mirror of
https://github.com/mjl-/mox.git
synced 2025-01-27 06:55:54 +03:00
update to latest bstore, with a bugfix for queries with multiple orders that were partially handled by an index
causing returned order to be incorrect. was triggered by new code i'm working on.
This commit is contained in:
parent
54b24931c9
commit
d34dd8aae6
10 changed files with 235 additions and 135 deletions
2
go.mod
2
go.mod
|
@ -5,7 +5,7 @@ go 1.21
|
|||
require (
|
||||
github.com/mjl-/adns v0.0.0-20240309142737-2a1aacf346dc
|
||||
github.com/mjl-/autocert v0.0.0-20231214125928-31b7400acb05
|
||||
github.com/mjl-/bstore v0.0.4
|
||||
github.com/mjl-/bstore v0.0.5
|
||||
github.com/mjl-/sconf v0.0.6
|
||||
github.com/mjl-/sherpa v0.6.7
|
||||
github.com/mjl-/sherpadoc v0.0.12
|
||||
|
|
4
go.sum
4
go.sum
|
@ -28,8 +28,8 @@ github.com/mjl-/adns v0.0.0-20240309142737-2a1aacf346dc h1:ghTx3KsrO0hSJW0bCFCGw
|
|||
github.com/mjl-/adns v0.0.0-20240309142737-2a1aacf346dc/go.mod h1:v47qUMJnipnmDTRGaHwpCwzE6oypa5K33mUvBfzZBn8=
|
||||
github.com/mjl-/autocert v0.0.0-20231214125928-31b7400acb05 h1:s6ay4bh4tmpPLdxjyeWG45mcwHfEluBMuGPkqxHWUJ4=
|
||||
github.com/mjl-/autocert v0.0.0-20231214125928-31b7400acb05/go.mod h1:taMFU86abMxKLPV4Bynhv8enbYmS67b8LG80qZv2Qus=
|
||||
github.com/mjl-/bstore v0.0.4 h1:q+R1oAr8+E9yf9q+zxkVjQ18VFqD/E9KmGVoe4FIOBA=
|
||||
github.com/mjl-/bstore v0.0.4/go.mod h1:/cD25FNBaDfvL/plFRxI3Ba3E+wcB0XVOS8nJDqndg0=
|
||||
github.com/mjl-/bstore v0.0.5 h1:Cx+LWEBnFBsqSxZNMxeVujkfc0kG10lUJaAU4vWSRHo=
|
||||
github.com/mjl-/bstore v0.0.5/go.mod h1:/cD25FNBaDfvL/plFRxI3Ba3E+wcB0XVOS8nJDqndg0=
|
||||
github.com/mjl-/sconf v0.0.6 h1:5Dt58488ZOoVx680zgK2K3vUrokLsp5mXDUACrJlrUc=
|
||||
github.com/mjl-/sconf v0.0.6/go.mod h1:uF8OdWtLT8La3i4ln176i1pB0ps9pXGCaABEU55ZkE0=
|
||||
github.com/mjl-/sherpa v0.6.7 h1:C5F8XQdV5nCuS4fvB+ye/ziUQrajEhOoj/t2w5T14BY=
|
||||
|
|
57
vendor/github.com/mjl-/bstore/README.md
generated
vendored
57
vendor/github.com/mjl-/bstore/README.md
generated
vendored
|
@ -1,55 +1,12 @@
|
|||
Bstore is a database library for storing and quering Go values.
|
||||
Bstore is an in-process database with serializable transactions supporting
|
||||
referential/unique/nonzero constraints, (multikey) indices, automatic schema
|
||||
management based on Go types and struct tags, and a query API.
|
||||
|
||||
Bstore is designed as a small, pure Go library that still provides most of
|
||||
the common data consistency requirements for modest database use cases. Bstore
|
||||
aims to make basic use of cgo-based libraries, such as sqlite, unnecessary.
|
||||
Documentation:
|
||||
|
||||
See https://pkg.go.dev/github.com/mjl-/bstore for features, examples and full
|
||||
documentation.
|
||||
https://pkg.go.dev/github.com/mjl-/bstore
|
||||
|
||||
MIT-licensed
|
||||
|
||||
|
||||
# FAQ - Frequently Asked Questions
|
||||
|
||||
## Is bstore an ORM?
|
||||
|
||||
No. The API for bstore may look like an ORM. But instead of mapping bstore
|
||||
"queries" (function calls) to an SQL query string, bstore executes them
|
||||
directly without converting to a query language, storing the data itself.
|
||||
|
||||
## How does bstore store its data?
|
||||
|
||||
A bstore database is a single-file BoltDB database. BoltDB provides ACID
|
||||
properties. Bstore uses a BoltDB "bucket" (key/value store) for each Go type
|
||||
stored, with multiple subbuckets: one for type definitions, one for the actual
|
||||
data, and one bucket per index. BoltDB stores data in a B+tree. See format.md
|
||||
for details.
