2023-01-30 16:27:06 +03:00
// Package junk implements a bayesian spam filter.
//
// A message can be parsed into words. Words (or pairs or triplets) can be used
// to train the filter or to classify the message as ham or spam. Training
// records the words in the database as ham/spam. Classifying consists of
// calculating the ham/spam probability by combining the words in the message
// with their ham/spam status.
package junk
// todo: look at inverse chi-square function? see https://www.linuxjournal.com/article/6467
// todo: perhaps: whether anchor text in links in html are different from the url
import (
"errors"
"fmt"
"io"
"math"
"os"
"sort"
"time"
"github.com/mjl-/bstore"
"github.com/mjl-/mox/message"
"github.com/mjl-/mox/mlog"
)
var (
xlog = mlog . New ( "junk" )
errBadContentType = errors . New ( "bad content-type" ) // sure sign of spam
errClosed = errors . New ( "filter is closed" )
)
type word struct {
Ham uint32
Spam uint32
}
type wordscore struct {
Word string
Ham uint32
Spam uint32
}
// Params holds parameters for the filter. Most are at test-time. The first are
// used during parsing and training.
type Params struct {
Onegrams bool ` sconf:"optional" sconf-doc:"Track ham/spam ranking for single words." `
Twograms bool ` sconf:"optional" sconf-doc:"Track ham/spam ranking for each two consecutive words." `
Threegrams bool ` sconf:"optional" sconf-doc:"Track ham/spam ranking for each three consecutive words." `
MaxPower float64 ` sconf-doc:"Maximum power a word (combination) can have. If spaminess is 0.99, and max power is 0.1, spaminess of the word will be set to 0.9. Similar for ham words." `
TopWords int ` sconf-doc:"Number of most spammy/hammy words to use for calculating probability. E.g. 10." `
IgnoreWords float64 ` sconf:"optional" sconf-doc:"Ignore words that are this much away from 0.5 haminess/spaminess. E.g. 0.1, causing word (combinations) of 0.4 to 0.6 to be ignored." `
RareWords int ` sconf:"optional" sconf-doc:"Occurrences in word database until a word is considered rare and its influence in calculating probability reduced. E.g. 1 or 2." `
}
type Filter struct {
Params
log * mlog . Log // For logging cid.
closed bool
modified bool // Whether any modifications are pending. Cleared by Save.
hams , spams uint32 // Message count, stored in db under word "-".
cache map [ string ] word // Words read from database or during training.
changed map [ string ] word // Words modified during training.
dbPath , bloomPath string
db * bstore . DB // Always open on a filter.
bloom * Bloom // Only opened when writing.
isNew bool // Set for new filters until their first sync to disk. For faster writing.
}
func ( f * Filter ) ensureBloom ( ) error {
if f . bloom != nil {
return nil
}
var err error
f . bloom , err = openBloom ( f . bloomPath )
return err
}
2023-02-16 11:57:27 +03:00
// CloseDiscard closes the filter, discarding any changes.
func ( f * Filter ) CloseDiscard ( ) error {
if f . closed {
return errClosed
}
err := f . db . Close ( )
* f = Filter { log : f . log , closed : true }
return err
}
2023-01-30 16:27:06 +03:00
// Close first saves the filter if it has modifications, then closes the database
// connection and releases the bloom filter.
func ( f * Filter ) Close ( ) error {
if f . closed {
return errClosed
}
var err error
if f . modified {
err = f . Save ( )
}
if err != nil {
f . db . Close ( )
} else {
err = f . db . Close ( )
}
* f = Filter { log : f . log , closed : true }
return err
}
func OpenFilter ( log * mlog . Log , params Params , dbPath , bloomPath string , loadBloom bool ) ( * Filter , error ) {
var bloom * Bloom
if loadBloom {
var err error
bloom , err = openBloom ( bloomPath )
if err != nil {
return nil , err
}
} else if fi , err := os . Stat ( bloomPath ) ; err == nil {
if err := BloomValid ( int ( fi . Size ( ) ) , bloomK ) ; err != nil {
return nil , fmt . Errorf ( "bloom: %s" , err )
}
}
db , err := openDB ( dbPath )
if err != nil {
return nil , fmt . Errorf ( "open database: %s" , err )
}
f := & Filter {
Params : params ,
log : log ,
cache : map [ string ] word { } ,
changed : map [ string ] word { } ,
dbPath : dbPath ,
bloomPath : bloomPath ,
db : db ,
bloom : bloom ,
}
err = f . db . Read ( func ( tx * bstore . Tx ) error {
wc := wordscore { Word : "-" }
err := tx . Get ( & wc )
f . hams = wc . Ham
f . spams = wc . Spam
return err
} )
if err != nil {
f . Close ( )
return nil , fmt . Errorf ( "looking up ham/spam message count: %s" , err )
}
return f , nil
}
// NewFilter creates a new filter with empty bloom filter and database files. The
// filter is marked as new until the first save, will be done automatically if
// TrainDirs is called. If the bloom and/or database files exist, an error is
// returned.
