for applications to compose/send messages, receive delivery feedback, and
maintain suppression lists.
this is an alternative to applications using a library to compose messages,
submitting those messages using smtp, and monitoring a mailbox with imap for
DSNs, which can be processed into the equivalent of suppression lists. but you
need to know about all these standards/protocols and find libraries. by using
the webapi & webhooks, you just need a http & json library.
unfortunately, there is no standard for these kinds of api, so mox has made up
yet another one...
matching incoming DSNs about deliveries to original outgoing messages requires
keeping history of "retired" messages (delivered from the queue, either
successfully or failed). this can be enabled per account. history is also
useful for debugging deliveries. we now also keep history of each delivery
attempt, accessible while still in the queue, and kept when a message is
retired. the queue webadmin pages now also have pagination, to show potentially
large history.
a queue of webhook calls is now managed too. failures are retried similar to
message deliveries. webhooks can also be saved to the retired list after
completing. also configurable per account.
messages can be sent with a "unique smtp mail from" address. this can only be
used if the domain is configured with a localpart catchall separator such as
"+". when enabled, a queued message gets assigned a random "fromid", which is
added after the separator when sending. when DSNs are returned, they can be
related to previously sent messages based on this fromid. in the future, we can
implement matching on the "envid" used in the smtp dsn extension, or on the
"message-id" of the message. using a fromid can be triggered by authenticating
with a login email address that is configured as enabling fromid.
suppression lists are automatically managed per account. if a delivery attempt
results in certain smtp errors, the destination address is added to the
suppression list. future messages queued for that recipient will immediately
fail without a delivery attempt. suppression lists protect your mail server
reputation.
submitted messages can carry "extra" data through the queue and webhooks for
outgoing deliveries. through webapi as a json object, through smtp submission
as message headers of the form "x-mox-extra-<key>: value".
to make it easy to test webapi/webhooks locally, the "localserve" mode actually
puts messages in the queue. when it's time to deliver, it still won't do a full
delivery attempt, but just delivers to the sender account. unless the recipient
address has a special form, simulating a failure to deliver.
admins now have more control over the queue. "hold rules" can be added to mark
newly queued messages as "on hold", pausing delivery. rules can be about
certain sender or recipient domains/addresses, or apply to all messages pausing
the entire queue. also useful for (local) testing.
new config options have been introduced. they are editable through the admin
and/or account web interfaces.
the webapi http endpoints are enabled for newly generated configs with the
quickstart, and in localserve. existing configurations must explicitly enable
the webapi in mox.conf.
gopherwatch.org was created to dogfood this code. it initially used just the
compose/smtpclient/imapclient mox packages to send messages and process
delivery feedback. it will get a config option to use the mox webapi/webhooks
instead. the gopherwatch code to use webapi/webhook is smaller and simpler, and
developing that shaped development of the mox webapi/webhooks.
for issue #31 by cuu508
we include the username in session cookie values. but cookie values must be ascii-only, go's net/http's drops bad values. the typical solution is to querystring-encode/decode the cookie values, which we'll now do.
problem found by arnt, thanks for reporting!
an é (e with accent) can also be written as e+\u0301. the first form is NFC,
the second NFD. when logging in, we transform usernames (email addresses) to
NFC. so both forms will be accepted. if a client is using NFD, they can log
in too.
for passwords, we apply the PRECIS "opaquestring", which (despite the name)
transforms the value too: unicode spaces are replaced with ascii spaces. the
string is also normalized to NFC. PRECIS may reject confusing passwords when
you set a password.
both when parsing our configs, and for incoming on smtp or in messages.
so we properly compare things like é and e+accent as equal, and accept the
different encodings of that same address.
the http basic auth we had was very simple to reason about, and to implement.
but it has a major downside:
there is no way to logout, browsers keep sending credentials. ideally, browsers
themselves would show a button to stop sending credentials.
a related downside: the http auth mechanism doesn't indicate for which server
paths the credentials are.
