we don't want external software to include internal details like mlog.
slog.Logger is/will be the standard.
we still have mlog for its helper functions, and its handler that logs in
concise logfmt used by mox.
packages that are not meant for reuse still pass around mlog.Log for
convenience.
we use golang.org/x/exp/slog because we also support the previous Go toolchain
version. with the next Go release, we'll switch to the builtin slog.
this is a problem for connections like SSE, that only send data on events.
those events would stay in the gzip buffer until lots more data was written.
bug because of automatically typing "if err != nil"...
found while testing the maildir/mbox web-based import while working on message
threading support. the import gets progress SSE events that were now hanging.
we only compress if applicable (content-type indicates likely compressible),
client supports it, response doesn't already have a content-encoding).
for internal handlers, we always enable compression. for reverse proxied and
static files, compression must be enabled per handler.
for internal & reverse proxy handlers, we do streaming compression at
"bestspeed" quality (probably level 1).
for static files, we have a cache based on mtime with fixed max size, where we
evict based on least recently used. we compress with the default level (more
cpu, better ratio).
without public ip's, the generated mox config will try to listen on 0.0.0.0 and
::, but because there is already a listener for 127.0.0.1:80 (and possibly
others), a bind for 0.0.0.0:80 will fail. explicit public ip's are needed.
the public http listener is useful for ACME validation over http.
for issue #52
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
the import was still processed, but the SSE connection to fetch progress did
not work since adding the loggingWriter.
found while working on other functionality that uses SSE.
the trailing slash is commonly forgotten. in the default setup, for the admin
endpoint, this makes you end up at the account endpoint, which won't accept
your admin credentials. with this change, users won't get confused by that
anymore.
for issue #43
if we recognize that a request for a WebForward is trying to turn the
connection into a websocket, we forward it to the backend and check if the
backend understands the websocket request. if so, we pass back the upgrade
response and get out of the way, copying bytes between the two. we do log the
total amount of bytes read from the client and written to the client. if the
backend doesn't respond with a websocke response, or an invalid one, we respond
with a regular non-websocket response. and we log details about the failed
connection, should help with debugging and any bug reports.
we don't try to parse the websocket framing, that's between the client and the
backend. we could try to parse it, in part to protect the backend from bad
frames, but it would be a lot of work and could be brittle in the face of
extensions.
this doesn't yet handle websocket connections when a http proxy is configured.
we'll implement it when someone needs it. we do recognize it and fail the
connection.
for issue #25
at the end of the quickstart. also hint at it during startup, when printing the
listener. and mention it in the FAQ.
another recent commit make the admin and account http path configurable, and
that expanded the config docs with a mention of the default path.
based on feedback from stroyselmash in issue #20, thanks!
so you can use the host (domain) name of the mail server for serving other
resources too. the default is is still that account is served on /, and so
takes all incoming requests before giving webhandlers a chance.
mox localserve now serves the account pages on /account/
we already do acme tls-alpn-01 validation, and still require it (we could relax
this at some point). http-01 is easy to add.
the bug was that the list of acme managers and hosts to refresh was overwritten
by another listener. the listeners are a map, and we range over it, so the
order we handle them is random. if the public listener was handled first, and
an internal handler later, the list was reset again.
- make it easier to run with an existing webserver. the quickstart now has a new option for that, it generates a different mox.conf, and further instructions such as configuring the tls keys/certs and reverse proxy urls. and changes to make autoconfig work in that case too.
- when starting up, request a tls cert for the hostname and for the autoconfig endpoint. the first will be requested soon anyway, and the autoconfig cert is needed early so the first autoconfig request doesn't time out (without helpful message to the user by at least thunderbird). and don't request the certificate before the servers are online. the root process was now requesting the certs, before the child process was serving on the tls port.
- add examples of configs generated by the quickstart.
- enable debug logging in config from quickstart, to give user more info.
for issue #5
- make builtin http handlers serve on specific domains, such as for mta-sts, so
e.g. /.well-known/mta-sts.txt isn't served on all domains.