func NewFilter ( log * mlog . Log , params Params , dbPath , bloomPath string ) ( * Filter , error ) {
var err error
if _ , err := os . Stat ( bloomPath ) ; err == nil {
return nil , fmt . Errorf ( "bloom filter already exists on disk: %s" , bloomPath )
} else if _ , err := os . Stat ( dbPath ) ; err == nil {
return nil , fmt . Errorf ( "database file already exists on disk: %s" , dbPath )
}
bloomSizeBytes := 4 * 1024 * 1024
if err := BloomValid ( bloomSizeBytes , bloomK ) ; err != nil {
return nil , fmt . Errorf ( "bloom: %s" , err )
}
bf , err := os . Create ( bloomPath )
if err != nil {
return nil , fmt . Errorf ( "creating bloom file: %w" , err )
}
if err := bf . Truncate ( 4 * 1024 * 1024 ) ; err != nil {
bf . Close ( )
os . Remove ( bloomPath )
return nil , fmt . Errorf ( "making empty bloom filter: %s" , err )
}
bf . Close ( )
db , err := newDB ( dbPath )
if err != nil {
os . Remove ( bloomPath )
os . Remove ( dbPath )
return nil , fmt . Errorf ( "open database: %s" , err )
}
words := map [ string ] word { } // f.changed is set to new map after training
f := & Filter {
Params : params ,
log : log ,
modified : true , // Ensure ham/spam message count is added for new filter.
cache : words ,
changed : words ,
dbPath : dbPath ,
bloomPath : bloomPath ,
db : db ,
isNew : true ,
}
return f , nil
}
const bloomK = 10
func openBloom ( path string ) ( * Bloom , error ) {
buf , err := os . ReadFile ( path )
if err != nil {
return nil , fmt . Errorf ( "reading bloom file: %w" , err )
}
return NewBloom ( buf , bloomK )
}
func newDB ( path string ) ( db * bstore . DB , rerr error ) {
// Remove any existing files.
os . Remove ( path )
defer func ( ) {
if rerr != nil {
if db != nil {
db . Close ( )
}
db = nil
os . Remove ( path )
}
} ( )
db , err := bstore . Open ( path , & bstore . Options { Timeout : 5 * time . Second , Perm : 0660 } , wordscore { } )
if err != nil {
return nil , fmt . Errorf ( "open new database: %w" , err )
}
return db , nil
}
func openDB ( path string ) ( * bstore . DB , error ) {
if _ , err := os . Stat ( path ) ; err != nil {
return nil , fmt . Errorf ( "stat db file: %w" , err )
}
return bstore . Open ( path , & bstore . Options { Timeout : 5 * time . Second , Perm : 0660 } , wordscore { } )
}
// Save stores modifications, e.g. from training, to the database and bloom
// filter files.
func ( f * Filter ) Save ( ) error {
if f . closed {
return errClosed
}
if ! f . modified {
return nil
}
if f . bloom != nil && f . bloom . Modified ( ) {
if err := f . bloom . Write ( f . bloomPath ) ; err != nil {
return fmt . Errorf ( "writing bloom filter: %w" , err )
}
}
// We need to insert sequentially for reasonable performance.
