the imapserver started with imap4rev2-only and utf8=only. to prevent potential
issues with imaputf7, which makes "&" special, we refused any mailbox with an
"&" in the name. we already tried decoding utf7, falling back to using a
mailbox name verbatim. that behaviour wasn't great. we now treat the enabled
extensions IMAP4rev2 and/or UTF8=ACCEPT as indication whether mailbox names are
in imaputf7. if they are, the encoding must be correct.
we now also send mailbox names in imaputf7 when imap4rev2/utf8=accept isn't
enabled.
and we now allow "*" and "%" (wildcard characters for matching) in mailbox
names. not ideal for IMAP LIST with patterns, but not enough reason to refuse
them in mailbox names. people that migrate may run into this, possibly as
blocker.
we also allow "#" in mailbox names, but not as first character, to prevent
potential clashes with IMAP namespaces in the future.
based on report from Damian Poddebniak using
https://github.com/duesee/imap-flow and issue #110, thanks for reporting!
to get the security benefits (detecting mitm attempts), explicitly configure
clients to use a scram plus variant, e.g. scram-sha-256-plus. unfortunately,
not many clients support it yet.
imapserver scram plus support seems to work with the latest imtest (imap test
client) from cyrus-sasl. no success yet with mutt (with gsasl) though.
so a single user cannot fill up the disk.
by default, there is (still) no limit. a default can be set in the config file
for all accounts, and a per-account max size can be set that would override any
global setting.
this does not take into account disk usage of the index database. and also not
of any file system overhead.
OLDNAME is included in IMAP4rev2, but not in IMAP4rev1. it is also included in
the NOTIFY extension, but we don't implement that yet.
found by Damian Poddebniak with https://github.com/duesee/imap-flow, thanks!
- prometheus is now behind an interface, they aren't dependencies for the
reusable components anymore.
- some dependencies have been inverted: instead of packages importing a main
package to get configuration, the main package now sets configuration in
these packages. that means fewer internals are pulled in.
- some functions now have new parameters for values that were retrieved from
package "mox-".
we don't want external software to include internal details like mlog.
slog.Logger is/will be the standard.
we still have mlog for its helper functions, and its handler that logs in
concise logfmt used by mox.
packages that are not meant for reuse still pass around mlog.Log for
convenience.
we use golang.org/x/exp/slog because we also support the previous Go toolchain
version. with the next Go release, we'll switch to the builtin slog.
the original size, with bare newlines, was stored in the database, not the
actual adjusted file size. this caused failures when reading the message.
users may want to run "mox fixmsgsize <account>" if they imported messages from
another account over IMAP.
reported by daftaupe, thanks!
so facilitate debugging. a remote client that logs details about failing
connections can give the cid to the mox operator to find the relevant logging.
"fatal" was meant as "we need fatal for the connection, it will be dropped".
but it sounds more serious, as if something needs to be fixed.
hopefully enough for issue #39 by ArnoSen
getting mox to compile required changing code in only a few places where
package "syscall" was used: for accessing file access times and for umask
handling. an open problem is how to start a process as an unprivileged user on
windows. that's why "mox serve" isn't implemented yet. and just finding a way
to implement it now may not be good enough in the near future: we may want to
starting using a more complete privilege separation approach, with a process
handling sensitive tasks (handling private keys, authentication), where we may
want to pass file descriptors between processes. how would that work on
windows?
anyway, getting mox to compile for windows doesn't mean it works properly on
windows. the largest issue: mox would normally open a file, rename or remove
it, and finally close it. this happens during message delivery. that doesn't
work on windows, the rename/remove would fail because the file is still open.
so this commit swaps many "remove" and "close" calls. renames are a longer
story: message delivery had two ways to deliver: with "consuming" the
(temporary) message file (which would rename it to its final destination), and
without consuming (by hardlinking the file, falling back to copying). the last
delivery to a recipient of a message (and the only one in the common case of a
single recipient) would consume the message, and the earlier recipients would
not. during delivery, the already open message file was used, to parse the
message. we still want to use that open message file, and the caller now stays
responsible for closing it, but we no longer try to rename (consume) the file.
we always hardlink (or copy) during delivery (this works on windows), and the
caller is responsible for closing and removing (in that order) the original
temporary file. this does cost one syscall more. but it makes the delivery code
(responsibilities) a bit simpler.
there is one more obvious issue: the file system path separator. mox already
used the "filepath" package to join paths in many places, but not everywhere.
and it still used strings with slashes for local file access. with this commit,
the code now uses filepath.FromSlash for path strings with slashes, uses
"filepath" in a few more places where it previously didn't. also switches from
"filepath" to regular "path" package when handling mailbox names in a few
places, because those always use forward slashes, regardless of local file
system conventions. windows can handle forward slashes when opening files, so
test code that passes path strings with forward slashes straight to go stdlib
file i/o functions are left unchanged to reduce code churn. the regular
non-test code, or test code that uses path strings in places other than
standard i/o functions, does have the paths converted for consistent paths
(otherwise we would end up with paths with mixed forward/backward slashes in
log messages).
