mox/vendor/go.etcd.io/bbolt/tx.go

797 lines
22 KiB
Go

package bbolt
import (
"fmt"
"io"
"os"
"sort"
"strings"
"sync/atomic"
"time"
"unsafe"
)
// txid represents the internal transaction identifier.
type txid uint64
// Tx represents a read-only or read/write transaction on the database.
// Read-only transactions can be used for retrieving values for keys and creating cursors.
// Read/write transactions can create and remove buckets and create and remove keys.
//
// IMPORTANT: You must commit or rollback transactions when you are done with
// them. Pages can not be reclaimed by the writer until no more transactions
// are using them. A long running read transaction can cause the database to
// quickly grow.
type Tx struct {
writable bool
managed bool
db *DB
meta *meta
root Bucket
pages map[pgid]*page
stats TxStats
commitHandlers []func()
// WriteFlag specifies the flag for write-related methods like WriteTo().
// Tx opens the database file with the specified flag to copy the data.
//
// By default, the flag is unset, which works well for mostly in-memory
// workloads. For databases that are much larger than available RAM,
// set the flag to syscall.O_DIRECT to avoid trashing the page cache.
WriteFlag int
}
// init initializes the transaction.
func (tx *Tx) init(db *DB) {
tx.db = db
tx.pages = nil
// Copy the meta page since it can be changed by the writer.
tx.meta = &meta{}
db.meta().copy(tx.meta)
// Copy over the root bucket.
tx.root = newBucket(tx)
tx.root.bucket = &bucket{}
*tx.root.bucket = tx.meta.root
// Increment the transaction id and add a page cache for writable transactions.
if tx.writable {
tx.pages = make(map[pgid]*page)
tx.meta.txid += txid(1)
}
}
// ID returns the transaction id.
func (tx *Tx) ID() int {
return int(tx.meta.txid)
}
// DB returns a reference to the database that created the transaction.
func (tx *Tx) DB() *DB {
return tx.db
}
// Size returns current database size in bytes as seen by this transaction.
func (tx *Tx) Size() int64 {
return int64(tx.meta.pgid) * int64(tx.db.pageSize)
}
// Writable returns whether the transaction can perform write operations.
func (tx *Tx) Writable() bool {
return tx.writable
}
// Cursor creates a cursor associated with the root bucket.
// All items in the cursor will return a nil value because all root bucket keys point to buckets.
// The cursor is only valid as long as the transaction is open.
// Do not use a cursor after the transaction is closed.
func (tx *Tx) Cursor() *Cursor {
return tx.root.Cursor()
}
// Stats retrieves a copy of the current transaction statistics.
func (tx *Tx) Stats() TxStats {
return tx.stats
}
// Bucket retrieves a bucket by name.
// Returns nil if the bucket does not exist.
// The bucket instance is only valid for the lifetime of the transaction.
func (tx *Tx) Bucket(name []byte) *Bucket {
return tx.root.Bucket(name)
}
// CreateBucket creates a new bucket.
// Returns an error if the bucket already exists, if the bucket name is blank, or if the bucket name is too long.
// The bucket instance is only valid for the lifetime of the transaction.
func (tx *Tx) CreateBucket(name []byte) (*Bucket, error) {
return tx.root.CreateBucket(name)
}
// CreateBucketIfNotExists creates a new bucket if it doesn't already exist.
// Returns an error if the bucket name is blank, or if the bucket name is too long.
// The bucket instance is only valid for the lifetime of the transaction.
func (tx *Tx) CreateBucketIfNotExists(name []byte) (*Bucket, error) {
return tx.root.CreateBucketIfNotExists(name)
}
// DeleteBucket deletes a bucket.
// Returns an error if the bucket cannot be found or if the key represents a non-bucket value.
func (tx *Tx) DeleteBucket(name []byte) error {
return tx.root.DeleteBucket(name)
}
// ForEach executes a function for each bucket in the root.
// If the provided function returns an error then the iteration is stopped and
// the error is returned to the caller.
func (tx *Tx) ForEach(fn func(name []byte, b *Bucket) error) error {
return tx.root.ForEach(func(k, v []byte) error {
return fn(k, tx.root.Bucket(k))
})
}
// OnCommit adds a handler function to be executed after the transaction successfully commits.
func (tx *Tx) OnCommit(fn func()) {
tx.commitHandlers = append(tx.commitHandlers, fn)
}
// Commit writes all changes to disk and updates the meta page.