|
||||
|
||||
## How does bstore compare to sqlite?
|
||||
|
||||
Sqlite is a great library, but Go applications that require cgo are hard to
|
||||
cross-compile. With bstore, cross-compiling to most Go-supported platforms
|
||||
stays trivial (though not plan9, unfortunately). Although bstore is much more
|
||||
limited in so many aspects than sqlite, bstore also offers some advantages as
|
||||
well. Some points of comparison:
|
||||
|
||||
- Cross-compilation and reproducibility: Trivial with bstore due to pure Go,
|
||||
much harder with sqlite because of cgo.
|
||||
- Code complexity: low with bstore (7k lines including comments/docs), high
|
||||
with sqlite.
|
||||
- Query language: mostly-type-checked function calls in bstore, free-form query
|
||||
strings only checked at runtime with sqlite.
|
||||
- Functionality: very limited with bstore, much more full-featured with sqlite.
|
||||
- Schema management: mostly automatic based on Go type definitions in bstore,
|
||||
manual with ALTER statements in sqlite.
|
||||
- Types and packing/parsing: automatic/transparent in bstore based on Go types
|
||||
(including maps, slices, structs and custom MarshalBinary encoding), versus
|
||||
manual scanning and parameter passing with sqlite with limited set of SQL
|
||||
types.
|
||||
- Performance: low to good performance with bstore, high performance with
|
||||
sqlite.
|
||||
- Database files: single file with bstore, several files with sqlite (due to
|
||||
WAL or journal files).
|
||||
- Test coverage: decent coverage but limited real-world for bstore, versus
|
||||
extremely thoroughly tested and with enormous real-world use.
|
||||
Written by Mechiel Lukkien, mechiel@ueber.net. Feedback/bug reports/patches
|
||||
welcome.
|
||||
|
|
81
vendor/github.com/mjl-/bstore/doc.go
generated
vendored
81
vendor/github.com/mjl-/bstore/doc.go
generated
vendored
|
@ -1,16 +1,18 @@
|
|||
/*
|
||||
Package bstore is a database library for storing and querying Go values.
|
||||
Package bstore is an in-process database with serializable transactions
|
||||
supporting referential/unique/nonzero constraints, (multikey) indices,
|
||||
automatic schema management based on Go types and struct tags, and a query API.
|
||||
|
||||
Bstore is designed as a small, pure Go library that still provides most of
|
||||
the common data consistency requirements for modest database use cases. Bstore
|
||||
aims to make basic use of cgo-based libraries, such as sqlite, unnecessary.
|
||||
Bstore a small, pure Go library that still provides most of the common data
|
||||
consistency requirements for modest database use cases. Bstore aims to make
|
||||
basic use of cgo-based libraries, such as sqlite, unnecessary.
|
||||
|
||||
Bstore implements autoincrementing primary keys, indices, default values,
|
||||
enforcement of nonzero, unique and referential integrity constraints, automatic
|
||||
schema updates and a query API for combining filters/sorting/limits. Queries
|
||||
are planned and executed using indices for fast execution where possible.
|
||||
Bstore is designed with the Go type system in mind: you typically don't have to
|
||||
write any (un)marshal code for your types.
|
||||
are planned and executed using indices for speed where possible. Bstore works
|
||||
with Go types: you typically don't have to write any (un)marshal code for your
|
||||
types. Bstore is not an ORM, it plans and executes queries itself.
|
||||
|
||||
# Field types
|
||||
|
||||
|
@ -142,37 +144,37 @@ Conversions that are not currently allowed, but may be in the future:
|
|||
- Types of primary keys cannot be changed, also not from one integer type to a
|
||||
wider integer type of same signedness.
|
||||
|
||||
# BoltDB and storage
|
||||
# Bolt and storage
|
||||
|
||||
BoltDB is used as underlying storage. BoltDB stores key/values in a single
|
||||
file, in multiple/nested buckets (namespaces) in a B+tree and provides ACID
|
||||
transactions. Either a single write transaction or multiple read-only
|
||||
transactions can be active at a time. Do not start a blocking read-only
|
||||
transaction while holding a writable transaction or vice versa, this will cause
|
||||
deadlock.
|
||||
Bolt is used as underlying storage through the bbolt library. Bolt stores
|
||||
key/values in a single file, allowing multiple/nested buckets (namespaces) in a
|
||||
B+tree and provides ACID serializable transactions. A single write transaction
|
||||
can be active at a time, and one or more read-only transactions. Do not start
|
||||
a blocking read-only transaction in a goroutine while holding a writable
|
||||
transaction or vice versa, this can cause deadlock.
