package bbolt import ( "encoding/hex" "fmt" ) // Check performs several consistency checks on the database for this transaction. // An error is returned if any inconsistency is found. // // It can be safely run concurrently on a writable transaction. However, this // incurs a high cost for large databases and databases with a lot of subbuckets // because of caching. This overhead can be removed if running on a read-only // transaction, however, it is not safe to execute other writer transactions at // the same time. func (tx *Tx) Check() <-chan error { return tx.CheckWithOptions() } // CheckWithOptions allows users to provide a customized `KVStringer` implementation, // so that bolt can generate human-readable diagnostic messages. func (tx *Tx) CheckWithOptions(options ...CheckOption) <-chan error { chkConfig := checkConfig{ kvStringer: HexKVStringer(), } for _, op := range options { op(&chkConfig) } ch := make(chan error) go tx.check(chkConfig.kvStringer, ch) return ch } func (tx *Tx) check(kvStringer KVStringer, ch chan error) { // Force loading free list if opened in ReadOnly mode. tx.db.loadFreelist() // Check if any pages are double freed. freed := make(map[pgid]bool) all := make([]pgid, tx.db.freelist.count()) tx.db.freelist.copyall(all) for _, id := range all { if freed[id] { ch <- fmt.Errorf("page %d: already freed", id) } freed[id] = true } // Track every reachable page. reachable := make(map[pgid]*page) reachable[0] = tx.page(0) // meta0 reachable[1] = tx.page(1) // meta1 if tx.meta.freelist != pgidNoFreelist { for i := uint32(0); i <= tx.page(tx.meta.freelist).overflow; i++ { reachable[tx.meta.freelist+pgid(i)] = tx.page(tx.meta.freelist) } } // Recursively check buckets. tx.checkBucket(&tx.root, reachable, freed, kvStringer, ch) // Ensure all pages below high water mark are either reachable or freed. for i := pgid(0); i < tx.meta.pgid; i++ { _, isReachable := reachable[i] if !isReachable && !freed[i] { ch <- fmt.Errorf("page %d: unreachable unfreed", int(i)) } } // Close the channel to signal completion. close(ch) } func (tx *Tx) checkBucket(b *Bucket, reachable map[pgid]*page, freed map[pgid]bool, kvStringer KVStringer, ch chan error) { // Ignore inline buckets. if b.root == 0 { return } // Check every page used by this bucket. b.tx.forEachPage(b.root, func(p *page, _ int, stack []pgid) { if p.id > tx.meta.pgid { ch <- fmt.Errorf("page %d: out of bounds: %d (stack: %v)", int(p.id), int(b.tx.meta.pgid), stack) } // Ensure each page is only referenced once. for i := pgid(0); i <= pgid(p.overflow); i++ { var id = p.id + i if _, ok := reachable[id]; ok { ch <- fmt.Errorf("page %d: multiple references (stack: %v)", int(id), stack) } reachable[id] = p } // We should only encounter un-freed leaf and branch pages. if freed[p.id] { ch <- fmt.Errorf("page %d: reachable freed", int(p.id)) } else if (p.flags&branchPageFlag) == 0 && (p.flags&leafPageFlag) == 0 { ch <- fmt.Errorf("page %d: invalid type: %s (stack: %v)", int(p.id), p.typ(), stack) } }) tx.recursivelyCheckPages(b.root, kvStringer.KeyToString, ch) // Check each bucket within this bucket. _ = b.ForEachBucket(func(k []byte) error { if child := b.Bucket(k); child != nil { tx.checkBucket(child, reachable, freed, kvStringer, ch) } return nil }) } // recursivelyCheckPages confirms database consistency with respect to b-tree // key order constraints: // - keys on pages must be sorted // - keys on children pages are between 2 consecutive keys on the parent's branch page). func (tx *Tx) recursivelyCheckPages(pgId pgid, keyToString func([]byte) string, ch chan error) { tx.recursivelyCheckPagesInternal(pgId, nil, nil, nil, keyToString, ch) } // recursivelyCheckPagesInternal verifies that all keys in the subtree