// Returns an error if a disk write error occurs, or if Commit is
// called on a read-only transaction.
func (tx *Tx) Commit() error {
_assert(!tx.managed, "managed tx commit not allowed")
if tx.db == nil {
return ErrTxClosed
} else if !tx.writable {
return ErrTxNotWritable
}
// TODO(benbjohnson): Use vectorized I/O to write out dirty pages.
// Rebalance nodes which have had deletions.
var startTime = time.Now()
tx.root.rebalance()
if tx.stats.GetRebalance() > 0 {
tx.stats.IncRebalanceTime(time.Since(startTime))
}
opgid := tx.meta.pgid
// spill data onto dirty pages.
startTime = time.Now()
if err := tx.root.spill(); err != nil {
tx.rollback()
return err
}
tx.stats.IncSpillTime(time.Since(startTime))
// Free the old root bucket.
tx.meta.root.root = tx.root.root
// Free the old freelist because commit writes out a fresh freelist.
if tx.meta.freelist != pgidNoFreelist {
tx.db.freelist.free(tx.meta.txid, tx.db.page(tx.meta.freelist))
}
if !tx.db.NoFreelistSync {
err := tx.commitFreelist()
if err != nil {
return err
}
} else {
tx.meta.freelist = pgidNoFreelist
}
// If the high water mark has moved up then attempt to grow the database.
if tx.meta.pgid > opgid {
if err := tx.db.grow(int(tx.meta.pgid+1) * tx.db.pageSize); err != nil {
tx.rollback()
return err
}
}
// Write dirty pages to disk.
startTime = time.Now()
if err := tx.write(); err != nil {
tx.rollback()
return err
}
// If strict mode is enabled then perform a consistency check.
if tx.db.StrictMode {
ch := tx.Check()
var errs []string
for {
err, ok := <-ch
if !ok {
break
}
errs = append(errs, err.Error())
}
if len(errs) > 0 {
panic("check fail: " + strings.Join(errs, "\n"))
}
}
// Write meta to disk.
if err := tx.writeMeta(); err != nil {
tx.rollback()
return err
}
tx.stats.IncWriteTime(time.Since(startTime))
// Finalize the transaction.
tx.close()
// Execute commit handlers now that the locks have been removed.
for _, fn := range tx.commitHandlers {
fn()
}
return nil
}
func (tx *Tx) commitFreelist() error {
// Allocate new pages for the new free list. This will overestimate
// the size of the freelist but not underestimate the size (which would be bad).
p, err := tx.allocate((tx.db.freelist.size() / tx.db.pageSize) + 1)
if err != nil {
tx.rollback()
return err
}
if err := tx.db.freelist.write(p); err != nil {
tx.rollback()
return err
}
tx.meta.freelist = p.id
return nil
}
// Rollback closes the transaction and ignores all previous updates. Read-only
// transactions must be rolled back and not committed.
func (tx *Tx) Rollback() error {
_assert(!tx.managed, "managed tx rollback not allowed")
if tx.db == nil {
return ErrTxClosed
}
tx.nonPhysicalRollback()
return nil
}
// nonPhysicalRollback is called when user calls Rollback directly, in this case we do not need to reload the free pages from disk.
func (tx *Tx) nonPhysicalRollback() {
if tx.db == nil {
return
}
if tx.writable {
tx.db.freelist.rollback(tx.meta.txid)
}
tx.close()
}
// rollback needs to reload the free pages from disk in case some system error happens like fsync error.
func (tx *Tx) rollback() {
if tx.db == nil {
return
}
if tx.writable {
tx.db.freelist.rollback(tx.meta.txid)
// When mmap fails, the `data`, `dataref` and `datasz` may be reset to
// zero values, and there is no way to reload free page IDs in this case.
if tx.db.data != nil {
if !tx.db.hasSyncedFreelist() {
// Reconstruct free page list by scanning the DB to get the whole free page list.
