add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
// Javascript is generated from typescript, do not modify generated javascript because changes will be overwritten.
/ *
Webmail is a self - contained webmail client .
Typescript is used for type safety , but otherwise we try not to rely on any
JS / TS tools / frameworks etc , they often complicate / obscure how things work . The
DOM and styles are directly manipulated , so to develop on this code you need to
know about DOM functions . With a few helper functions in the dom object ,
interaction with the DOM is still relatively high - level , but also allows for
more low - level techniques like rendering of text in a way that highlights text
that switches unicode blocks / scripts . We use typescript in strict mode , see
top - level tsc . sh . We often specify types for function parameters , but not
return types , since typescript is good at deriving return types .
There is no mechanism to automatically update a view when properties change . The
UI is split / isolated in components called "views" , which expose only their root
HTMLElement for inclusion in another component or the top - level document . A view
has functions that other views ( e . g . parents ) can call for to propagate updates
or retrieve data . We have these views :
- Mailboxlist , in the bar on the list with all mailboxes .
- Mailbox , a single mailbox in the mailbox list .
- Search , with form for search criteria , opened through search bar .
- Msglist , the list of messages for the selected mailbox or search query .
- Msgitem , a message in Msglist , shown as a single line .
- Msg , showing the contents of a single selected message .
- Compose , when writing a new message ( or reply / forward ) .
Most of the data is transferred over an SSE connection . It sends the initial
list of mailboxes , sends message summaries for the currently selected mailbox or
search query and sends changes as they happen , e . g . added / removed messages ,
changed flags , etc . Operations that modify data are done through API calls . The
typescript API is generated from the Go types and functions . Displayed message
contents are also retrieved through an API call .
HTML messages are potentially dangerous . We display them in a separate iframe ,
with contents served in a separate HTTP request , with Content - Security - Policy
headers that prevent executing scripts or loading potentially unwanted remote
resources . We cannot load the HTML in an inline iframe , because the iframe "csp"
attribute to set a Content - Security - Policy is not supported by all modern
browsers ( safari and firefox don ' t support it at the time of writing ) . Text
messages are rendered inside the webmail client , making URLs clickable ,
highlighting unicode script / block changes and rendering quoted text in a
different color .
Browsers to test with : Firefox , Chromium , Safari , Edge .
To simulate slow API calls and SSE events :
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
localStorage . setItem ( 'sherpats-debug' , JSON . stringify ( { waitMinMsec : 2000 , waitMaxMsec : 4000 } ) )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
Enable logging and reload afterwards :
localStorage . setItem ( 'log' , 'yes' )
Enable consistency checking in UI updates :
settingsPut ( { . . . settings , checkConsistency : true } )
2024-03-05 11:04:59 +03:00
- todo : in msglistView , show names of people we have sent to , and address otherwise . or at don ' t show names for first - time senders .
2024-04-21 18:18:00 +03:00
- todo : implement settings stored in the server , such as mailboxCollapsed , keyboard shortcuts . name to use for "From" , optional default Reply - To and Bcc addresses , signatures ( per address ) , configured labels / keywords with human - readable name , colors and toggling with shortcut keys 1 - 9 .
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
- todo : automated tests ? perhaps some unit tests , then ui scenario ' s .
- todo : composing of html messages . possibly based on contenteditable . would be good if we can include original html , but quoted . must make sure to not include dangerous scripts / resources , or sandbox it .
- todo : make alt up / down keys work on html iframe too . requires loading it from sameorigin , to get access to its inner document .
- todo : reconnect with last known modseq and don ' t clear the message list , only update it
- todo : find and use svg icons for flags in the msgitemView . junk ( fire ) , forwarded , replied , attachment ( paperclip ) , flagged ( flag ) , phishing ( ? ) . also for special - use mailboxes ( junk , trash , archive , draft , sent ) . should be basic and slim .
- todo : for embedded messages ( message / rfc822 or message / global ) , allow viewing it as message , perhaps in a popup ?
- todo : only show orange underline where it could be a problem ? in addresses and anchor texts . we may be lighting up a christmas tree now , desensitizing users .
- todo : saved searches that are displayed below list of mailboxes , for quick access to preset view
- todo : when search on free - form text is active , highlight the searched text in the message view .
- todo : forwarding of html parts , including inline attachments , so the html version can be rendered like the original by the receiver .
- todo : buttons / mechanism to operate on all messages in a mailbox / search query , without having to list and select all messages . e . g . clearing flags / labels .
- todo : can we detect if browser supports proper CSP ? if not , refuse to load html messages ?
- todo : more search criteria ? Date header field ( instead of time received ) , text vs html ( only , either or both ) , attachment filenames and sizes
2024-04-22 14:41:40 +03:00
- todo : import messages into specific mailbox ?