words := make ( [ ] string , len ( f . changed ) )
i := 0
for w := range f . changed {
words [ i ] = w
i ++
}
sort . Slice ( words , func ( i , j int ) bool {
return words [ i ] < words [ j ]
} )
2023-02-12 01:54:22 +03:00
f . log . Debug ( "inserting words in junkfilter db" , mlog . Field ( "words" , len ( f . changed ) ) )
2023-01-30 16:27:06 +03:00
// start := time.Now()
if f . isNew {
if err := f . db . HintAppend ( true , wordscore { } ) ; err != nil {
f . log . Errorx ( "hint appendonly" , err )
} else {
defer f . db . HintAppend ( false , wordscore { } )
}
}
err := f . db . Write ( func ( tx * bstore . Tx ) error {
update := func ( w string , ham , spam uint32 ) error {
if f . isNew {
return tx . Insert ( & wordscore { w , ham , spam } )
}
wc := wordscore { w , 0 , 0 }
err := tx . Get ( & wc )
if err == bstore . ErrAbsent {
return tx . Insert ( & wordscore { w , ham , spam } )
} else if err != nil {
return err
}
return tx . Update ( & wordscore { w , wc . Ham + ham , wc . Spam + spam } )
}
if err := update ( "-" , f . hams , f . spams ) ; err != nil {
return fmt . Errorf ( "storing total ham/spam message count: %s" , err )
}
for _ , w := range words {
c := f . changed [ w ]
if err := update ( w , c . Ham , c . Spam ) ; err != nil {
return fmt . Errorf ( "updating ham/spam count: %s" , err )
}
}
return nil
} )
if err != nil {
return fmt . Errorf ( "updating database: %w" , err )
}
f . changed = map [ string ] word { }
f . modified = false
f . isNew = false
// f.log.Info("wrote filter to db", mlog.Field("duration", time.Since(start)))
return nil
}
func loadWords ( db * bstore . DB , l [ ] string , dst map [ string ] word ) error {
sort . Slice ( l , func ( i , j int ) bool {
return l [ i ] < l [ j ]
} )
err := db . Read ( func ( tx * bstore . Tx ) error {
for _ , w := range l {
wc := wordscore { Word : w }
if err := tx . Get ( & wc ) ; err == nil {
dst [ w ] = word { wc . Ham , wc . Spam }
}
}
return nil
} )
if err != nil {
return fmt . Errorf ( "fetching words: %s" , err )
}
return nil
}
// ClassifyWords returns the spam probability for the given words, and number of recognized ham and spam words.
func ( f * Filter ) ClassifyWords ( words map [ string ] struct { } ) ( probability float64 , nham , nspam int , rerr error ) {
if f . closed {
return 0 , 0 , 0 , errClosed
}
type xword struct {
Word string
R float64
}
var hamHigh float64 = 0
var spamLow float64 = 1
var topHam [ ] xword
var topSpam [ ] xword
// Find words that should be in the database.
lookupWords := [ ] string { }
expect := map [ string ] struct { } { }
unknowns := map [ string ] struct { } { }
totalUnknown := 0
for w := range words {
if f . bloom != nil && ! f . bloom . Has ( w ) {
totalUnknown ++
if len ( unknowns ) < 50 {
unknowns [ w ] = struct { } { }
}
continue
}
if _ , ok := f . cache [ w ] ; ok {
continue
}
lookupWords = append ( lookupWords , w )
expect [ w ] = struct { } { }
}
if len ( unknowns ) > 0 {
f . log . Debug ( "unknown words in bloom filter, showing max 50" , mlog . Field ( "words" , unknowns ) , mlog . Field ( "totalunknown" , totalUnknown ) , mlog . Field ( "totalwords" , len ( words ) ) )
}
// Fetch words from database.
fetched := map [ string ] word { }
if len ( lookupWords ) > 0 {
if err := loadWords ( f . db , lookupWords , fetched ) ; err != nil {
return 0 , 0 , 0 , err
}
for w , c := range fetched {
delete ( expect , w )
f . cache [ w ] = c
}
f . log . Debug ( "unknown words in db" , mlog . Field ( "words" , expect ) , mlog . Field ( "totalunknown" , len ( expect ) ) , mlog . Field ( "totalwords" , len ( words ) ) )
}
for w := range words {
c , ok := f . cache [ w ]
if ! ok {
continue
}
var wS , wH float64
if f . spams > 0 {
wS = float64 ( c . Spam ) / float64 ( f . spams )
}
if f . hams > 0 {
wH = float64 ( c . Ham ) / float64 ( f . hams )
}
r := wS / ( wS + wH )
if r < f . MaxPower {
r = f . MaxPower
} else if r >= 1 - f . MaxPower {
r = 1 - f . MaxPower
}
if c . Ham + c . Spam <= uint32 ( f . RareWords ) {
// Reduce the power of rare words.