|
||||
|
||||
BoltDB returns Go values that are memory mapped to the database file. This
|
||||
means BoltDB/bstore database files cannot be transferred between machines with
|
||||
different endianness. BoltDB uses explicit widths for its types, so files can
|
||||
Bolt returns Go values that are memory mapped to the database file. This means
|
||||
Bolt/bstore database files cannot be transferred between machines with
|
||||
different endianness. Bolt uses explicit widths for its types, so files can
|
||||
be transferred between 32bit and 64bit machines of same endianness. While
|
||||
BoltDB returns read-only memory mapped byte slices, bstore only ever returns
|
||||
Bolt returns read-only memory mapped byte slices, bstore only ever returns
|
||||
parsed/copied regular writable Go values that require no special programmer
|
||||
attention.
|
||||
|
||||
For each Go type opened for a database file, bstore ensures a BoltDB bucket
|
||||
For each Go type opened for a database file, bstore ensures a Bolt bucket
|
||||
exists with two subbuckets:
|
||||
|
||||
- "types", with type descriptions of the stored records. Each time the database
|
||||
file is opened with a modified Go type (add/removed/modified
|
||||
field/type/bstore struct tag), a new type description is automatically added,
|
||||
identified by sequence number.
|
||||
- "records", containing all data, with the type's primary key as BoltDB key,
|
||||
- "records", containing all data, with the type's primary key as Bolt key,
|
||||
and the encoded remaining fields as value. The encoding starts with a
|
||||
reference to a type description.
|
||||
|
||||
For each index, another subbucket is created, its name starting with "index.".
|
||||
The stored keys consist of the index fields followed by the primary key, and an
|
||||
empty value.
|
||||
empty value. See format.md for details.
|
||||
|
||||
# Limitations
|
||||
|
||||
|
@ -189,12 +191,12 @@ equivalent of a nil pointer.
|
|||
The first field of a stored struct is always the primary key. Autoincrement is
|
||||
only available for the primary key.
|
||||
|
||||
BoltDB opens the database file with a lock. Only one process can have the
|
||||
Bolt opens the database file with a lock. Only one process can have the
|
||||
database open at a time.
|
||||
|
||||
An index stored on disk in BoltDB can consume more disk space than other
|
||||
An index stored on disk in Bolt can consume more disk space than other
|
||||
database systems would: For each record, the indexed field(s) and primary key
|
||||
are stored in full. Because bstore uses BoltDB as key/value store, and doesn't
|
||||
are stored in full. Because bstore uses Bolt as key/value store, and doesn't
|
||||
manage disk pages itself, it cannot as efficiently pack an index page with many
|
||||
records.
|
||||
|
||||
|
@ -202,5 +204,36 @@ Interface values cannot be stored. This would require storing the type along
|
|||
with the value. Instead, use a type that is a BinaryMarshaler.
|
||||
|
||||
Values of builtin type "complex" cannot be stored.
|
||||
|
||||
Bstore inherits limitations from Bolt, see
|
||||
https://pkg.go.dev/go.etcd.io/bbolt#readme-caveats-amp-limitations.
|
||||
|
||||
# Comparison with sqlite
|
||||
|
||||
Sqlite is a great library, but Go applications that require cgo are hard to
|
||||
cross-compile. With bstore, cross-compiling to most Go-supported platforms
|
||||
stays trivial (though not plan9, unfortunately). Although bstore is much more
|
||||
limited in so many aspects than sqlite, bstore also offers some advantages as
|
||||
well. Some points of comparison:
|
||||
|
||||
- Cross-compilation and reproducibility: Trivial with bstore due to pure Go,
|
||||
much harder with sqlite because of cgo.
|
||||
- Code complexity: low with bstore (7k lines including comments/docs), high
|
||||
with sqlite.
|
||||
- Query language: mostly-type-checked function calls in bstore, free-form query
|
||||
strings only checked at runtime with sqlite.
|
||||
- Functionality: very limited with bstore, much more full-featured with sqlite.
|
||||
- Schema management: mostly automatic based on Go type definitions in bstore,
|
||||
manual with ALTER statements in sqlite.
|
||||
- Types and packing/parsing: automatic/transparent in bstore based on Go types
|
||||
(including maps, slices, structs and custom MarshalBinary encoding), versus
|
||||
manual scanning and parameter passing with sqlite with limited set of SQL
|
||||
types.
|
||||
- Performance: low to good performance with bstore, high performance with
|
||||
sqlite.
|
||||
- Database files: single file with bstore, several files with sqlite (due to
|
||||
WAL or journal files).
|
||||
- Test coverage: decent coverage but limited real-world for bstore, versus
|
||||
extremely thoroughly tested and with enormous real-world use.