// Note: scaning the whole db is heavy if your db size is large in NoSyncFreeList mode.
tx.db.freelist.noSyncReload(tx.db.freepages())
} else {
// Read free page list from freelist page.
tx.db.freelist.reload(tx.db.page(tx.db.meta().freelist))
}
}
}
tx.close()
}
func (tx *Tx) close() {
if tx.db == nil {
return
}
if tx.writable {
// Grab freelist stats.
var freelistFreeN = tx.db.freelist.free_count()
var freelistPendingN = tx.db.freelist.pending_count()
var freelistAlloc = tx.db.freelist.size()
// Remove transaction ref & writer lock.
tx.db.rwtx = nil
tx.db.rwlock.Unlock()
// Merge statistics.
tx.db.statlock.Lock()
tx.db.stats.FreePageN = freelistFreeN
tx.db.stats.PendingPageN = freelistPendingN
tx.db.stats.FreeAlloc = (freelistFreeN + freelistPendingN) * tx.db.pageSize
tx.db.stats.FreelistInuse = freelistAlloc
tx.db.stats.TxStats.add(&tx.stats)
tx.db.statlock.Unlock()
} else {
tx.db.removeTx(tx)
}
// Clear all references.
tx.db = nil
tx.meta = nil
tx.root = Bucket{tx: tx}
tx.pages = nil
}
// Copy writes the entire database to a writer.
// This function exists for backwards compatibility.
//
// Deprecated; Use WriteTo() instead.
func (tx *Tx) Copy(w io.Writer) error {
_, err := tx.WriteTo(w)
return err
}
// WriteTo writes the entire database to a writer.
// If err == nil then exactly tx.Size() bytes will be written into the writer.
func (tx *Tx) WriteTo(w io.Writer) (n int64, err error) {
// Attempt to open reader with WriteFlag
f, err := tx.db.openFile(tx.db.path, os.O_RDONLY|tx.WriteFlag, 0)
if err != nil {
return 0, err
}
defer func() {
if cerr := f.Close(); err == nil {
err = cerr
}
}()
// Generate a meta page. We use the same page data for both meta pages.
buf := make([]byte, tx.db.pageSize)
page := (*page)(unsafe.Pointer(&buf[0]))
page.flags = metaPageFlag
*page.meta() = *tx.meta
// Write meta 0.
page.id = 0
page.meta().checksum = page.meta().sum64()
nn, err := w.Write(buf)
n += int64(nn)
if err != nil {
return n, fmt.Errorf("meta 0 copy: %s", err)
}
// Write meta 1 with a lower transaction id.
page.id = 1
page.meta().txid -= 1
page.meta().checksum = page.meta().sum64()
nn, err = w.Write(buf)
n += int64(nn)
if err != nil {
return n, fmt.Errorf("meta 1 copy: %s", err)
}
// Move past the meta pages in the file.
if _, err := f.Seek(int64(tx.db.pageSize*2), io.SeekStart); err != nil {
return n, fmt.Errorf("seek: %s", err)
}
// Copy data pages.
wn, err := io.CopyN(w, f, tx.Size()-int64(tx.db.pageSize*2))
n += wn
if err != nil {
return n, err
}
return n, nil
}
// CopyFile copies the entire database to file at the given path.
// A reader transaction is maintained during the copy so it is safe to continue
// using the database while a copy is in progress.
func (tx *Tx) CopyFile(path string, mode os.FileMode) error {
f, err := tx.db.openFile(path, os.O_RDWR|os.O_CREATE|os.O_TRUNC, mode)
if err != nil {
return err
}
_, err = tx.WriteTo(f)
if err != nil {
_ = f.Close()
return err
}
return f.Close()
}
// allocate returns a contiguous block of memory starting at a given page.
func (tx *Tx) allocate(count int) (*page, error) {
p, err := tx.db.allocate(tx.meta.txid, count)
if err != nil {
return nil, err
}
// Save to our page cache.
tx.pages[p.id] = p
// Update statistics.
tx.stats.IncPageCount(int64(count))
tx.stats.IncPageAlloc(int64(count * tx.db.pageSize))
return p, nil
}
// write writes any dirty pages to disk.
func (tx *Tx) write() error {
// Sort pages by id.