another downside: the original password is sent to the server with each
request. though sending original passwords to web servers seems to be
considered normal.
our new approach uses session cookies, along with csrf values when we can. the
sessions are server-side managed, automatically extended on each use. this
makes it easy to invalidate sessions and keeps the frontend simpler (than with
long- vs short-term sessions and refreshing). the cookies are httponly,
samesite=strict, scoped to the path of the web interface. cookies are set
"secure" when set over https. the cookie is set by a successful call to Login.
a call to Logout invalidates a session. changing a password invalidates all
sessions for a user, but keeps the session with which the password was changed
alive. the csrf value is also random, and associated with the session cookie.
the csrf must be sent as header for api calls, or as parameter for direct form
posts (where we cannot set a custom header). rest-like calls made directly by
the browser, e.g. for images, don't have a csrf protection. the csrf value is
returned by the Login api call and stored in localstorage.
api calls without credentials return code "user:noAuth", and with bad
credentials return "user:badAuth". the api client recognizes this and triggers
a login. after a login, all auth-failed api calls are automatically retried.
only for "user:badAuth" is an error message displayed in the login form (e.g.
session expired).
in an ideal world, browsers would take care of most session management. a
server would indicate authentication is needed (like http basic auth), and the
browsers uses trusted ui to request credentials for the server & path. the
browser could use safer mechanism than sending original passwords to the
server, such as scram, along with a standard way to create sessions. for now,
web developers have to do authentication themselves: from showing the login
prompt, ensuring the right session/csrf cookies/localstorage/headers/etc are
sent with each request.
webauthn is a newer way to do authentication, perhaps we'll implement it in the
future. though hardware tokens aren't an attractive option for many users, and
it may be overkill as long as we still do old-fashioned authentication in smtp
& imap where passwords can be sent to the server.
for issue #58
mox was already strict in its "\r\n.\r\n" handling for end-of-message in an
smtp transaction.
due to a mostly unrelated bug, sequences of "\nX\n", including "\n.\n" were
rejected with a "local processing error".
the sequence "\r\n.\n" dropped the dot, not necessarily a big problem, this is
unlikely to happen in a legimate transaction and the behaviour not
unreasonable.
we take this opportunity to reject all bare \r. we detect all slightly
incorrect combinations of "\r\n.\r\n" with an error mentioning smtp smuggling,
in part to appease the tools checking for it.
smtp errors are 500 "bad syntax", and mention smtp smuggling.
should prevent potential mitm attacks. especially when done close to the
machine itself (where a http/tls challenge is intercepted to get a valid
certificate), as seen on the internet last month.
so a single user cannot fill up the disk.
by default, there is (still) no limit. a default can be set in the config file
for all accounts, and a per-account max size can be set that would override any
global setting.
this does not take into account disk usage of the index database. and also not
of any file system overhead.
both cases are quite typical for spammers, and not for legitimate senders.
this doesn't apply to known senders. and it only requires that the content look
more like ham instead of spam. so legitimate mail can still get through with
these properties.
for reporting addresses that cause DSNs to be returned. that just adds noise.
the admin can add/remove/extend addresses through the webadmin.
in the future, we could send reports with a smtp mail from of
"postmaster+<signed-encoded-recipient>@...", and add the reporting recipient
on the suppression list automatically when a DSN comes in on that address, but
for now this will probably do.
we were already accepting, processing and displaying incoming tls reports. now
we start tracking TLS connection and security-policy-related errors for
outgoing message deliveries as well. we send reports once a day, to the
reporting addresses specified in TLSRPT records (rua) of a policy domain. these
reports are about MTA-STS policies and/or DANE policies, and about
STARTTLS-related failures.
sending reports is enabled by default, but can be disabled through setting
NoOutgoingTLSReports in mox.conf.
only at the end of the implementation process came the realization that the
TLSRPT policy domain for DANE (MX) hosts are separate from the TLSRPT policy
for the recipient domain, and that MTA-STS and DANE TLS/policy results are
typically delivered in separate reports. so MX hosts need their own TLSRPT
policies.