|
||||
*/
|
||||
package bstore
|
||||
|
|
105
vendor/github.com/mjl-/bstore/exec.go
generated
vendored
105
vendor/github.com/mjl-/bstore/exec.go
generated
vendored
|
@ -21,14 +21,31 @@ type exec[T any] struct {
|
|||
// See plan.keys. We remove items from the list when we looked one up, but we keep the slice non-nil.
|
||||
keys [][]byte
|
||||
|
||||
// If -1, no limit is set. This is different from Query where 0 means
|
||||
// no limit. We count back and 0 means the end.
|
||||
// If non-empty, serve nextKey requests from here. Used when we need to do
|
||||
// in-memory sort. After reading from here, and limit isn't reached yet, we may do
|
||||
// another fill & sort of data to serve from, for orderings partially from an
|
||||
// index. When filling data, limit (below) is accounted for, so all elements can be
|
||||
// returned to caller.
|
||||
data []pair[T]
|
||||
|
||||
// If -1, no limit is set. This is different from Query where 0 means no limit. We
|
||||
// count back and 0 means the end. Also set from -1 to 0 when end of execution is
|
||||
// reached.
|
||||
limit int
|
||||
|
||||
data []pair[T] // If not nil (even if empty), serve nextKey requests from here.
|
||||
ib *bolt.Bucket
|
||||
rb *bolt.Bucket
|
||||
forward func() (bk, bv []byte) // Once we start scanning, we prepare forward to next/prev to the following value.
|
||||
// Index and record buckets loaded when first needed.
|
||||
ib *bolt.Bucket
|
||||
rb *bolt.Bucket
|
||||
|
||||
// Of last element in data. For finding end of group through prefix-match during
|
||||
// partial index ordering for remaining in-memory sort.
|
||||
lastik []byte
|
||||
|
||||
// If not nil, row that was scanned previously, to use instead of calling forward.
|
||||
stowedbk, stowedbv []byte
|
||||
|
||||
// Once we start scanning, we prepare forward to next/prev to the following value.
|
||||
forward func() (bk, bv []byte)
|
||||
}
|
||||
|
||||
// exec creates a new execution for the plan, registering statistics.
|
||||
|
@ -54,7 +71,7 @@ func (p *plan[T]) exec(q *Query[T]) *exec[T] {
|
|||
if len(p.orders) > 0 {
|
||||
q.stats.Sort++
|
||||
}
|
||||
q.stats.LastOrdered = p.start != nil || p.stop != nil
|
||||
q.stats.LastOrdered = p.start != nil || p.stop != nil || p.norderidxuse > 0
|
||||
q.stats.LastAsc = !p.desc
|
||||
|
||||
limit := -1
|
||||
|
@ -107,12 +124,9 @@ func (e *exec[T]) nextKey(write, value bool) ([]byte, T, error) {
|
|||
return nil, zero, q.err
|
||||
}
|
||||
|
||||
// We collected & sorted data previously. Return from it until done.
|
||||
// Limit was already applied.
|
||||
if e.data != nil {
|
||||
if len(e.data) == 0 {
|
||||
return nil, zero, ErrAbsent
|
||||
}
|
||||
// We collected & sorted data previously.
|
||||
// Limit was already applied/updated, so we can serve these without checking.
|
||||
if len(e.data) > 0 {
|
||||
p := e.data[0]
|
||||
e.data = e.data[1:]
|
||||
var v T
|
||||
|
@ -127,6 +141,7 @@ func (e *exec[T]) nextKey(write, value bool) ([]byte, T, error) {
|
|||
return p.bk, v, nil
|
||||
}
|
||||
|
||||
// Limit is 0 when we hit the limit or at end of processing the execution.
|
||||
if e.limit == 0 {
|
||||
return nil, zero, ErrAbsent
|
||||
}
|
||||
|
@ -153,10 +168,8 @@ func (e *exec[T]) nextKey(write, value bool) ([]byte, T, error) {
|
|||
// List of IDs (records) or full unique index equality match.
|
||||
// We can get the records/index value by a simple "get" on the key.
|
||||
if e.keys != nil {
|
||||
// If we need to sort, we collect all elements and prevent further querying.
|
||||
collect := len(e.plan.orders) > 0
|
||||
if collect {
|
||||
e.data = []pair[T]{} // Must be non-nil to get into e.data branch!
|
||||
}
|
||||
for i, xk := range e.keys {
|
||||
var bk, bv []byte
|
||||
|
||||
|
@ -217,6 +230,7 @@ func (e *exec[T]) nextKey(write, value bool) ([]byte, T, error) {
|
|||
return bk, v, nil
|
||||
}
|
||||
if !collect {
|
||||
e.limit = 0
|
||||
return nil, zero, ErrAbsent
|
||||
}
|
||||
// Restart, now with data.