- add logging of a few more fields in access logging.
- small tweaks/bug fixes in webserver request handling.
- add config option for redirecting entire domains to another (common enough).
- split httpserver metric into two: one for duration until writing header (i.e.
performance of server), another for duration until full response is sent to
client (i.e. performance as perceived by users).
- add admin ui, a new page for managing the configs. after making changes
and hitting "save", the changes take effect immediately. the page itself
doesn't look very well-designed (many input fields, makes it look messy). i
have an idea to improve it (explained in admin.html as todo) by making the
layout look just like the config file. not urgent though.
i've already changed my websites/webapps over.
the idea of adding a webserver is to take away a (the) reason for folks to want
to complicate their mox setup by running an other webserver on the same machine.
i think the current webserver implementation can already serve most common use
cases. with a few more tweaks (feedback needed!) we should be able to get to 95%
of the use cases. the reverse proxy can take care of the remaining 5%.
nevertheless, a next step is still to change the quickstart to make it easier
for folks to run with an existing webserver, with existing tls certs/keys.
that's how this relates to issue #5.
- serve static files, serving index.html or optionally listings for directories
- redirects
- reverse-proxy, forwarding requests to a backend
these are configurable through the config file. a domain and path regexp have to
be configured. path prefixes can be stripped. configured domains are added to
the autotls allowlist, so acme automatically fetches certificates for them.
all webserver requests now have (access) logging, metrics, rate limiting.
on http errors, the error message prints an encrypted cid for relating with log files.
this also adds a new mechanism for example config files.
makes it easier to run on bsd's, where you cannot (easily?) let non-root users
bind to ports <1024. starting as root also paves the way for future improvements
with privilege separation.
unfortunately, this requires changes to how you start mox. though mox will help
by automatically fix up dir/file permissions/ownership.
if you start mox from the systemd unit file, you should update it so it starts
as root and adds a few additional capabilities:
# first update the mox binary, then, as root:
./mox config printservice >mox.service
systemctl daemon-reload
systemctl restart mox
journalctl -f -u mox &
# you should see mox start up, with messages about fixing permissions on dirs/files.
if you used the recommended config/ and data/ directory, in a directory just for
mox, and with the mox user called "mox", this should be enough.
if you don't want mox to modify dir/file permissions, set "NoFixPermissions:
true" in mox.conf.
if you named the mox user something else than mox, e.g. "_mox", add "User: _mox"
to mox.conf.
if you created a shared service user as originally suggested, you may want to
get rid of that as it is no longer useful and may get in the way. e.g. if you
had /home/service/mox with a "service" user, that service user can no longer
access any files: only mox and root can.
this also adds scripts for building mox docker images for alpine-supported
platforms.
the "restart" subcommand has been removed. it wasn't all that useful and got in
the way.
and another change: when adding a domain while mtasts isn't enabled, don't add
the per-domain mtasts config, as it would cause failure to add the domain.
based on report from setting up mox on openbsd from mteege.
and based on issue #3. thanks for the feedback!
so you can run mox on openbsd with port redirects in pf.conf.
in the future, starting as root, binding the sockets, and passing the bound
sockets to a new unprivileged process should be implemented, but this should
get openbsd users going.
from discussion with mteege
ideally both account & admin web pages should be on non-public ips (e.g. a
wireguard tunnel). but during setup, users may not have that set up, and they
may want to configure the admin/account pages on their public ip's. the auth
rate limiting should make it less of issue.
users can now also only put the account web page publicly available. useful for
if you're the admin and you have a vpn connection, but your other/external
users do not have a vpn into your mail server. to make the account page more
easily findable, the http root serves the account page. the admin page is still
at /admin/, to prevent clash with potential account pages, but if no account
page is present, you are helpfully redirected from / to /admin/.
this also adds a prometheus metric counting how often auth attempts have been
rate limited.