboard navigation works with arrows/page up/down and home/end keys, and also with a few basic vi-like keys for list/message navigation. we prefer showing the text instead of html (with inlined images only) version of a message. html messages are shown in an iframe served from an endpoint with CSP headers to prevent dangerous resources (scripts, external images) from being loaded. the html is also sanitized, with javascript removed. a user can choose to load external resources (e.g. images for tracking purposes). the frontend is just (strict) typescript, no external frameworks. all incoming/outgoing data is typechecked, both the api request parameters and response types, and the data coming in over SSE. the types and checking code are generated with sherpats, which uses the api definitions generated by sherpadoc based on the Go code. so types from the backend are automatically propagated to the frontend. since there is no framework to automatically propagate properties and rerender components, changes coming in over the SSE connection are propagated explicitly with regular function calls. the ui is separated into "views", each with a "root" dom element that is added to the visible document. these views have additional functions for getting changes propagated, often resulting in the view updating its (internal) ui state (dom). we keep the frontend compilation simple, it's just a few typescript files that get compiled (combined and types stripped) into a single js file, no additional runtime code needed or complicated build processes used. the webmail is served is served from a compressed, cachable html file that includes style and the javascript, currently just over 225kb uncompressed, under 60kb compressed (not minified, including comments). we include the generated js files in the repository, to keep Go's easily buildable self-contained binaries. authentication is basic http, as with the account and admin pages. most data comes in over one long-term SSE connection to the backend. api requests signal which mailbox/search/messages are requested over the SSE connection. fetching individual messages, and making changes, are done through api calls. the operations are similar to imap, so some code has been moved from package imapserver to package store. the future jmap implementation will benefit from these changes too. more functionality will probably be moved to the store package in the future. the quickstart enables webmail on the internal listener by default (for new installs). users can enable it on the public listener if they want to. mox localserve enables it too. to enable webmail on existing installs, add settings like the following to the listeners in mox.conf, similar to AccountHTTP(S): WebmailHTTP: Enabled: true WebmailHTTPS: Enabled: true special thanks to liesbeth, gerben, andrii for early user feedback. there is plenty still to do, see the list at the top of webmail/webmail.ts. feedback welcome as always.
451 lines
11 KiB
Go
451 lines
11 KiB
Go
package bstore
|
|
|
|
import (
|
|
"fmt"
|
|
"math"
|
|
"reflect"
|
|
"strconv"
|
|
"time"
|
|
|
|
bolt "go.etcd.io/bbolt"
|
|
)
|
|
|
|
// Types returns the types present in the database, regardless of whether they
|
|
// are currently registered using Open or Register. Useful for exporting data
|
|
// with Keys and Records.
|
|
func (tx *Tx) Types() ([]string, error) {
|
|
if err := tx.ctx.Err(); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
var types []string
|
|
err := tx.btx.ForEach(func(bname []byte, b *bolt.Bucket) error {
|
|
// note: we do not track stats for types operations.
|
|
|
|
types = append(types, string(bname))
|
|
return nil
|
|
})
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
return types, nil
|
|
}
|
|
|
|
// prepareType prepares typeName for export/introspection with DB.Keys,
|
|
// DB.Record, DB.Records. It is different in that it does not require a
|
|
// reflect.Type to parse into. It parses to a map, e.g. for export to JSON.
|
|
func (db *DB) prepareType(tx *Tx, typeName string) (map[uint32]*typeVersion, *typeVersion, *bolt.Bucket, []string, error) {
|
|
if err := tx.ctx.Err(); err != nil {
|
|
return nil, nil, nil, nil, err
|
|
}
|
|
|
|
rb, err := tx.recordsBucket(typeName, 0.5)
|
|
if err != nil {
|
|
return nil, nil, nil, nil, err
|
|
}
|
|
tb, err := tx.bucket(bucketKey{typeName, "types"})
|
|
if err != nil {
|
|
return nil, nil, nil, nil, err
|
|
}
|
|
versions := map[uint32]*typeVersion{}
|
|
var tv *typeVersion
|
|
err = tb.ForEach(func(bk, bv []byte) error {
|
|
// note: we do not track stats for types operations.
|
|
|
|
ntv, err := parseSchema(bk, bv)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
versions[ntv.Version] = ntv
|
|
if tv == nil || ntv.Version > tv.Version {
|
|
tv = ntv
|
|
}
|
|
|
|
return nil
|
|
})
|
|
if err != nil {
|
|
return nil, nil, nil, nil, err
|
|
}
|
|
if tv == nil {
|
|
return nil, nil, nil, nil, fmt.Errorf("%w: no type versions", ErrStore)
|
|
}
|
|
fields := make([]string, len(tv.Fields))
|
|
for i, f := range tv.Fields {
|
|
fields[i] = f.Name
|
|
}
|
|
return versions, tv, rb, fields, nil
|
|
}
|
|
|
|
// Keys returns the parsed primary keys for the type "typeName". The type does
|
|
// not have to be registered with Open or Register. For use with Record(s) to
|
|
// export data.