r += float64 ( 1 + uint32 ( f . RareWords ) - ( c . Ham + c . Spam ) ) * ( 0.5 - r ) / 10
}
if math . Abs ( 0.5 - r ) < f . IgnoreWords {
continue
}
if r < 0.5 {
if len ( topHam ) >= f . TopWords && r > hamHigh {
continue
}
topHam = append ( topHam , xword { w , r } )
if r > hamHigh {
hamHigh = r
}
} else if r > 0.5 {
if len ( topSpam ) >= f . TopWords && r < spamLow {
continue
}
topSpam = append ( topSpam , xword { w , r } )
if r < spamLow {
spamLow = r
}
}
}
sort . Slice ( topHam , func ( i , j int ) bool {
a , b := topHam [ i ] , topHam [ j ]
if a . R == b . R {
return len ( a . Word ) > len ( b . Word )
}
return a . R < b . R
} )
sort . Slice ( topSpam , func ( i , j int ) bool {
a , b := topSpam [ i ] , topSpam [ j ]
if a . R == b . R {
return len ( a . Word ) > len ( b . Word )
}
return a . R > b . R
} )
nham = f . TopWords
if nham > len ( topHam ) {
nham = len ( topHam )
}
nspam = f . TopWords
if nspam > len ( topSpam ) {
nspam = len ( topSpam )
}
topHam = topHam [ : nham ]
topSpam = topSpam [ : nspam ]
var eta float64
for _ , x := range topHam {
eta += math . Log ( 1 - x . R ) - math . Log ( x . R )
}
for _ , x := range topSpam {
eta += math . Log ( 1 - x . R ) - math . Log ( x . R )
}
f . log . Debug ( "top words" , mlog . Field ( "hams" , topHam ) , mlog . Field ( "spams" , topSpam ) )
prob := 1 / ( 1 + math . Pow ( math . E , eta ) )
return prob , len ( topHam ) , len ( topSpam ) , nil
}
// ClassifyMessagePath is a convenience wrapper for calling ClassifyMessage on a file.
func ( f * Filter ) ClassifyMessagePath ( path string ) ( probability float64 , words map [ string ] struct { } , nham , nspam int , rerr error ) {
if f . closed {
return 0 , nil , 0 , 0 , errClosed
}
mf , err := os . Open ( path )
if err != nil {
return 0 , nil , 0 , 0 , err
}
defer mf . Close ( )
fi , err := mf . Stat ( )
if err != nil {
return 0 , nil , 0 , 0 , err
}
return f . ClassifyMessageReader ( mf , fi . Size ( ) )
}
func ( f * Filter ) ClassifyMessageReader ( mf io . ReaderAt , size int64 ) ( probability float64 , words map [ string ] struct { } , nham , nspam int , rerr error ) {
m , err := message . EnsurePart ( mf , size )
if err != nil && errors . Is ( err , message . ErrBadContentType ) {
// Invalid content-type header is a sure sign of spam.
//f.log.Infox("parsing content", err)
return 1 , nil , 0 , 0 , nil
}
return f . ClassifyMessage ( m )
}
// ClassifyMessage parses the mail message in r and returns the spam probability
// (between 0 and 1), along with the tokenized words found in the message, and the
// number of recognized ham and spam words.
func ( f * Filter ) ClassifyMessage ( m message . Part ) ( probability float64 , words map [ string ] struct { } , nham , nspam int , rerr error ) {
var err error
words , err = f . ParseMessage ( m )
if err != nil {
return 0 , nil , 0 , 0 , err
}
probability , nham , nspam , err = f . ClassifyWords ( words )
return probability , words , nham , nspam , err
}
// Train adds the words of a single message to the filter.
func ( f * Filter ) Train ( ham bool , words map [ string ] struct { } ) error {
if err := f . ensureBloom ( ) ; err != nil {
return err
}
var lwords [ ] string
for w := range words {
if ! f . bloom . Has ( w ) {
f . bloom . Add ( w )
continue
}
if _ , ok := f . cache [ w ] ; ! ok {
lwords = append ( lwords , w )
}
}
if err := f . loadCache ( lwords ) ; err != nil {
return err
}
f . modified = true
if ham {
f . hams ++
} else {
f . spams ++
}
for w := range words {
c := f . cache [ w ]
if ham {
c . Ham ++
} else {
c . Spam ++
}
f . cache [ w ] = c
f . changed [ w ] = c
}
return nil
}
func ( f * Filter ) TrainMessage ( r io . ReaderAt , size int64 , ham bool ) error {
p , _ := message . EnsurePart ( r , size )
words , err := f . ParseMessage ( p )
if err != nil {
return fmt . Errorf ( "parsing mail contents: %v" , err )
}
return f . Train ( ham , words )
}
func ( f * Filter ) UntrainMessage ( r io . ReaderAt , size int64 , ham bool ) error {
p , _ := message . EnsurePart ( r , size )
words , err := f . ParseMessage ( p )
if err != nil {
return fmt . Errorf ( "parsing mail contents: %v" , err )
}
return f . Untrain ( ham , words )
}
func ( f * Filter ) loadCache ( lwords [ ] string ) error {
if len ( lwords ) == 0 {
return nil
}
return loadWords ( f . db , lwords , f . cache )
}
// Untrain adjusts the filter to undo a previous training of the words.
