the smtp extension, rfc 4865.
also implement in the webmail.
the queueing/delivery part hardly required changes: we just set the first
delivery time in the future instead of immediately.
still have to find the first client that implements it.
to start composing a message.
the help popup now has a button to register the "mailto:" links with the mox
webmail (typically only works over https, not all browsers support it).
the mailto links are specified in 6068. we support the to/cc/bcc/subject/body
parameters. other parameters should be seen as custom headers, but we don't
support messages with custom headers at all at the moment, so we ignore them.
we now also turn text of the form "mailto:user@host" into a clickable link
(will not be too common). we could be recognizing any "x@x.x" as email address
and make them clickable in the future.
thanks to Hans-Jörg for explaining this functionality.
broken in previous update. the tricky part keeps being about when browsers fire
'load' and 'hashchange' events for the outer and two inner documents. the
previous change attempted to prevent a history item being set on the first
load. that behaviour seems to be kept.
- on the two index pages, show rows with alternating background color so the
files in the 2nd column are more easily matched to the name in the 1st
column.
- unbreak browser history when navigating files/line numbers. changing an
iframe src attribute adds an entry to the history. that happens on "back" to,
causing a 2nd "back" to go forward again. instead of replacing the iframe src,
we now replace the iframe, as that doesn't cause an entry to be added to the
browser history. dark browser magic...
most content is in markdown files in website/, some is taken out of the repo
README and rfc/index.txt. a Go file generates html. static files are kept in a
separate repo due to size.
to get the security benefits (detecting mitm attempts), explicitly configure
clients to use a scram plus variant, e.g. scram-sha-256-plus. unfortunately,
not many clients support it yet.
imapserver scram plus support seems to work with the latest imtest (imap test
client) from cyrus-sasl. no success yet with mutt (with gsasl) though.
should prevent potential mitm attacks. especially when done close to the
machine itself (where a http/tls challenge is intercepted to get a valid
certificate), as seen on the internet last month.
anything that looks like it specifies a different host should not be loaded.
www.xmox.nl also has a CSP policy that should prevent resources from other
domains from being loaded.
- show commit hash, with a link to the commit
- highlight if this is the dev or released version page
- sort the rfc's, the list in rfc/index.txt has the major rfc's at the topic, but this nuance is lost in the html page
- the rfc links back to the code now show any "todo" text that appears in the
code. helps when looking at an rfc to find any work that may need to be done.
- html pages can now be generated to view code and rfc's side by side. clicking
on links in one side opens the linked document in the other page, at the
correct line number.
i'll be publishing the "dev" html version (latest commit on main branch) on the
mox website, updated with each commit. the dev pages will also link to the
latest released version.
the vendored dns resolver code is a copy of the go stdlib dns resolver, with
awareness of the "authentic data" (i.e. dnssec secure) added, as well as support
for enhanced dns errors, and looking up tlsa records (for dane). ideally it
would be upstreamed, but the chances seem slim.
dnssec-awareness is added to all packages, e.g. spf, dkim, dmarc, iprev. their
dnssec status is added to the Received message headers for incoming email.
but the main reason to add dnssec was for implementing dane. with dane, the
verification of tls certificates can be done through certificates/public keys
published in dns (in the tlsa records). this only makes sense (is trustworthy)
if those dns records can be verified to be authentic.
mox now applies dane to delivering messages over smtp. mox already implemented
mta-sts for webpki/pkix-verification of certificates against the (large) pool
of CA's, and still enforces those policies when present. but it now also checks
for dane records, and will verify those if present. if dane and mta-sts are
both absent, the regular opportunistic tls with starttls is still done. and the
fallback to plaintext is also still done.
mox also makes it easy to setup dane for incoming deliveries, so other servers
can deliver with dane tls certificate verification. the quickstart now
generates private keys that are used when requesting certificates with acme.
the private keys are pre-generated because they must be static and known during
setup, because their public keys must be published in tlsa records in dns.
autocert would generate private keys on its own, so had to be forked to add the
option to provide the private key when requesting a new certificate. hopefully
upstream will accept the change and we can drop the fork.
with this change, using the quickstart to setup a new mox instance, the checks
at internet.nl result in a 100% score, provided the domain is dnssec-signed and
the network doesn't have any issues.
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
if we recognize that a request for a WebForward is trying to turn the
connection into a websocket, we forward it to the backend and check if the
backend understands the websocket request. if so, we pass back the upgrade
response and get out of the way, copying bytes between the two. we do log the
total amount of bytes read from the client and written to the client. if the
backend doesn't respond with a websocke response, or an invalid one, we respond
with a regular non-websocket response. and we log details about the failed
connection, should help with debugging and any bug reports.
we don't try to parse the websocket framing, that's between the client and the
backend. we could try to parse it, in part to protect the backend from bad
frames, but it would be a lot of work and could be brittle in the face of
extensions.
this doesn't yet handle websocket connections when a http proxy is configured.
we'll implement it when someone needs it. we do recognize it and fail the
connection.
for issue #25
and change thunderbird autoconfiguration to use it.
unfortunately, for microsoft autodiscover, there appears to be no way to
request secure password negotiation. so it will default to plain text auth.
cram-md5 is less secure than scram-sha-*, but thunderbird does not yet support
scram auth. it currently chooses "plain", sending the literal password over the
connection (which is TLS-protected, but we don't want to receive clear text
passwords). in short, cram-md5 is better than nothing...
for cram-md5 to work, a new set of derived credentials need to be stored in the
database. so you need to save your password again to make it work. this was
also the case with the scram-sha-1 addition, but i forgot to mention it then.