pages := make(pages, 0, len(tx.pages))
for _, p := range tx.pages {
pages = append(pages, p)
}
// Clear out page cache early.
tx.pages = make(map[pgid]*page)
sort.Sort(pages)
// Write pages to disk in order.
for _, p := range pages {
rem := (uint64(p.overflow) + 1) * uint64(tx.db.pageSize)
offset := int64(p.id) * int64(tx.db.pageSize)
var written uintptr
// Write out page in "max allocation" sized chunks.
for {
sz := rem
if sz > maxAllocSize-1 {
sz = maxAllocSize - 1
}
buf := unsafeByteSlice(unsafe.Pointer(p), written, 0, int(sz))
if _, err := tx.db.ops.writeAt(buf, offset); err != nil {
return err
}
// Update statistics.
tx.stats.IncWrite(1)
// Exit inner for loop if we've written all the chunks.
rem -= sz
if rem == 0 {
break
}
// Otherwise move offset forward and move pointer to next chunk.
offset += int64(sz)
written += uintptr(sz)
}
}
// Ignore file sync if flag is set on DB.
if !tx.db.NoSync || IgnoreNoSync {
if err := fdatasync(tx.db); err != nil {
return err
}
}
// Put small pages back to page pool.
for _, p := range pages {
// Ignore page sizes over 1 page.
// These are allocated using make() instead of the page pool.
if int(p.overflow) != 0 {
continue
}
buf := unsafeByteSlice(unsafe.Pointer(p), 0, 0, tx.db.pageSize)
// See https://go.googlesource.com/go/+/f03c9202c43e0abb130669852082117ca50aa9b1
for i := range buf {
buf[i] = 0
}
tx.db.pagePool.Put(buf) //nolint:staticcheck
}
return nil
}
// writeMeta writes the meta to the disk.
func (tx *Tx) writeMeta() error {
// Create a temporary buffer for the meta page.
buf := make([]byte, tx.db.pageSize)
p := tx.db.pageInBuffer(buf, 0)
tx.meta.write(p)
// Write the meta page to file.
if _, err := tx.db.ops.writeAt(buf, int64(p.id)*int64(tx.db.pageSize)); err != nil {
return err
}
if !tx.db.NoSync || IgnoreNoSync {
if err := fdatasync(tx.db); err != nil {
return err
}
}
// Update statistics.
tx.stats.IncWrite(1)
return nil
}
// page returns a reference to the page with a given id.
// If page has been written to then a temporary buffered page is returned.
func (tx *Tx) page(id pgid) *page {
// Check the dirty pages first.
if tx.pages != nil {
if p, ok := tx.pages[id]; ok {
p.fastCheck(id)
return p
}
}
// Otherwise return directly from the mmap.
p := tx.db.page(id)
p.fastCheck(id)
return p
}
// forEachPage iterates over every page within a given page and executes a function.
func (tx *Tx) forEachPage(pgidnum pgid, fn func(*page, int, []pgid)) {
stack := make([]pgid, 10)
stack[0] = pgidnum
tx.forEachPageInternal(stack[:1], fn)
}
func (tx *Tx) forEachPageInternal(pgidstack []pgid, fn func(*page, int, []pgid)) {
p := tx.page(pgidstack[len(pgidstack)-1])
// Execute function.
fn(p, len(pgidstack)-1, pgidstack)
// Recursively loop over children.
if (p.flags & branchPageFlag) != 0 {
for i := 0; i < int(p.count); i++ {
elem := p.branchPageElement(uint16(i))
tx.forEachPageInternal(append(pgidstack, elem.pgid), fn)
}
}
}
// Page returns page information for a given page number.
// This is only safe for concurrent use when used by a writable transaction.
func (tx *Tx) Page(id int) (*PageInfo, error) {
if tx.db == nil {
return nil, ErrTxClosed
} else if pgid(id) >= tx.meta.pgid {
return nil, nil
}
if tx.db.freelist == nil {
return nil, ErrFreePagesNotLoaded
}
// Build the page info.
p := tx.db.page(pgid(id))
info := &PageInfo{
ID: id,
Count: int(p.count),
OverflowCount: int(p.overflow),
}
// Determine the type (or if it's free).
if tx.db.freelist.freed(pgid(id)) {
info.Type = "free"
} else {
info.Type = p.typ()
}
return info, nil
}
// TxStats represents statistics about the actions performed by the transaction.
type TxStats struct {
// Page statistics.