config for the per-host TLSRPT policy should be added to mox.conf for existing
installs, in field HostTLSRPT. it is automatically configured by quickstart for
new installs. with a HostTLSRPT config, the "dns records" and "dns check" admin
pages now suggest the per-host TLSRPT record. by creating that record, you're
requesting TLS reports about your MX host.
gathering all the TLS/policy results is somewhat tricky. the tentacles go
throughout the code. the positive result is that the TLS/policy-related code
had to be cleaned up a bit. for example, the smtpclient TLS modes now reflect
reality better, with independent settings about whether PKIX and/or DANE
verification has to be done, and/or whether verification errors have to be
ignored (e.g. for tls-required: no header). also, cached mtasts policies of
mode "none" are now cleaned up once the MTA-STS DNS record goes away.
in smtpserver, we store dmarc evaluations (under the right conditions).
in dmarcdb, we periodically (hourly) send dmarc reports if there are
evaluations. for failed deliveries, we deliver the dsn quietly to a submailbox
of the postmaster mailbox.
this is on by default, but can be disabled in mox.conf.
people will either paste the records in their zone file. in that case, the
records will inherit "IN" from earlier records, and there will always be one
record. if anyone uses a different class, their smart enough to know they need
to add IN manually.
plenty of people will add their records through some clunky web interface of
their dns operator. they probably won't even have the choice to set the class,
it'll always be IN.
because with the name you would expect an account name.
and the email-resolving behaviour is surprising: with wildcard addresses you
can use any address, including a typo. you would change the password of the
address with the wildcard, without any warning. accounts are more precise and
less error-prone.
for issue #68 by x8x
we only compress if applicable (content-type indicates likely compressible),
client supports it, response doesn't already have a content-encoding).
for internal handlers, we always enable compression. for reverse proxied and
static files, compression must be enabled per handler.
for internal & reverse proxy handlers, we do streaming compression at
"bestspeed" quality (probably level 1).
for static files, we have a cache based on mtime with fixed max size, where we
evict based on least recently used. we compress with the default level (more
cpu, better ratio).
this is based on @bobobo1618's PR #50. bobobo1618 had the right idea, i tried
including an "is forwarded email" configuration option but that indeed became
too tightly coupled. the "is forwarded" option is still planned, but it is
separate from the "accept rejects to mailbox" config option, because one could
still want to push back on forwarded spam messages.
we do an actual accept, delivering to a configured mailbox, instead of storing
to the rejects mailbox where messages can automatically be removed from. one
of the goals of mox is not pretend to accept email while actually junking it.
users can still configure delivery to a junk folder (as was already possible),
but aren't deleted automatically. there is still an X-Mox-Reason header in the
message, and a log line about accepting the reject, but otherwise it is
registered and treated as an (smtp) accept.
the ruleset mailbox is still required to keep that explicit. users can specify
Inbox again.
hope this is good enough for PR #50, otherwise we'll change it.
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
this doesn't really test the output of the ctl commands, just that they succeed
without error. better than nothing...
testing found two small bugs, that are not an issue in practice:
1. we were ack'ing streamed data from the other side of the ctl connection
before having read it. when there is no buffer space on the connection (always
the case for net.Pipe) that would cause a deadlock. only actually happened
during the new tests.
2. the generated dkim keys are relatively to the directory of the dynamic
config file. mox looked it up relative to the directory of the _static_ config
file at startup. this directory is typicaly the same. users would have noticed
if they had triggered this.
we could make more types of delays configurable. the current approach isn't
great, as it results in an a default value of "0s" in the config file, while
the actual default is 15s (which is documented just above, but still).
the mailbox select/examine responses now return all flags used in a mailbox in
the FLAGS response. and indicate in the PERMANENTFLAGS response that clients
can set new keywords. we store these values on the new Message.Keywords field.
system/well-known flags are still in Message.Flags, so we're recognizing those
and handling them separately.
the imap store command handles the new flags. as does the append command, and
the search command.
we store keywords in a mailbox when a message in that mailbox gets the keyword.
we don't automatically remove the keywords from a mailbox. there is currently
no way at all to remove a keyword from a mailbox.
the import commands now handle non-system/well-known keywords too, when
importing from mbox/maildir.
jmap requires keyword support, so best to get it out of the way now.
the default transport is still just "direct delivery", where we connect to the
destination domain's MX servers.
other transports are:
- regular smtp without authentication, this is relaying to a smarthost.