windows cannot dup a listening socket. for "mox localserve", it isn't
important, and we can work around the issue. the current approach for "mox
serve" (forking a process and passing file descriptors of listening sockets on
"privileged" ports) won't work on windows. perhaps it isn't needed on windows,
and any user can listen on "privileged" ports? that would be welcome.
on windows, os.Open cannot open a directory, so we cannot call Sync on it after
message delivery. a cursory internet search indicates that directories cannot
be synced on windows. the story is probably much more nuanced than that, with
long deep technical details/discussions/disagreement/confusion, like on unix.
for "mox localserve" we can get away with making syncdir a no-op.
we set the flag both for move in imap and in webmail.
this also ensures the "MailboxDestinedID", used for per-mailbox reputation
analysis, is set in more reject-situations. before this change, some rejects
(such as based on DMARC reject) wouldn't result in reputation being used after
having been moved the message out of the rejects mailbox.
in the future, we need more tests for scenario's like this...
for issue #63 reported by x8x
may also help with issue #64
increase() and rate() don't seem to assume a previous value of 0 when a vector
gets a first value for a label. you would think that an increase() on a
first-value mox_panic_total{"..."}=1 would return 1, and similar for rate(), but
that doesn't appear to be the behaviour. so we just explicitly initialize the
count to 0 for each possible label value. mox has more vector metrics, but
panics feels like the most important, and it's too much code to initialize them
all, for all combinations of label values. there is probably a better way that
fixes this for all cases...
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
such messages would be marked expunged in the database, then the junkfilter
would be retrained for the removal of the message. but during retraining, the
expunged flag would be cleared again. the on-disk message file would still be
removed. so when opening the mailbox, the message would appear to still exist,
but cannot be retrieved from disk.
if you run "mox fixmsgsize", and you get warnings about missing message files,
you could create empty files (with "touch"), run "mox fixsmsgsize" again,
followed by "mox recalculatemailboxcounts <affectedaccount>" and run "mox
bumpuidvalidity <affectaccount>".
"mox backup" would probably also complain, as would "mox verifydata".
this may have caused the "wrong mailbox counts" error i got from "mox
verifydata" on a backup.
without public ip's, the generated mox config will try to listen on 0.0.0.0 and
::, but because there is already a listener for 127.0.0.1:80 (and possibly
others), a bind for 0.0.0.0:80 will fail. explicit public ip's are needed.
the public http listener is useful for ACME validation over http.
for issue #52
soon, we can have multiple rejects mailboxes. and checking against the
configured rejects mailbox name wasn't foolproof to begin with, because it may
have changed between delivery to the rejects mailbox and the message being
moved.
after upgrading, messages currently in rejects mailboxes don't have IsReject
set, so they don't get the special rejecs treatment when being moved. they are
removed from the rejects mailbox after some time though, and newly added
rejects will be treated correctly. so this means some existing messages wrongly
delivered to the rejects mailbox, and moved out, aren't used (for a positive
signal) for future deliveries. saves a bit of complexity in the
implementation. i think the tradeoff is worth it.
related to discussion in issue #50
a few places still looked at the name "Sent". but since we have special-use
flags, we should always look at those. this also changes the config so admins
can specify different names for the special-use mailboxes to create for new
accounts, e.g. in a different language. the old config option is still
understood, just deprecated.
the bulk of a message is stored on disk. a message prefix is stored in the
database (for prefixed headers like "Received:"). this adds a check to ensure
Size = prefix length + on-disk file size.
verifydata also checks for this now.
and one older and one new (since yesterday) bug was found. the first when
appending a message without a header/body section (uncommon). the second when
sending messages from webmail with localserve (uncommon).
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
behaviour around failing DB calls that change data (insert/update) was changed
in bstore quite some time ago. the tx state in bstore would become inconsistent
when one or more (possibly unique) indexes had been modified, but then an
ErrUnique would occur for the next index. bstore doesn't know how to roll back
the partial changes during a transaction, so it marks the tx as botched and
refuses further operations. so, we cannot just try to insert, wait for a
possible ErrUnique, but then still try to continue with the transaction.
instead, we check if the record exists and only insert it if we couldn't find
it.
found while working on webmail.
for conditional storing and quick resynchronisation (not sure if mail clients are actually using it that).
each message now has a "modseq". it is increased for each change. with
condstore, imap clients can request changes since a certain modseq. that
already allows quickly finding changes since a previous connection. condstore
also allows storing (e.g. setting new message flags) only when the modseq of a
message hasn't changed.