func ( f * Filter ) Untrain ( ham bool , words map [ string ] struct { } ) error {
if err := f . ensureBloom ( ) ; err != nil {
return err
}
// Lookup any words from the db that aren't in the cache and put them in the cache for modification.
var lwords [ ] string
for w := range words {
if _ , ok := f . cache [ w ] ; ! ok {
lwords = append ( lwords , w )
}
}
if err := f . loadCache ( lwords ) ; err != nil {
return err
}
// Modify the message count.
f . modified = true
if ham {
f . hams --
} else {
f . spams --
}
// Decrease the word counts.
for w := range words {
c , ok := f . cache [ w ]
if ! ok {
continue
}
if ham {
c . Ham --
} else {
c . Spam --
}
f . cache [ w ] = c
f . changed [ w ] = c
}
return nil
}
// TrainDir parses mail messages from files and trains the filter.
func ( f * Filter ) TrainDir ( dir string , files [ ] string , ham bool ) ( n , malformed uint32 , rerr error ) {
if f . closed {
return 0 , 0 , errClosed
}
if err := f . ensureBloom ( ) ; err != nil {
return 0 , 0 , err
}
for _ , name := range files {
p := fmt . Sprintf ( "%s/%s" , dir , name )
valid , words , err := f . tokenizeMail ( p )
if err != nil {
// f.log.Infox("tokenizing mail", err, mlog.Field("path", p))
malformed ++
continue
}
if ! valid {
continue
}
n ++
for w := range words {
if ! f . bloom . Has ( w ) {
f . bloom . Add ( w )
continue
}
c := f . cache [ w ]
f . modified = true
if ham {
c . Ham ++
} else {
c . Spam ++
}
f . cache [ w ] = c
f . changed [ w ] = c
}
}
return
}
// TrainDirs trains and saves a filter with mail messages from different types
// of directories.
func ( f * Filter ) TrainDirs ( hamDir , sentDir , spamDir string , hamFiles , sentFiles , spamFiles [ ] string ) error {
if f . closed {
return errClosed
}
var err error
var start time . Time
var hamMalformed , sentMalformed , spamMalformed uint32
start = time . Now ( )
f . hams , hamMalformed , err = f . TrainDir ( hamDir , hamFiles , true )
if err != nil {
return err
}
tham := time . Since ( start )
var sent uint32
start = time . Now ( )
if sentDir != "" {
sent , sentMalformed , err = f . TrainDir ( sentDir , sentFiles , true )
if err != nil {
return err
}
}
tsent := time . Since ( start )
start = time . Now ( )
f . spams , spamMalformed , err = f . TrainDir ( spamDir , spamFiles , false )
if err != nil {
return err
}
tspam := time . Since ( start )
hams := f . hams
f . hams += sent
if err := f . Save ( ) ; err != nil {
return fmt . Errorf ( "saving filter: %s" , err )
}
dbSize := f . fileSize ( f . dbPath )
bloomSize := f . fileSize ( f . bloomPath )
fields := [ ] mlog . Pair {
mlog . Field ( "hams" , hams ) ,
mlog . Field ( "hamTime" , tham ) ,
mlog . Field ( "hamMalformed" , hamMalformed ) ,
mlog . Field ( "sent" , sent ) ,
mlog . Field ( "sentTime" , tsent ) ,
mlog . Field ( "sentMalformed" , sentMalformed ) ,
mlog . Field ( "spams" , f . spams ) ,
mlog . Field ( "spamTime" , tspam ) ,
mlog . Field ( "spamMalformed" , spamMalformed ) ,
mlog . Field ( "dbsize" , fmt . Sprintf ( "%.1fmb" , float64 ( dbSize ) / ( 1024 * 1024 ) ) ) ,
mlog . Field ( "bloomsize" , fmt . Sprintf ( "%.1fmb" , float64 ( bloomSize ) / ( 1024 * 1024 ) ) ) ,
mlog . Field ( "bloom1ratio" , fmt . Sprintf ( "%.4f" , float64 ( f . bloom . Ones ( ) ) / float64 ( len ( f . bloom . Bytes ( ) ) * 8 ) ) ) ,
}
xlog . Print ( "training done" , fields ... )
return nil
}
func ( f * Filter ) fileSize ( p string ) int {
fi , err := os . Stat ( p )
if err != nil {
f . log . Infox ( "stat" , err , mlog . Field ( "path" , p ) )
return 0
}
return int ( fi . Size ( ) )
}