- submission with authentication, e.g. to a third party email sending service.
- direct delivery, but with with connections going through a socks proxy. this
can be helpful if your ip is blocked, you need to get email out, and you have
another IP that isn't blocked.
keep in mind that for all of the above, appropriate SPF/DKIM settings have to
be configured. the "dnscheck" for a domain does a check for any SOCKS IP in the
SPF record. SPF for smtp/submission (ranges? includes?) and any DKIM
requirements cannot really be checked.
which transport is used can be configured through routes. routes can be set on
an account, a domain, or globally. the routes are evaluated in that order, with
the first match selecting the transport. these routes are evaluated for each
delivery attempt. common selection criteria are recipient domain and sender
domain, but also which delivery attempt this is. you could configured mox to
attempt sending through a 3rd party from the 4th attempt onwards.
routes and transports are optional. if no route matches, or an empty/zero
transport is selected, normal direct delivery is done.
we could already "submit" emails with 3rd party accounts with "sendmail". but
we now support more SASL authentication mechanisms with SMTP (not only PLAIN,
but also SCRAM-SHA-256, SCRAM-SHA-1 and CRAM-MD5), which sendmail now also
supports. sendmail will use the most secure mechanism supported by the server,
or the explicitly configured mechanism.
for issue #36 by dmikushin. also based on earlier discussion on hackernews.
with tls with acme (with pebble, a small acme server for testing), and with
pregenerated keys/certs.
the two mox instances are configured on their own domain. we launch a separate
test container that connects to the first, submits a message for delivery to
the second. we check if the message is delivered with an imap connection and
the idle command.
if we recognize that a request for a WebForward is trying to turn the
connection into a websocket, we forward it to the backend and check if the
backend understands the websocket request. if so, we pass back the upgrade
response and get out of the way, copying bytes between the two. we do log the
total amount of bytes read from the client and written to the client. if the
backend doesn't respond with a websocke response, or an invalid one, we respond
with a regular non-websocket response. and we log details about the failed
connection, should help with debugging and any bug reports.
we don't try to parse the websocket framing, that's between the client and the
backend. we could try to parse it, in part to protect the backend from bad
frames, but it would be a lot of work and could be brittle in the face of
extensions.
this doesn't yet handle websocket connections when a http proxy is configured.
we'll implement it when someone needs it. we do recognize it and fail the
connection.
for issue #25
dmarc verifiers will only accept a dkim signature if the domain the message From
header matches the domain of the signature (i.e. it is "aligned").
i hadn't run into this before and when testing because thunderbird sets the
"smtp mail from" to the same address as a custom "message from" header. but
other mail clients don't have to do that.
should fix issue #22
by specifying a "destination" in an account that is just "@" followed by the
domain, e.g. "@example.org". messages are only delivered to the catchall
address when no regular destination matches (taking the per-domain
catchall-separator and case-sensisitivity into account).
for issue #18
by default 1000 messages per day, and to max 200 first-time receivers.
i don't think a person would reach those limits. a compromised account abused
by spammers could easily reach that limit. this prevents further damage.
the error message you will get is quite clear, pointing to the configuration
parameter that should be changed.
current behaviour isn't intuitive. it's not great to have to attempt parsing
the strings as both localpart and email address. so we deprecate the
localpart-only behaviour. when we load the config file, and it has
localpart-only Destinations keys, we'll change them to full addresses in
memory. when an admin causes a write of domains.conf, it'll automatically be
fixed. we log an error with a deprecated notice for each localpart-only
destinations key.