|
||||
|
@ -225,14 +239,13 @@ func (e *exec[T]) nextKey(write, value bool) ([]byte, T, error) {
|
|||
if e.limit > 0 && len(e.data) > e.limit {
|
||||
e.data = e.data[:e.limit]
|
||||
}
|
||||
e.limit = 0
|
||||
return q.nextKey(write, value)
|
||||
}
|
||||
|
||||
// We are going to do a scan, either over the records or an index. We may have a start and stop key.
|
||||
// We are going to do a scan, either over the records or (a part of) an index. We
|
||||
// may have a start and stop key.
|
||||
collect := len(e.plan.orders) > 0
|
||||
if collect {
|
||||
e.data = []pair[T]{} // Must be non-nil to get into e.data branch on function restart.
|
||||
}
|
||||
// Every 1k keys we've seen, we'll check if the context has been canceled. If we
|
||||
// wouldn't do this, a query that doesn't return any matches won't get canceled
|
||||
// until it is finished.
|
||||
|
@ -304,6 +317,10 @@ func (e *exec[T]) nextKey(write, value bool) ([]byte, T, error) {
|
|||
}
|
||||
}
|
||||
}
|
||||
} else if e.stowedbk != nil {
|
||||
// Resume with previously seen key/value.
|
||||
xk, xv = e.stowedbk, e.stowedbv
|
||||
e.stowedbk, e.stowedbv = nil, nil
|
||||
} else {
|
||||
if e.plan.idx == nil {
|
||||
q.stats.Records.Cursor++
|
||||
|
@ -331,24 +348,37 @@ func (e *exec[T]) nextKey(write, value bool) ([]byte, T, error) {
|
|||
}
|
||||
|
||||
var pk, bv []byte
|
||||
ordersidxPartial := e.plan.norderidxuse > 0 && len(e.plan.orders) > 0
|
||||
var idxkeys [][]byte // Only set when we have partial ordering from index.
|
||||
if e.plan.idx == nil {
|
||||
pk = xk
|
||||
bv = xv
|
||||
} else {
|
||||
var err error
|
||||
pk, _, err = e.plan.idx.parseKey(xk, false)
|
||||
pk, idxkeys, err = e.plan.idx.parseKey(xk, ordersidxPartial, true)
|
||||
if err != nil {
|
||||
q.error(err)
|
||||
return nil, zero, err
|
||||
}
|
||||
}
|
||||
|
||||
// If we have a parial order from the index, and this new value has a different
|
||||
// index ordering key prefix than the last value, we stop collecting, sort the data we
|
||||
// have by the remaining ordering, return that data, and continue collecting in the
|
||||
// next round. We stow the new value so we don't have to revert the forward() from
|
||||
// earlier.
|
||||
if ordersidxPartial && len(e.data) > 0 && !prefixMatch(e.lastik, e.plan.norderidxuse, idxkeys, pk) {
|
||||
e.stowedbk, e.stowedbv = xk, xv
|
||||
break
|
||||
}
|
||||
|
||||
p := pair[T]{pk, bv, nil}
|
||||
if ok, err := e.checkFilter(&p); err != nil {
|
||||
return nil, zero, err
|
||||
} else if !ok {
|
||||
continue
|
||||
}
|
||||
|
||||
//log.Printf("have kv, %x %x", p.bk, p.bv)
|
||||
var v T
|
||||
var err error
|
||||
|
@ -361,6 +391,7 @@ func (e *exec[T]) nextKey(write, value bool) ([]byte, T, error) {
|
|||
}
|
||||
if collect {
|
||||
e.data = append(e.data, p)
|
||||
e.lastik = xk
|
||||
continue
|
||||
}
|
||||
if e.limit > 0 {
|
||||
|
@ -368,17 +399,39 @@ func (e *exec[T]) nextKey(write, value bool) ([]byte, T, error) {
|
|||
}
|
||||
return p.bk, v, nil
|
||||
}
|
||||
if !collect {
|
||||
if !collect || len(e.data) == 0 {
|
||||
e.limit = 0
|
||||
return nil, zero, ErrAbsent
|
||||
}
|
||||
// Restart, now with data.
|
||||
e.sort()
|
||||
if e.limit > 0 && len(e.data) > e.limit {
|
||||
e.data = e.data[:e.limit]
|
||||
if e.limit > 0 {
|
||||
if len(e.data) > e.limit {
|
||||
e.data = e.data[:e.limit]
|
||||
}
|
||||
e.limit -= len(e.data)
|
||||
}
|
||||
return e.nextKey(write, value)
|
||||
}
|
||||
|
||||
// prefixMatch returns whether ik (index key) starts with the bytes from n elements
|
||||
// from field keys kl and primary key pk.