qresync should make it fast for clients to get a full list of changed messages
for a mailbox, including removals.
we now also keep basic metadata of messages that have been removed (expunged).
just enough (uid, modseq) to tell client that the messages have been removed.
this does mean we have to be careful when querying messages from the database.
we must now often filter the expunged messages out.
we also keep "createseq", the modseq when a message was created. this will be
useful for the jmap implementation.
when broadcasting a change, we would try to send the changes on a channel,
non-blocking. if we couldn't send (because there was no pending blocked
receive), we would wait until the potential receiver would explicitly request
the changes. however, the imap idle handler would not explicitly request the
changes, but do a receive on the changes channel. since there was no pending
blocked send on the channel, that receive would block. only when another event
would come in, would both the pending and the new changes be sent.
we now use a channel only for signaling there are pending changes. the channel
is buffered, so when broadcasting we can just set the signal by a non-blocking
send and continue with the next listener. the receiver will get the buffered
signal. it can then get the changes directly, but lock-protected.
found when looking at a missing/delayed new message notification in thunderbird
when two messages arrive immediately after each other. this doesn't fix that
problem though: it seems thunderbird just ignores imap untagged "exists"
messages (indicating a new message arrived) during the "uid fetch" command that
it issued after notifications from an "idle" command.
and add a bit more logging for unexpected failures when closing files.
and make tests pass with a TMPDIR on a different filesystem than the testdata directory.
renaming inbox is special. the mailbox isn't renamed, but its messages moved to
a new mailbox. we weren't updating the destination mailbox uidnext with the new
messages. the fix not only sets the uidnext correctly, but also renumbers the
uids, starting at 1.
this also adds a consistency check for message uids and mailbox uidnexts, and
for mailbox uidvalidity account nextuidvalidity in "mox verifydata".
this also adds command "mox fixuidmeta" (not listed) that fixes up mailbox uidnext
and account uidvalidity. and command "mox reassignuids" that will renumber the
uids for either one or all mailboxes in an account.
the mailbox select/examine responses now return all flags used in a mailbox in
the FLAGS response. and indicate in the PERMANENTFLAGS response that clients
can set new keywords. we store these values on the new Message.Keywords field.
system/well-known flags are still in Message.Flags, so we're recognizing those
and handling them separately.
the imap store command handles the new flags. as does the append command, and
the search command.
we store keywords in a mailbox when a message in that mailbox gets the keyword.
we don't automatically remove the keywords from a mailbox. there is currently
no way at all to remove a keyword from a mailbox.
the import commands now handle non-system/well-known keywords too, when
importing from mbox/maildir.
jmap requires keyword support, so best to get it out of the way now.
so external tools (like fail2ban) can monitor the logs and block ip's of bots.
for issue #30 by inigoserna, though i'm not sure i interpreted the suggestion correctly.
this is quite common on the internet. the other side may be trying some other
protocol, e.g. http, or some common vulnerability. we don't want to spam our
own logs with multiple invalid lines. if the first command is valid, but later
are not, we'll keep trying to process them. so this only affects protocol
sessions that are very likely not smtp/imap.
also remove a few more sleeps during tests, making imapserver and smtpserver tests a bit faster.
the idea of the rejects mailbox is to show messages that were rejected. you can
look there, and if you see a message that should have been delivered, you can
move it to your inbox or archive. next time a deliver attempt by that user is
attempted, they should be accepted, because you corrected the reject. but that
wasn't happening, because the reputation-calculation is per-delivery mailbox
(e.g. Inbox) and we look at MailboxOrigID when calculating the reputation. and
that was set to the Rejects mailbox id, so the message wasn't considered. the
same applies to moving messages from Rejects to Junk (to train your filter).
we now keep track of a MailboxDestinedID, that is set to the mailbox that we
would have delivered to if we would not have rejected the message. then, when a
message is moved out of the Rejects mailbox, we change MailboxOrigID to
MailboxDestinedID. this essentially makes the message look like it was
delivered normally.
makes it easier to run on bsd's, where you cannot (easily?) let non-root users
bind to ports <1024. starting as root also paves the way for future improvements
with privilege separation.
unfortunately, this requires changes to how you start mox. though mox will help
by automatically fix up dir/file permissions/ownership.
if you start mox from the systemd unit file, you should update it so it starts
as root and adds a few additional capabilities:
# first update the mox binary, then, as root:
./mox config printservice >mox.service
systemctl daemon-reload
systemctl restart mox
journalctl -f -u mox &
# you should see mox start up, with messages about fixing permissions on dirs/files.
if you used the recommended config/ and data/ directory, in a directory just for
mox, and with the mox user called "mox", this should be enough.
if you don't want mox to modify dir/file permissions, set "NoFixPermissions:
true" in mox.conf.
