package junk import ( "fmt" "math" "os" "path/filepath" "testing" "github.com/mjl-/mox/mlog" ) func tcheck(t *testing.T, err error, msg string) { t.Helper() if err != nil { t.Fatalf("%s: %s", msg, err) } } func tlistdir(t *testing.T, name string) []string { t.Helper() l, err := os.ReadDir(name) tcheck(t, err, "readdir") names := make([]string, len(l)) for i, e := range l { names[i] = e.Name() } return names } func TestFilter(t *testing.T) { log := mlog.New("junk") params := Params{ Onegrams: true, Twograms: true, Threegrams: false, MaxPower: 0.1, TopWords: 10, IgnoreWords: 0.1, RareWords: 1, } dbPath := "../testdata/junk/filter.db" bloomPath := "../testdata/junk/filter.bloom" os.Remove(dbPath) os.Remove(bloomPath) f, err := NewFilter(log, params, dbPath, bloomPath) tcheck(t, err, "new filter") err = f.Close() tcheck(t, err, "close filter") f, err = OpenFilter(log, params, dbPath, bloomPath, true) tcheck(t, err, "open filter") // Ensure these dirs exist. Developers should bring their own ham/spam example // emails. os.MkdirAll("../testdata/train/ham", 0770) os.MkdirAll("../testdata/train/spam", 0770) hamdir := "../testdata/train/ham" spamdir := "../testdata/train/spam" hamfiles := tlistdir(t, hamdir) if len(hamfiles) > 100 { hamfiles = hamfiles[:100] } spamfiles := tlistdir(t, spamdir) if len(spamfiles) > 100 { spamfiles = spamfiles[:100] } err = f.TrainDirs(hamdir, "", spamdir, hamfiles, nil, spamfiles) tcheck(t, err, "train dirs") if len(hamfiles) == 0 || len(spamfiles) == 0 { fmt.Println("not training, no ham and/or spam messages, add them to testdata/train/ham and testdata/train/spam") return } prob, _, _, _, err := f.ClassifyMessagePath(filepath.Join(hamdir, hamfiles[0])) tcheck(t, err, "classify ham message") if prob > 0.1 { t.Fatalf("trained ham file has prob %v, expected <= 0.1", prob) } prob, _, _, _, err = f.ClassifyMessagePath(filepath.Join(spamdir, spamfiles[0])) tcheck(t, err, "classify spam message") if prob < 0.9 { t.Fatalf("trained spam file has prob %v, expected > 0.9", prob) } err = f.Close() tcheck(t, err, "close filter") // Start again with empty filter. We'll train a few messages and check they are // classified as ham/spam. Then we untrain to see they are no longer classified. os.Remove(dbPath) os.Remove(bloomPath) f, err = NewFilter(log, params, dbPath, bloomPath) tcheck(t, err, "open filter") hamf, err := os.Open(filepath.Join(hamdir, hamfiles[0])) tcheck(t, err, "open hamfile") defer hamf.Close() hamstat, err := hamf.Stat() tcheck(t, err, "stat hamfile") hamsize := hamstat.Size() spamf, err := os.Open(filepath.Join(spamdir, spamfiles[0])) tcheck(t, err, "open spamfile") defer spamf.Close() spamstat, err := spamf.Stat() tcheck(t, err, "stat spamfile") spamsize := spamstat.Size() // Train each message twice, to prevent single occurrences from being ignored. err = f.TrainMessage(hamf, hamsize, true) tcheck(t, err, "train ham message") _, err = hamf.Seek(0, 0) tcheck(t, err, "seek ham message") err = f.TrainMessage(hamf, hamsize, true) tcheck(t, err, "train ham message") err = f.TrainMessage(spamf, spamsize, false) tcheck(t, err, "train spam message") _, err = spamf.Seek(0, 0) tcheck(t, err, "seek spam message") err = f.TrainMessage(spamf, spamsize, true) tcheck(t, err, "train spam message") if !f.modified { t.Fatalf("filter not modified after training") } if !f.bloom.Modified() { t.Fatalf("bloom filter not modified after training") } err = f.Save() tcheck(t, err, "save filter") if f.modified || f.bloom.Modified() { t.Fatalf("filter or bloom filter still modified after save") } // Classify and verify. _, err = hamf.Seek(0, 0) tcheck(t, err, "seek ham message") prob, _, _, _, err = f.ClassifyMessageReader(hamf, hamsize) tcheck(t, err, "classify ham") if prob > 0.1 { t.Fatalf("got prob %v, expected <= 0.1", prob) } _, err = spamf.Seek(0, 0) tcheck(t, err, "seek spam message") prob, _, _, _, err = f.ClassifyMessageReader(spamf, spamsize) tcheck(t, err, "classify spam") if prob < 0.9 { t.Fatalf("got prob %v, expected >= 0.9", prob) } // Untrain ham & spam. _, err = hamf.Seek(0, 0) tcheck(t, err, "seek ham message") err = f.UntrainMessage(hamf, hamsize, true) tcheck(t, err, "untrain ham message") _, err = hamf.Seek(0, 0) tcheck(t, err, "seek ham message") err = f.UntrainMessage(hamf, spamsize, true) tcheck(t, err, "untrain ham message") _, err = spamf.Seek(0, 0) tcheck(t, err, "seek spam message") err = f.UntrainMessage(spamf, spamsize, true) tcheck(t, err, "untrain spam message") _, err = spamf.Seek(0, 0) tcheck(t, err, "seek spam message") err = f.UntrainMessage(spamf, spamsize, true) tcheck(t, err, "untrain spam message") if !f.modified { t.Fatalf("filter not modified after untraining") } // Classify again, should be unknown. _, err = hamf.Seek(0, 0) tcheck(t, err, "seek ham message") prob, _, _, _, err = f.ClassifyMessageReader(hamf, hamsize) tcheck(t, err, "classify ham") if math.Abs(prob-0.5) > 0.1 { t.Fatalf("got prob %v, expected 0.5 +-0.1", prob) } _, err = spamf.Seek(0, 0) tcheck(t, err, "seek spam message") prob, _, _, _, err = f.ClassifyMessageReader(spamf, spamsize) tcheck(t, err, "classify spam") if math.Abs(prob-0.5) > 0.1 { t.Fatalf("got prob %v, expected 0.5 +-0.1", prob) } err = f.Close() tcheck(t, err, "close filter") }