|
|
func (tx *Tx) Keys(typeName string, fn func(pk any) error) error {
|
|
_, tv, rb, _, err := tx.db.prepareType(tx, typeName)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
|
|
ctxDone := tx.ctx.Done()
|
|
|
|
v := reflect.New(reflect.TypeOf(tv.Fields[0].Type.zeroKey())).Elem()
|
|
return rb.ForEach(func(bk, bv []byte) error {
|
|
tx.stats.Records.Cursor++
|
|
|
|
select {
|
|
case <-ctxDone:
|
|
return tx.ctx.Err()
|
|
default:
|
|
}
|
|
|
|
if err := parsePK(v, bk); err != nil {
|
|
return err
|
|
}
|
|
return fn(v.Interface())
|
|
})
|
|
}
|
|
|
|
// Record returns the record with primary "key" for "typeName" parsed as map.
|
|
// "Fields" is set to the fields of the type. The type does not have to be
|
|
// registered with Open or Register. Record parses the data without the Go
|
|
// type present. BinaryMarshal fields are returned as bytes.
|
|
func (tx *Tx) Record(typeName, key string, fields *[]string) (map[string]any, error) {
|
|
versions, tv, rb, xfields, err := tx.db.prepareType(tx, typeName)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
*fields = xfields
|
|
|
|
var kv any
|
|
switch tv.Fields[0].Type.Kind {
|
|
case kindBool:
|
|
switch key {
|
|
case "true":
|
|
kv = true
|
|
case "false":
|
|
kv = false
|
|
default:
|
|
err = fmt.Errorf("%w: invalid bool %q", ErrParam, key)
|
|
}
|
|
case kindInt8:
|
|
kv, err = strconv.ParseInt(key, 10, 8)
|
|
case kindInt16:
|
|
kv, err = strconv.ParseInt(key, 10, 16)
|
|
case kindInt32:
|
|
kv, err = strconv.ParseInt(key, 10, 32)
|
|
case kindInt:
|
|
kv, err = strconv.ParseInt(key, 10, 32)
|
|
case kindInt64:
|
|
kv, err = strconv.ParseInt(key, 10, 64)
|
|
case kindUint8:
|
|
kv, err = strconv.ParseUint(key, 10, 8)
|
|
case kindUint16:
|
|
kv, err = strconv.ParseUint(key, 10, 16)
|
|
case kindUint32:
|
|
kv, err = strconv.ParseUint(key, 10, 32)
|
|
case kindUint:
|
|
kv, err = strconv.ParseUint(key, 10, 32)
|
|
case kindUint64:
|
|
kv, err = strconv.ParseUint(key, 10, 64)
|
|
case kindString:
|
|
kv = key
|
|
case kindBytes:
|
|
kv = []byte(key) // todo: or decode from base64?
|
|
default:
|
|
return nil, fmt.Errorf("internal error: unknown primary key kind %v", tv.Fields[0].Type.Kind)
|
|
}
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
pkv := reflect.ValueOf(kv)
|
|
k, err := typeKind(pkv.Type())
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
if k != tv.Fields[0].Type.Kind {
|
|
// Convert from various int types above to required type. The ParseInt/ParseUint
|
|
// calls already validated that the values fit.
|
|
pkt := reflect.TypeOf(tv.Fields[0].Type.zeroKey())
|
|
pkv = pkv.Convert(pkt)
|
|
}
|
|
pk, err := packPK(pkv)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
tx.stats.Records.Get++
|
|
bv := rb.Get(pk)
|
|
if bv == nil {
|
|
return nil, ErrAbsent
|
|
}
|
|
record, err := parseMap(versions, pk, bv)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
return record, nil
|
|
}
|
|
|
|
// Records calls "fn" for each record of "typeName". Records sets "fields" to
|
|
// the fields of the type. The type does not have to be registered with Open or
|
|
// Register. Record parses the data without the Go type present. BinaryMarshal
|
|
// fields are returned as bytes.
|
|
func (tx *Tx) Records(typeName string, fields *[]string, fn func(map[string]any) error) error {
|
|
versions, _, rb, xfields, err := tx.db.prepareType(tx, typeName)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
*fields = xfields
|
|
|
|
ctxDone := tx.ctx.Done()
|
|
|
|
return rb.ForEach(func(bk, bv []byte) error {
|
|
tx.stats.Records.Cursor++
|
|
|
|
select {
|
|
case <-ctxDone:
|
|
return tx.ctx.Err()
|
|
default:
|
|
}
|
|
|
|
record, err := parseMap(versions, bk, bv)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
return fn(record)
|
|
})
|
|
}
|
|
|
|
// parseMap parses a record into a map with the right typeVersion from versions.