//
// DEPRECATED: Use GetPageCount() or IncPageCount()
PageCount int64 // number of page allocations
// DEPRECATED: Use GetPageAlloc() or IncPageAlloc()
PageAlloc int64 // total bytes allocated
// Cursor statistics.
//
// DEPRECATED: Use GetCursorCount() or IncCursorCount()
CursorCount int64 // number of cursors created
// Node statistics
//
// DEPRECATED: Use GetNodeCount() or IncNodeCount()
NodeCount int64 // number of node allocations
// DEPRECATED: Use GetNodeDeref() or IncNodeDeref()
NodeDeref int64 // number of node dereferences
// Rebalance statistics.
//
// DEPRECATED: Use GetRebalance() or IncRebalance()
Rebalance int64 // number of node rebalances
// DEPRECATED: Use GetRebalanceTime() or IncRebalanceTime()
RebalanceTime time.Duration // total time spent rebalancing
// Split/Spill statistics.
//
// DEPRECATED: Use GetSplit() or IncSplit()
Split int64 // number of nodes split
// DEPRECATED: Use GetSpill() or IncSpill()
Spill int64 // number of nodes spilled
// DEPRECATED: Use GetSpillTime() or IncSpillTime()
SpillTime time.Duration // total time spent spilling
// Write statistics.
//
// DEPRECATED: Use GetWrite() or IncWrite()
Write int64 // number of writes performed
// DEPRECATED: Use GetWriteTime() or IncWriteTime()
WriteTime time.Duration // total time spent writing to disk
}
func (s *TxStats) add(other *TxStats) {
s.IncPageCount(other.GetPageCount())
s.IncPageAlloc(other.GetPageAlloc())
s.IncCursorCount(other.GetCursorCount())
s.IncNodeCount(other.GetNodeCount())
s.IncNodeDeref(other.GetNodeDeref())
s.IncRebalance(other.GetRebalance())
s.IncRebalanceTime(other.GetRebalanceTime())
s.IncSplit(other.GetSplit())
s.IncSpill(other.GetSpill())
s.IncSpillTime(other.GetSpillTime())
s.IncWrite(other.GetWrite())
s.IncWriteTime(other.GetWriteTime())
}
// Sub calculates and returns the difference between two sets of transaction stats.
// This is useful when obtaining stats at two different points and time and
// you need the performance counters that occurred within that time span.
func (s *TxStats) Sub(other *TxStats) TxStats {
var diff TxStats
diff.PageCount = s.GetPageCount() - other.GetPageCount()
diff.PageAlloc = s.GetPageAlloc() - other.GetPageAlloc()
diff.CursorCount = s.GetCursorCount() - other.GetCursorCount()
diff.NodeCount = s.GetNodeCount() - other.GetNodeCount()
diff.NodeDeref = s.GetNodeDeref() - other.GetNodeDeref()
diff.Rebalance = s.GetRebalance() - other.GetRebalance()
diff.RebalanceTime = s.GetRebalanceTime() - other.GetRebalanceTime()
diff.Split = s.GetSplit() - other.GetSplit()
diff.Spill = s.GetSpill() - other.GetSpill()
diff.SpillTime = s.GetSpillTime() - other.GetSpillTime()
diff.Write = s.GetWrite() - other.GetWrite()
diff.WriteTime = s.GetWriteTime() - other.GetWriteTime()
return diff
}
// GetPageCount returns PageCount atomically.
func (s *TxStats) GetPageCount() int64 {
return atomic.LoadInt64(&s.PageCount)
}
// IncPageCount increases PageCount atomically and returns the new value.
func (s *TxStats) IncPageCount(delta int64) int64 {
return atomic.AddInt64(&s.PageCount, delta)
}
// GetPageAlloc returns PageAlloc atomically.
func (s *TxStats) GetPageAlloc() int64 {
return atomic.LoadInt64(&s.PageAlloc)
}
// IncPageAlloc increases PageAlloc atomically and returns the new value.