|
||||
func prefixMatch(ik []byte, n int, kl [][]byte, pk []byte) bool {
|
||||
for i := 0; i < n; i++ {
|
||||
var k []byte
|
||||
if i < len(kl) {
|
||||
k = kl[i]
|
||||
} else {
|
||||
k = pk
|
||||
}
|
||||
if !bytes.HasPrefix(ik, k) {
|
||||
return false
|
||||
}
|
||||
ik = ik[len(k):]
|
||||
}
|
||||
return true
|
||||
}
|
||||
|
||||
// checkFilter checks against the filters for the plan.
|
||||
func (e *exec[T]) checkFilter(p *pair[T]) (rok bool, rerr error) {
|
||||
q := e.q
|
||||
|
@ -574,6 +627,10 @@ func compare(k kind, a, b reflect.Value) int {
|
|||
}
|
||||
|
||||
func (e *exec[T]) sort() {
|
||||
if len(e.data) <= 1 {
|
||||
return
|
||||
}
|
||||
|
||||
// todo: We should check whether we actually need to load values. We're
|
||||
// always loading it for the time being because SortStableFunc isn't
|
||||
// going to give us a *pair (even though it could because of the slice)
|
||||
|
|
7
vendor/github.com/mjl-/bstore/export.go
generated
vendored
7
vendor/github.com/mjl-/bstore/export.go
generated
vendored
|
@ -329,8 +329,7 @@ func (ft fieldType) parseValue(p *parser) any {
|
|||
if fm.Nonzero(i) {
|
||||
l = append(l, ft.ListElem.parseValue(p))
|
||||
} else {
|
||||
// Always add non-zero elements, or we would
|
||||
// change the number of elements in a list.
|
||||
// Always add zero elements, or we would change the number of elements in a list.
|
||||
l = append(l, ft.ListElem.zeroExportValue())
|
||||
}
|
||||
}
|
||||
|
@ -343,8 +342,8 @@ func (ft fieldType) parseValue(p *parser) any {
|
|||
if fm.Nonzero(i) {
|
||||
l[i] = ft.ListElem.parseValue(p)
|
||||
} else {
|
||||
// Always add non-zero elements, or we would
|
||||
// change the number of elements in a list.
|
||||
// Always add zero elements, or we would change the number of elements in the
|
||||
// array.
|
||||
l[i] = ft.ListElem.zeroExportValue()
|
||||
}
|
||||
}
|
||||
|
|
9
vendor/github.com/mjl-/bstore/keys.go
generated
vendored
9
vendor/github.com/mjl-/bstore/keys.go
generated
vendored
|
@ -132,7 +132,8 @@ func parsePK(rv reflect.Value, bk []byte) error {
|
|||
// parseKey parses the PK (last element) of an index key.
|
||||
// If all is set, also gathers the values before and returns them in the second
|
||||
// parameter.
|
||||
func (idx *index) parseKey(buf []byte, all bool) ([]byte, [][]byte, error) {
|
||||
// If witnull is set, string values will get their ending \0 included.
|
||||
func (idx *index) parseKey(buf []byte, all bool, withnull bool) ([]byte, [][]byte, error) {
|
||||
var err error
|
||||
var keys [][]byte
|
||||
take := func(n int) {
|
||||
|
@ -160,7 +161,11 @@ fields:
|
|||
for i, b := range buf {
|
||||
if b == 0 {
|
||||
if all {
|
||||
keys = append(keys, buf[:i])
|
||||
o := i
|
||||
if withnull {
|
||||
o++
|
||||
}
|
||||
keys = append(keys, buf[:o])
|
||||
}
|
||||
buf = buf[i+1:]
|
||||
continue fields
|
||||
|
|
101
vendor/github.com/mjl-/bstore/plan.go
generated
vendored
101
vendor/github.com/mjl-/bstore/plan.go
generated
vendored
|
@ -8,7 +8,6 @@ import (
|
|||
)
|
||||
|
||||
// todo: cache query plans? perhaps explicitly through something like a prepared statement. the current plan includes values in keys,start,stop, which would need to be calculated for each execution. should benchmark time spent in planning first.
|
||||
// todo optimize: handle multiple sorts with multikey indices if they match
|
||||
// todo optimize: combine multiple filter (not)in/equals calls for same field
|
||||
// todo optimize: efficiently pack booleans in an index (eg for Message.Flags), and use it to query.
|
||||
// todo optimize: do multiple range scans if necessary when we can use an index for an equal check with multiple values.
|
||||
|
@ -31,10 +30,15 @@ type plan[T any] struct {
|
|||
// index. Required non-nil for unique.
|
||||
keys [][]byte
|
||||
|
||||
desc bool // Direction of the range scan.
|
||||
start []byte // First key to scan. Filters below may still apply. If desc, this value is > than stop (if it is set). If nil, we begin ranging at the first or last (for desc) key.