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
- todo : configurable keyboard shortcuts ? we use strings like "ctrl p" which we already generate and match on , add a mapping from command name to cmd * functions , and have a map of keys to command names . the commands for up / down with shift / ctrl modifiers may need special attention .
2024-04-21 18:18:00 +03:00
- todo : consider composing messages with bcc headers that are sent as message Bcc headers to the bcc - addressees , optionally with checkbox .
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
- todo : improve accessibility
- todo : msglistView : preload next message ?
- todo : previews of zip files
- todo : undo?
- todo : mobile - friendly version . should perhaps be a completely different app , because it is so different .
* /
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
class ConsistencyError extends Error {
}
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
const zindexes = {
splitter : '1' ,
compose : '2' ,
searchView : '3' ,
searchbar : '4' ,
popup : '5' ,
popover : '5' ,
attachments : '5' ,
shortcut : '6' ,
replace http basic auth for web interfaces with session cookie & csrf-based auth
the http basic auth we had was very simple to reason about, and to implement.
but it has a major downside:
there is no way to logout, browsers keep sending credentials. ideally, browsers
themselves would show a button to stop sending credentials.
a related downside: the http auth mechanism doesn't indicate for which server
paths the credentials are.
another downside: the original password is sent to the server with each
request. though sending original passwords to web servers seems to be
considered normal.
our new approach uses session cookies, along with csrf values when we can. the
sessions are server-side managed, automatically extended on each use. this
makes it easy to invalidate sessions and keeps the frontend simpler (than with
long- vs short-term sessions and refreshing). the cookies are httponly,
samesite=strict, scoped to the path of the web interface. cookies are set
"secure" when set over https. the cookie is set by a successful call to Login.
a call to Logout invalidates a session. changing a password invalidates all
sessions for a user, but keeps the session with which the password was changed
alive. the csrf value is also random, and associated with the session cookie.
the csrf must be sent as header for api calls, or as parameter for direct form
posts (where we cannot set a custom header). rest-like calls made directly by
the browser, e.g. for images, don't have a csrf protection. the csrf value is
returned by the Login api call and stored in localstorage.
api calls without credentials return code "user:noAuth", and with bad
credentials return "user:badAuth". the api client recognizes this and triggers
a login. after a login, all auth-failed api calls are automatically retried.
only for "user:badAuth" is an error message displayed in the login form (e.g.
session expired).
in an ideal world, browsers would take care of most session management. a
server would indicate authentication is needed (like http basic auth), and the
browsers uses trusted ui to request credentials for the server & path. the
browser could use safer mechanism than sending original passwords to the
server, such as scram, along with a standard way to create sessions. for now,
web developers have to do authentication themselves: from showing the login
prompt, ensuring the right session/csrf cookies/localstorage/headers/etc are
sent with each request.
webauthn is a newer way to do authentication, perhaps we'll implement it in the
future. though hardware tokens aren't an attractive option for many users, and
it may be overkill as long as we still do old-fashioned authentication in smtp
& imap where passwords can be sent to the server.
for issue #58
2024-01-04 15:10:48 +03:00
login : '7' ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
}
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
// Buttons and input elements.
ensureCSS ( '.button' , { display : 'inline-block' } )
2025-01-13 13:22:44 +03:00
ensureCSS ( 'button, .button, select' , { backgroundColor : styles.buttonBackground , border : '1px solid' , borderColor : styles.buttonBorderColor , borderRadius : '.15em' , padding : '0 .15em' } )
ensureCSS ( 'button, .button, select, a.button:visited' , { color : styles.color } )
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
ensureCSS ( 'button.active, .button.active, button.active:hover, .button.active:hover' , { backgroundColor : styles.highlightBackground } )
2024-08-23 15:28:05 +03:00
ensureCSS ( 'button:hover:not(:disabled), .button:hover:not(:disabled), select:hover:not(:disabled)' , { backgroundColor : styles.buttonHoverBackground } )
ensureCSS ( 'button:disabled, .button:disabled, select:disabled' , { opacity : .5 } )
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
ensureCSS ( 'input, textarea' , { backgroundColor : styles.backgroundColor , color : styles.color , border : '1px solid' , borderColor : '#888' , borderRadius : '.15em' , padding : '0 .15em' } )
2024-08-23 15:28:05 +03:00
ensureCSS ( 'input:hover:not(:disabled), textarea:hover:not(:disabled)' , { borderColor : styles.colorMilder } )
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
ensureCSS ( '.btngroup button, .btngroup .button' , { borderRadius : 0 , borderRightWidth : 0 } )
ensureCSS ( '.btngroup button:first-child, .btngroup .button:first-child' , { borderRadius : '.15em 0 0 .15em' } )
ensureCSS ( '.btngroup button:last-child, .btngroup .button:last-child' , { borderRadius : '0 .15em .15em 0' , borderRightWidth : '1px' } )
const keywordButtonStyle = css ( 'keywordButton' , { cursor : 'pointer' } )
2024-08-23 15:28:05 +03:00
ensureCSS ( '.keywordButton:hover:not(:disabled)' , { backgroundColor : styles.highlightBackgroundHover } )
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
const yscrollStyle = css ( 'yscroll' , { overflowY : 'scroll' , position : 'absolute' , top : 0 , bottom : 0 , left : 0 , right : 0 } )
const yscrollAutoStyle = css ( 'yscrollAuto' , { overflowY : 'auto' , position : 'absolute' , top : 0 , bottom : 0 , left : 0 , right : 0 } )
// Input elements that automatically grow based on input, with additional JS.