func (s *TxStats) IncPageAlloc(delta int64) int64 {
return atomic.AddInt64(&s.PageAlloc, delta)
}
// GetCursorCount returns CursorCount atomically.
func (s *TxStats) GetCursorCount() int64 {
return atomic.LoadInt64(&s.CursorCount)
}
// IncCursorCount increases CursorCount atomically and return the new value.
func (s *TxStats) IncCursorCount(delta int64) int64 {
return atomic.AddInt64(&s.CursorCount, delta)
}
// GetNodeCount returns NodeCount atomically.
func (s *TxStats) GetNodeCount() int64 {
return atomic.LoadInt64(&s.NodeCount)
}
// IncNodeCount increases NodeCount atomically and returns the new value.
func (s *TxStats) IncNodeCount(delta int64) int64 {
return atomic.AddInt64(&s.NodeCount, delta)
}
// GetNodeDeref returns NodeDeref atomically.
func (s *TxStats) GetNodeDeref() int64 {
return atomic.LoadInt64(&s.NodeDeref)
}
// IncNodeDeref increases NodeDeref atomically and returns the new value.
func (s *TxStats) IncNodeDeref(delta int64) int64 {
return atomic.AddInt64(&s.NodeDeref, delta)
}
// GetRebalance returns Rebalance atomically.
func (s *TxStats) GetRebalance() int64 {
return atomic.LoadInt64(&s.Rebalance)
}
// IncRebalance increases Rebalance atomically and returns the new value.
func (s *TxStats) IncRebalance(delta int64) int64 {
return atomic.AddInt64(&s.Rebalance, delta)
}
// GetRebalanceTime returns RebalanceTime atomically.
func (s *TxStats) GetRebalanceTime() time.Duration {
return atomicLoadDuration(&s.RebalanceTime)
}
// IncRebalanceTime increases RebalanceTime atomically and returns the new value.
func (s *TxStats) IncRebalanceTime(delta time.Duration) time.Duration {
return atomicAddDuration(&s.RebalanceTime, delta)
}
// GetSplit returns Split atomically.
func (s *TxStats) GetSplit() int64 {
return atomic.LoadInt64(&s.Split)
}
// IncSplit increases Split atomically and returns the new value.
func (s *TxStats) IncSplit(delta int64) int64 {
return atomic.AddInt64(&s.Split, delta)
}
// GetSpill returns Spill atomically.
func (s *TxStats) GetSpill() int64 {
return atomic.LoadInt64(&s.Spill)
}
// IncSpill increases Spill atomically and returns the new value.
func (s *TxStats) IncSpill(delta int64) int64 {
return atomic.AddInt64(&s.Spill, delta)
}
// GetSpillTime returns SpillTime atomically.
func (s *TxStats) GetSpillTime() time.Duration {
return atomicLoadDuration(&s.SpillTime)
}
// IncSpillTime increases SpillTime atomically and returns the new value.
func (s *TxStats) IncSpillTime(delta time.Duration) time.Duration {
return atomicAddDuration(&s.SpillTime, delta)
}
// GetWrite returns Write atomically.
func (s *TxStats) GetWrite() int64 {
return atomic.LoadInt64(&s.Write)
}
// IncWrite increases Write atomically and returns the new value.
func (s *TxStats) IncWrite(delta int64) int64 {
return atomic.AddInt64(&s.Write, delta)
}
// GetWriteTime returns WriteTime atomically.
func (s *TxStats) GetWriteTime() time.Duration {
return atomicLoadDuration(&s.WriteTime)
}
// IncWriteTime increases WriteTime atomically and returns the new value.
func (s *TxStats) IncWriteTime(delta time.Duration) time.Duration {
return atomicAddDuration(&s.WriteTime, delta)
}
func atomicAddDuration(ptr *time.Duration, du time.Duration) time.Duration {
return time.Duration(atomic.AddInt64((*int64)(unsafe.Pointer(ptr)), int64(du)))
}
func atomicLoadDuration(ptr *time.Duration) time.Duration {
return time.Duration(atomic.LoadInt64((*int64)(unsafe.Pointer(ptr))))
}