|
|
func parseMap(versions map[uint32]*typeVersion, bk, bv []byte) (record map[string]any, rerr error) {
|
|
p := &parser{buf: bv, orig: bv}
|
|
var version uint32
|
|
|
|
defer func() {
|
|
x := recover()
|
|
if x == nil {
|
|
return
|
|
}
|
|
if err, ok := x.(parseErr); ok {
|
|
rerr = fmt.Errorf("%w (version %d, buf %x orig %x)", err.err, version, p.buf, p.orig)
|
|
return
|
|
}
|
|
panic(x)
|
|
}()
|
|
|
|
version = uint32(p.Uvarint())
|
|
tv := versions[version]
|
|
if tv == nil {
|
|
return nil, fmt.Errorf("%w: unknown type version %d", ErrStore, version)
|
|
}
|
|
|
|
r := map[string]any{}
|
|
|
|
v := reflect.New(reflect.TypeOf(tv.Fields[0].Type.zeroKey())).Elem()
|
|
err := parsePK(v, bk)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
r[tv.Fields[0].Name] = v.Interface()
|
|
|
|
// todo: Should we be looking at the most recent tv, and hiding fields
|
|
// that have been removed in a later typeVersion? Like we do for real
|
|
// parsing into reflect value?
|
|
fm := p.Fieldmap(len(tv.Fields) - 1)
|
|
for i, f := range tv.Fields[1:] {
|
|
if fm.Nonzero(i) {
|
|
r[f.Name] = f.Type.parseValue(p)
|
|
} else {
|
|
r[f.Name] = f.Type.zeroExportValue()
|
|
}
|
|
}
|
|
|
|
if len(p.buf) != 0 {
|
|
return nil, fmt.Errorf("%w: leftover data after parsing (%d %x %q)", ErrStore, len(p.buf), p.buf, p.buf)
|
|
}
|
|
|
|
return r, nil
|
|
}
|
|
|
|
func (ft fieldType) parseValue(p *parser) any {
|
|
switch ft.Kind {
|
|
case kindBytes:
|
|
return p.TakeBytes(false)
|
|
case kindBinaryMarshal:
|
|
// We don't have the type available, so we just return the binary data.
|
|
return p.TakeBytes(false)
|
|
case kindBool:
|
|
if !ft.Ptr {
|
|
return true
|
|
}
|
|
buf := p.Take(1)
|
|
return buf[0] != 0
|
|
case kindInt8:
|
|
return int8(p.Varint())
|
|
case kindInt16:
|
|
return int16(p.Varint())
|
|
case kindInt32:
|
|
return int32(p.Varint())
|
|
case kindInt:
|
|
i := p.Varint()
|
|
if i < math.MinInt32 || i > math.MaxInt32 {
|
|
p.Errorf("%w: int %d does not fit in int32", ErrStore, i)
|
|
}
|
|
return int(i)
|
|
case kindInt64:
|
|
return p.Varint()
|
|
case kindUint8:
|
|
return uint8(p.Uvarint())
|
|
case kindUint16:
|
|
return uint16(p.Uvarint())
|
|
case kindUint32:
|
|
return uint32(p.Uvarint())
|
|
case kindUint:
|
|
i := p.Uvarint()
|
|
if i > math.MaxUint32 {
|
|
p.Errorf("%w: uint %d does not fit in uint32", ErrStore, i)
|
|
}
|
|
return uint(i)
|
|
case kindUint64:
|
|
return p.Uvarint()
|
|
case kindFloat32:
|
|
return math.Float32frombits(uint32(p.Uvarint()))
|
|
case kindFloat64:
|
|
return math.Float64frombits(p.Uvarint())
|
|
case kindString:
|
|
return string(p.TakeBytes(false))
|
|
case kindTime:
|
|
var t time.Time
|
|
err := t.UnmarshalBinary(p.TakeBytes(false))
|
|
if err != nil {
|
|
p.Errorf("%w: parsing time: %v", ErrStore, err)
|
|
}
|
|
return t
|
|
case kindSlice:
|
|
un := p.Uvarint()
|
|
n := p.checkInt(un)
|
|
fm := p.Fieldmap(n)
|
|
var l []any
|
|
for i := 0; i < n; i++ {
|
|
if fm.Nonzero(i) {
|
|
l = append(l, ft.ListElem.parseValue(p))
|
|
} else {
|
|
// Always add non-zero elements, or we would
|
|
// change the number of elements in a list.