|
||||
stop []byte // Last key to scan. Can be nil independently of start.
|
||||
startInclusive bool // If the start and stop values are inclusive or exclusive.
|
||||
desc bool // Direction of the range scan.
|
||||
// First key to scan. Filters below may still apply. If desc, this value is > than
|
||||
// stop (if it is set). If nil, we begin ranging at the first or last (for desc)
|
||||
// key.
|
||||
start []byte
|
||||
// Last key to scan. Can be nil independently of start.
|
||||
stop []byte
|
||||
// If the start and stop values are inclusive or exclusive.
|
||||
startInclusive bool
|
||||
stopInclusive bool
|
||||
|
||||
// Filter we need to apply after retrieving the record. If all original filters
|
||||
|
@ -42,9 +46,13 @@ type plan[T any] struct {
|
|||
// empty.
|
||||
filters []filter[T]
|
||||
|
||||
// Orders we need to apply after first retrieving all records. As with
|
||||
// filters, if a range scan takes care of an ordering from the query,
|
||||
// this field is empty.
|
||||
// Number of fields from index used to group results before applying in-memory
|
||||
// ordering with "orders" below.
|
||||
norderidxuse int
|
||||
|
||||
// Orders we need to apply after first retrieving all records with equal values for
|
||||
// first norderidxuse fields. As with filters, if a range scan takes care of all
|
||||
// orderings from the query, this field is empty.
|
||||
orders []order
|
||||
}
|
||||
|
||||
|
@ -177,7 +185,7 @@ indices:
|
|||
var p *plan[T]
|
||||
var nexact int
|
||||
var nrange int
|
||||
var ordered bool
|
||||
var norder int
|
||||
|
||||
evaluatePKOrIndex := func(idx *index) error {
|
||||
var isPK bool
|
||||
|
@ -205,25 +213,40 @@ indices:
|
|||
}
|
||||
|
||||
var nex = 0
|
||||
// log.Printf("idx %v", idx)
|
||||
// log.Printf("evaluating idx %#v", idx)
|
||||
var skipFilters []*filter[T]
|
||||
for _, f := range idx.Fields {
|
||||
if equals[f.Name] != nil && f.Type.Kind != kindSlice {
|
||||
skipFilters = append(skipFilters, equals[f.Name])
|
||||
nex++
|
||||
} else if inslices[f.Name] != nil && f.Type.Kind == kindSlice {
|
||||
skipFilters = append(skipFilters, inslices[f.Name])
|
||||
nex++
|
||||
} else {
|
||||
break
|
||||
}
|
||||
nex++
|
||||
}
|
||||
|
||||
// See if the next field can be used for compare.
|
||||
var gx, lx *filterCompare[T]
|
||||
var nrng int
|
||||
var order *order
|
||||
// For ordering, skip leading filters we already match on exactly.
|
||||
orders := q.xorders
|
||||
trim := 0
|
||||
TrimOrders:
|
||||
for _, o := range orders {
|
||||
for _, f := range idx.Fields[:nex] {
|
||||
if o.field.Name == f.Name {
|
||||
trim++
|
||||
continue TrimOrders
|
||||
}
|
||||
}
|
||||
break
|
||||
}
|
||||
orders = orders[trim:]
|
||||
|
||||
// Fields from the index that we use for grouping before in-memory sorting.
|
||||
var norderidxuse int
|
||||
|
||||
// See if the next index field can be used for compare and ordering.
|
||||
var gx, lx *filterCompare[T]
|
||||
var nrng int // for nrange
|
||||
if nex < len(idx.Fields) {
|
||||
nf := idx.Fields[nex]
|
||||
for i := range q.xfilters {
|
||||
|
@ -250,22 +273,45 @@ indices:
|
|||
}
|
||||
}
|
||||
|
||||
// See if it can be used for ordering.
|
||||
// todo optimize: we could use multiple orders
|
||||
if len(orders) > 0 && orders[0].field.Name == nf.Name {
|
||||
order = &orders[0]
|
||||
orders = orders[1:]
|
||||
// We can use multiple orderings as long as the asc/desc direction stays the same.
|
||||
nord := 0
|
||||
for i, o := range orders {
|
||||
if nex+i < len(idx.Fields) && o.field.Name == idx.Fields[nex+i].Name && (nord == 0 || o.asc == orders[0].asc) {
|
||||
nord++
|
||||
continue
|
||||
}
|
||||
break
|
||||
}
|
||||
norderidxuse = nex + nord
|
||||
prevorders := orders
|
||||
orders = orders[nord:]
|
||||
|
||||
// The stored index key ends with the primary key, so if we're there, and the next
|
||||
// ordering key is the primary key, we use the index for it too.