if you named the mox user something else than mox, e.g. "_mox", add "User: _mox"
to mox.conf.
if you created a shared service user as originally suggested, you may want to
get rid of that as it is no longer useful and may get in the way. e.g. if you
had /home/service/mox with a "service" user, that service user can no longer
access any files: only mox and root can.
this also adds scripts for building mox docker images for alpine-supported
platforms.
the "restart" subcommand has been removed. it wasn't all that useful and got in
the way.
and another change: when adding a domain while mtasts isn't enabled, don't add
the per-domain mtasts config, as it would cause failure to add the domain.
based on report from setting up mox on openbsd from mteege.
and based on issue #3. thanks for the feedback!
so users can easily take their email out of somewhere else, and import it into mox.
this goes a little way to give feedback as the import progresses: upload
progress is shown (surprisingly, browsers aren't doing this...), imported
mailboxes/messages are counted (batched) and import issues/warnings are
displayed, all sent over an SSE connection. an import token is stored in
sessionstorage. if you reload the page (e.g. after a connection error), the
browser will reconnect to the running import and show its progress again. and
you can just abort the import before it is finished and committed, and nothing
will have changed.
this also imports flags/keywords from mbox files.
ideally both account & admin web pages should be on non-public ips (e.g. a
wireguard tunnel). but during setup, users may not have that set up, and they
may want to configure the admin/account pages on their public ip's. the auth
rate limiting should make it less of issue.
users can now also only put the account web page publicly available. useful for
if you're the admin and you have a vpn connection, but your other/external
users do not have a vpn into your mail server. to make the account page more
easily findable, the http root serves the account page. the admin page is still
at /admin/, to prevent clash with potential account pages, but if no account
page is present, you are helpfully redirected from / to /admin/.
this also adds a prometheus metric counting how often auth attempts have been
rate limited.
before, we used heuristics to decide when to train/untrain a message as junk or
nonjunk: the message had to be seen, be in certain mailboxes. then if a message
was marked as junk, it was junk. and otherwise it was nonjunk. this wasn't good
enough: you may want to keep some messages around as neither junk or nonjunk.
and that wasn't possible.
ideally, we would just look at the imap $Junk and $NotJunk flags. the problem
is that mail clients don't set these flags, or don't make it easy. thunderbird
can set the flags based on its own bayesian filter. it has a shortcut for
marking Junk and moving it to the junk folder (good), but the counterpart of
notjunk only marks a message as notjunk without showing in the UI that it was
marked as notjunk. there is also no "move and mark as notjunk" mechanism. e.g.
"archive" does not mark a message as notjunk. ios mail and mutt don't appear to
have any way to see or change the $Junk and $NotJunk flags.
what email clients do have is the ability to move messages to other
mailboxes/folders. so mox now has a mechanism that allows you to configure
mailboxes that automatically set $Junk or $NotJunk (or clear both) when a
message is moved/copied/delivered to that folder. e.g. a mailbox called junk or
spam or rejects marks its messags as junk. inbox, postmaster, dmarc, tlsrpt,
neutral* mark their messages as neither junk or notjunk. other folders mark
their messages as notjunk. e.g. list/*, archive. this functionality is
optional, but enabled with the quickstart and for new accounts.
also, mox now keeps track of the previous training of a message and will only
untrain/train if needed. before, there probably have been duplicate or missing
(un)trainings.
this also includes a new subcommand "retrain" to recreate the junkfilter for an
account. you should run it after updating to this version. and you should
probably also modify your account config to include the AutomaticJunkFlags.
similar to greylisting, but not quite the same: with greylisting you would
always reject the first delivery attempt with a temporary failure. with the
hope that spammers won't retry their deliveries. the spams i've been receiving
seem to be quite consistent though. and we would keep rejecting them anyway.
we slow down the spammy connections to waste some of the resources of a
spammer. this may slow their campaigns down a bit, leaving a bit more time to
take measures.
we do the same with connections that have their 3rd authentication failure,
typically password guess attempts.
when we accept a message by a first-time sender, we sleep for 15 seconds before
actually delivering them. known-good senders don't have to wait. if the message
turns out to be a spammer, at least we've consumed one of their connections,
and they cannot deliver at too high a rate to us because of the max open
connection limit.
limiting is done based on remote ip's, with 3 ip mask variants to limit networks
of machines. often with two windows, enabling short bursts of activity, but not
sustained high activity. currently only for imap and smtp, not yet http.
limits are currently based on:
- number of open connections
- connection rate
- limits after authentication failures. too many failures, and new connections will be dropped.
- rate of delivery in total number of messages
- rate of delivery in total size of messages
the limits on connections and authentication failures are in-memory. the limits
on delivery of messages are based on stored messages.
the limits themselves are not yet configurable, let's use this first.
in the future, we may also want to have stricter limits for senders without any
reputation.