sometime in the future, we can remove the old localpart-only destination
support. will be in the release notes then.
also start keeping track of update notes that need to make it in the release
notes of the next release.
for issue #18
you can already get most http to https redirects through DontRedirectPlainHTTP
in WebHandler, but that needs handlers for all paths.
now you can just set up a redirect for a domain and all its path to baseurl
https://domain (leaving other webdirect fields empty). when the request comes
in with plain http, the redirect to https is done. that next request will also
evaluate the same redirect rule. but it will not cause a match because it would
redirect to the same scheme,host,path. so next webhandlers get a chance to
serve.
also clarify in webhandlers docs that also account & admin built-in handlers
run first.
related to issue #16
- make builtin http handlers serve on specific domains, such as for mta-sts, so
e.g. /.well-known/mta-sts.txt isn't served on all domains.
- add logging of a few more fields in access logging.
- small tweaks/bug fixes in webserver request handling.
- add config option for redirecting entire domains to another (common enough).
- split httpserver metric into two: one for duration until writing header (i.e.
performance of server), another for duration until full response is sent to
client (i.e. performance as perceived by users).
- add admin ui, a new page for managing the configs. after making changes
and hitting "save", the changes take effect immediately. the page itself
doesn't look very well-designed (many input fields, makes it look messy). i
have an idea to improve it (explained in admin.html as todo) by making the
layout look just like the config file. not urgent though.
i've already changed my websites/webapps over.
the idea of adding a webserver is to take away a (the) reason for folks to want
to complicate their mox setup by running an other webserver on the same machine.
i think the current webserver implementation can already serve most common use
cases. with a few more tweaks (feedback needed!) we should be able to get to 95%
of the use cases. the reverse proxy can take care of the remaining 5%.
nevertheless, a next step is still to change the quickstart to make it easier
for folks to run with an existing webserver, with existing tls certs/keys.
that's how this relates to issue #5.
makes it easier to run on bsd's, where you cannot (easily?) let non-root users
bind to ports <1024. starting as root also paves the way for future improvements
with privilege separation.
unfortunately, this requires changes to how you start mox. though mox will help
by automatically fix up dir/file permissions/ownership.
if you start mox from the systemd unit file, you should update it so it starts
as root and adds a few additional capabilities:
# first update the mox binary, then, as root:
./mox config printservice >mox.service
systemctl daemon-reload
systemctl restart mox
journalctl -f -u mox &
# you should see mox start up, with messages about fixing permissions on dirs/files.
if you used the recommended config/ and data/ directory, in a directory just for
mox, and with the mox user called "mox", this should be enough.
if you don't want mox to modify dir/file permissions, set "NoFixPermissions:
true" in mox.conf.
if you named the mox user something else than mox, e.g. "_mox", add "User: _mox"
to mox.conf.
if you created a shared service user as originally suggested, you may want to
get rid of that as it is no longer useful and may get in the way. e.g. if you
had /home/service/mox with a "service" user, that service user can no longer
access any files: only mox and root can.
this also adds scripts for building mox docker images for alpine-supported
platforms.
the "restart" subcommand has been removed. it wasn't all that useful and got in
the way.
and another change: when adding a domain while mtasts isn't enabled, don't add
the per-domain mtasts config, as it would cause failure to add the domain.
based on report from setting up mox on openbsd from mteege.
and based on issue #3. thanks for the feedback!
so users can easily take their email out of somewhere else, and import it into mox.
this goes a little way to give feedback as the import progresses: upload
progress is shown (surprisingly, browsers aren't doing this...), imported
mailboxes/messages are counted (batched) and import issues/warnings are
displayed, all sent over an SSE connection. an import token is stored in
sessionstorage. if you reload the page (e.g. after a connection error), the
browser will reconnect to the running import and show its progress again. and
you can just abort the import before it is finished and committed, and nothing
will have changed.
this also imports flags/keywords from mbox files.