|
||||
if norderidxuse == len(idx.Fields) && len(orders) > 0 && orders[0].field.Name == q.st.Current.Fields[0].Name && (nord == 0 || orders[0].asc == prevorders[nord-1].asc) {
|
||||
orders = orders[1:]
|
||||
norderidxuse++
|
||||
}
|
||||
} else if len(orders) > 0 && orders[0].field.Name == q.st.Current.Fields[0].Name {
|
||||
// We only had equals filters that used all of the index, but we're also sorting by
|
||||
// the primary key, so use the index for that too.
|
||||
orders = orders[1:]
|
||||
norderidxuse++
|
||||
}
|
||||
|
||||
// Orders handled by the index, excluding exact match filters.
|
||||
idxorders := q.xorders[trim : len(q.xorders)-len(orders)]
|
||||
|
||||
// log.Printf("index fields to match for index order: %d, orders for index %d, in-memory ordering %d, total orders %d", norderidxuse, len(idxorders), len(orders), len(q.xorders))
|
||||
|
||||
// See if this is better than what we had.
|
||||
if !(nex > nexact || (nex == nexact && (nrng > nrange || order != nil && !ordered && (q.xlimit > 0 || nrng == nrange)))) {
|
||||
// log.Printf("plan not better, nex %d, nrng %d, limit %d, order %v ordered %v", nex, nrng, q.limit, order, ordered)
|
||||
if !(nex > nexact || (nex == nexact && (nrng > nrange || len(idxorders) > norder && (q.xlimit > 0 || nrng == nrange)))) {
|
||||
// log.Printf("plan not better, nex %d, nrng %d, limit %d, nidxorders %v ordered %v", nex, nrng, q.xlimit, len(idxorders), norder)
|
||||
return nil
|
||||
}
|
||||
nexact = nex
|
||||
nrange = nrng
|
||||
ordered = order != nil
|
||||
norder = len(idxorders)
|
||||
|
||||
// Calculate the prefix key.
|
||||
var kvalues []reflect.Value
|
||||
|
@ -307,7 +353,8 @@ indices:
|
|||
|
||||
startInclusive := gx == nil || gx.op != opGreater
|
||||
stopInclusive := lx == nil || lx.op != opLess
|
||||
if order != nil && !order.asc {
|
||||
desc := len(idxorders) > 0 && !idxorders[0].asc
|
||||
if desc {
|
||||
start, stop = stop, start
|
||||
startInclusive, stopInclusive = stopInclusive, startInclusive
|
||||
}
|
||||
|
@ -318,12 +365,13 @@ indices:
|
|||
|
||||
p = &plan[T]{
|
||||
idx: idx,
|
||||
desc: order != nil && !order.asc,
|
||||
desc: desc,
|
||||
start: start,
|
||||
stop: stop,
|
||||
startInclusive: startInclusive,
|
||||
stopInclusive: stopInclusive,
|
||||
filters: dropFilters(q.xfilters, skipFilters),
|
||||
norderidxuse: norderidxuse,
|
||||
orders: orders,
|
||||
}
|
||||
return nil
|
||||
|
@ -341,6 +389,7 @@ indices:
|
|||
|
||||
}
|
||||
if p != nil {
|
||||
// log.Printf("using index plan %v", p)
|
||||
return p, nil
|
||||
}
|
||||
|
||||
|
|
2
vendor/github.com/mjl-/bstore/register.go
generated
vendored
2
vendor/github.com/mjl-/bstore/register.go
generated
vendored
|
@ -561,7 +561,7 @@ func (db *DB) Register(ctx context.Context, typeValues ...any) error {
|
|||
parsePK(a, prev.buf[prev.pre:]) // Ignore error, nothing to do.
|
||||
parsePK(b, k.buf[k.pre:]) // Ignore error, nothing to do.
|
||||
var dup []any
|
||||
_, values, _ := idx.parseKey(k.buf, true)
|
||||
_, values, _ := idx.parseKey(k.buf, true, false)
|
||||
for i := range values {
|
||||
x := reflect.New(reflect.TypeOf(idx.Fields[i].Type.zeroKey())).Elem()
|
||||
parsePK(x, values[i]) // Ignore error, nothing to do.
|
||||
|
|
2
vendor/modules.txt
vendored
2
vendor/modules.txt
vendored
|
@ -16,7 +16,7 @@ github.com/mjl-/adns/internal/singleflight
|
|||
# github.com/mjl-/autocert v0.0.0-20231214125928-31b7400acb05
|
||||
## explicit; go 1.20
|
||||
github.com/mjl-/autocert
|
||||
# github.com/mjl-/bstore v0.0.4
|
||||
# github.com/mjl-/bstore v0.0.5
|
||||
## explicit; go 1.19
|
||||
github.com/mjl-/bstore
|
||||
# github.com/mjl-/sconf v0.0.6
|
||||
|
|
Loading…
Reference in a new issue