|
|
l = append(l, ft.ListElem.zeroExportValue())
|
|
}
|
|
}
|
|
return l
|
|
case kindArray:
|
|
n := ft.ArrayLength
|
|
var l []any
|
|
for i := 0; i < n; i++ {
|
|
l = append(l, ft.ListElem.parseValue(p))
|
|
}
|
|
return l
|
|
case kindMap:
|
|
un := p.Uvarint()
|
|
n := p.checkInt(un)
|
|
fm := p.Fieldmap(n)
|
|
m := map[string]any{}
|
|
for i := 0; i < n; i++ {
|
|
// Converting to string can be ugly, but the best we can do.
|
|
k := fmt.Sprintf("%v", ft.MapKey.parseValue(p))
|
|
if _, ok := m[k]; ok {
|
|
return fmt.Errorf("%w: duplicate key %q in map", ErrStore, k)
|
|
}
|
|
var v any
|
|
if fm.Nonzero(i) {
|
|
v = ft.MapValue.parseValue(p)
|
|
} else {
|
|
v = ft.MapValue.zeroExportValue()
|
|
}
|
|
m[k] = v
|
|
}
|
|
return m
|
|
case kindStruct:
|
|
fm := p.Fieldmap(len(ft.structFields))
|
|
m := map[string]any{}
|
|
for i, f := range ft.structFields {
|
|
if fm.Nonzero(i) {
|
|
m[f.Name] = f.Type.parseValue(p)
|
|
} else {
|
|
m[f.Name] = f.Type.zeroExportValue()
|
|
}
|
|
}
|
|
return m
|
|
}
|
|
p.Errorf("internal error: unhandled field type %v", ft.Kind)
|
|
panic("cannot happen")
|
|
}
|
|
|
|
var zeroExportValues = map[kind]any{
|
|
kindBytes: []byte(nil),
|
|
kindBinaryMarshal: []byte(nil), // We don't have the actual type available, so we just return binary data.
|
|
kindBool: false,
|
|
kindInt8: int8(0),
|
|
kindInt16: int16(0),
|
|
kindInt32: int32(0),
|
|
kindInt: int(0),
|
|
kindInt64: int64(0),
|
|
kindUint8: uint8(0),
|
|
kindUint16: uint16(0),
|
|
kindUint32: uint32(0),
|
|
kindUint: uint(0),
|
|
kindUint64: uint64(0),
|
|
kindFloat32: float32(0),
|
|
kindFloat64: float64(0),
|
|
kindString: "",
|
|
kindTime: zerotime,
|
|
kindSlice: []any(nil),
|
|
kindMap: map[string]any(nil),
|
|
kindStruct: map[string]any(nil),
|
|
// kindArray handled in zeroExportValue()
|
|
}
|
|
|
|
// zeroExportValue returns the zero value for a fieldType for use with exporting.
|
|
func (ft fieldType) zeroExportValue() any {
|
|
if ft.Kind == kindArray {
|
|
ev := ft.ListElem.zeroExportValue()
|
|
l := make([]any, ft.ArrayLength)
|
|
for i := 0; i < ft.ArrayLength; i++ {
|
|
l[i] = ev
|
|
}
|
|
return l
|
|
}
|
|
v, ok := zeroExportValues[ft.Kind]
|
|
if !ok {
|
|
panic(fmt.Errorf("internal error: unhandled zero value for field type %v", ft.Kind))
|
|
}
|
|
return v
|
|
}
|
|
|
|
var zeroKeys = map[kind]any{
|
|
kindBytes: []byte(nil),
|
|
kindBool: false,
|
|
kindInt8: int8(0),
|
|
kindInt16: int16(0),
|
|
kindInt32: int32(0),
|
|
kindInt: int(0),
|
|
kindInt64: int64(0),
|
|
kindUint8: uint8(0),
|
|
kindUint16: uint16(0),
|
|
kindUint32: uint32(0),
|
|
kindUint: uint(0),
|
|
kindUint64: uint64(0),
|
|
kindString: "",
|
|
kindTime: zerotime,
|
|
// kindSlice handled in zeroKeyValue()
|
|
}
|
|
|
|
// zeroKeyValue returns the zero value for a fieldType for use with exporting.
|
|
func (ft fieldType) zeroKey() any {
|
|
k := ft.Kind
|
|
if k == kindSlice {
|
|
k = ft.ListElem.Kind
|
|
}
|
|
v, ok := zeroKeys[k]
|
|
if !ok {
|
|
panic(fmt.Errorf("internal error: unhandled zero value for field type %v", ft.Kind))
|
|
}
|
|
return v
|
|
}
|