rooted at `pgid` are: // - >=`minKeyClosed` (can be nil) // - <`maxKeyOpen` (can be nil) // - Are in right ordering relationship to their parents. // `pagesStack` is expected to contain IDs of pages from the tree root to `pgid` for the clean debugging message. func (tx *Tx) recursivelyCheckPagesInternal( pgId pgid, minKeyClosed, maxKeyOpen []byte, pagesStack []pgid, keyToString func([]byte) string, ch chan error) (maxKeyInSubtree []byte) { p := tx.page(pgId) pagesStack = append(pagesStack, pgId) switch { case p.flags&branchPageFlag != 0: // For branch page we navigate ranges of all subpages. runningMin := minKeyClosed for i := range p.branchPageElements() { elem := p.branchPageElement(uint16(i)) verifyKeyOrder(elem.pgid, "branch", i, elem.key(), runningMin, maxKeyOpen, ch, keyToString, pagesStack) maxKey := maxKeyOpen if i < len(p.branchPageElements())-1 { maxKey = p.branchPageElement(uint16(i + 1)).key() } maxKeyInSubtree = tx.recursivelyCheckPagesInternal(elem.pgid, elem.key(), maxKey, pagesStack, keyToString, ch) runningMin = maxKeyInSubtree } return maxKeyInSubtree case p.flags&leafPageFlag != 0: runningMin := minKeyClosed for i := range p.leafPageElements() { elem := p.leafPageElement(uint16(i)) verifyKeyOrder(pgId, "leaf", i, elem.key(), runningMin, maxKeyOpen, ch, keyToString, pagesStack) runningMin = elem.key() } if p.count > 0 { return p.leafPageElement(p.count - 1).key() } default: ch <- fmt.Errorf("unexpected page type for pgId:%d", pgId) } return maxKeyInSubtree } /*** * verifyKeyOrder checks whether an entry with given #index on pgId (pageType: "branch|leaf") that has given "key", * is within range determined by (previousKey..maxKeyOpen) and reports found violations to the channel (ch). */ func verifyKeyOrder(pgId pgid, pageType string, index int, key []byte, previousKey []byte, maxKeyOpen []byte, ch chan error, keyToString func([]byte) string, pagesStack []pgid) { if index == 0 && previousKey != nil && compareKeys(previousKey, key) > 0 { ch <- fmt.Errorf("the first key[%d]=(hex)%s on %s page(%d) needs to be >= the key in the ancestor (%s). Stack: %v", index, keyToString(key), pageType, pgId, keyToString(previousKey), pagesStack) } if index > 0 { cmpRet := compareKeys(previousKey, key) if cmpRet > 0 { ch <- fmt.Errorf("key[%d]=(hex)%s on %s page(%d) needs to be > (found <) than previous element (hex)%s. Stack: %v", index, keyToString(key), pageType, pgId, keyToString(previousKey), pagesStack) } if cmpRet == 0 { ch <- fmt.Errorf("key[%d]=(hex)%s on %s page(%d) needs to be > (found =) than previous element (hex)%s. Stack: %v", index, keyToString(key), pageType, pgId, keyToString(previousKey), pagesStack) } } if maxKeyOpen != nil && compareKeys(key, maxKeyOpen) >= 0 { ch <- fmt.Errorf("key[%d]=(hex)%s on %s page(%d) needs to be < than key of the next element in ancestor (hex)%s. Pages stack: %v", index, keyToString(key), pageType, pgId, keyToString(previousKey), pagesStack) } } // =========================================================================================== type checkConfig struct { kvStringer KVStringer } type CheckOption func(options *checkConfig) func WithKVStringer(kvStringer KVStringer) CheckOption { return func(c *checkConfig) { c.kvStringer = kvStringer } } // KVStringer allows to prepare human-readable diagnostic messages. type KVStringer interface { KeyToString([]byte) string ValueToString([]byte) string } // HexKVStringer serializes both key & value to hex representation. func HexKVStringer() KVStringer { return hexKvStringer{} } type hexKvStringer struct{} func (_ hexKvStringer) KeyToString(key []byte) string { return hex.EncodeToString(key) } func (_ hexKvStringer) ValueToString(value []byte) string { return hex.EncodeToString(value) }