const autosizeStyle = css ( 'autosize' , { display : 'inline-grid' , maxWidth : '90vw' } )
ensureCSS ( '.autosize.input' , { gridArea : '1 / 2' } )
ensureCSS ( '.autosize::after' , { content : 'attr(data-value)' , marginRight : '1em' , lineHeight : 0 , visibility : 'hidden' , whiteSpace : 'pre-wrap' , overflowX : 'hidden' } )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
// From HTML.
declare let page : HTMLElement
declare let moxversion : string
2024-03-11 10:58:40 +03:00
declare let moxgoos : string
declare let moxgoarch : string
add ability to include custom css & js in web interface (webmail, webaccount, webadmin), and use css variables in webmail for easier customization
if files {webmail,webaccount,webadmin}.{css,js} exist in the configdir (where
the mox.conf file lives), their contents are included in the web apps.
the webmail now uses css variables, mostly for colors. so you can write a
custom webmail.css that changes the variables, e.g.:
:root {
--color: blue
}
you can also look at css class names and override their styles.
in the future, we may want to make some css variables configurable in the
per-user settings in the webmail. should reduce the number of variables first.
any custom javascript is loaded first. if it defines a global function
"moxBeforeDisplay", that is called each time a page loads (after
authentication) with the DOM element of the page content as parameter. the
webmail is a single persistent page. this can be used to make some changes to
the DOM, e.g. inserting some elements. we'll have to see how well this works in
practice. perhaps some patterns emerge (e.g. adding a logo), and we can make
those use-cases easier to achieve.
helps partially with issue #114, and based on questions from laura-lilly on
matrix.
2024-11-29 12:17:07 +03:00
// From customization script.
declare let moxBeforeDisplay : ( root : HTMLElement ) = > void
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
// All logging goes through log() instead of console.log, except "should not happen" logging.
let log : ( . . . args : any [ ] ) = > void = ( ) = > { }
try {
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
if ( localStorage . getItem ( 'log' ) || location . hostname === 'localhost' ) {
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
log = console . log
}
} catch ( err ) { }
2024-04-19 18:24:54 +03:00
let accountSettings : api.Settings
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
const defaultSettings = {
mailboxesWidth : 240 ,
layout : 'auto' , // Automatic switching between left/right and top/bottom layout, based on screen width.
leftWidthPct : 50 , // Split in percentage of remaining width for left/right layout.
topHeightPct : 40 , // Split in percentage of remaining height for top/bottom layout.
msglistflagsWidth : 40 , // Width in pixels of flags column in message list.
msglistageWidth : 70 , // Width in pixels of age column.
msglistfromPct : 30 , // Percentage of remaining width in message list to use for "from" column. The remainder is for the subject.
refine : '' , // Refine filters, e.g. '', 'attachments', 'read', 'unread', 'label:...'.
orderAsc : false , // Order from most recent to least recent by default.
ignoreErrorsUntil : 0 , // For unhandled javascript errors/rejected promises, we normally show a popup for details, but users can ignore them for a week at a time.
mailboxCollapsed : { } as { [ mailboxID : number ] : boolean } , // Mailboxes that are collapsed.
showAllHeaders : false , // Whether to show all message headers.
2023-09-22 15:12:46 +03:00
threading : api.ThreadMode.ThreadOn ,
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
checkConsistency : location.hostname === 'localhost' , // Enable UI update consistency checks, default only for local development.
2024-04-20 11:26:54 +03:00
composeWidth : 0 ,
composeViewportWidth : 0 ,
composeHeight : 0 ,
composeViewportHeight : 0 ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
}
const parseSettings = ( ) : typeof defaultSettings = > {
try {
const v = window . localStorage . getItem ( 'settings' )
if ( ! v ) {
return { . . . defaultSettings }
}
const x = JSON . parse ( v )
const def : { [ key : string ] : any } = defaultSettings
const getString = ( k : string , . . . l : string [ ] ) : string = > {
const v = x [ k ]
if ( typeof v !== 'string' || l . length > 0 && ! l . includes ( v ) ) {
return def [ k ] as string
}
return v
}
const getBool = ( k : string ) : boolean = > {
const v = x [ k ]
return typeof v === 'boolean' ? v : def [ k ] as boolean
}
const getInt = ( k : string ) : number = > {
const v = x [ k ]
return typeof v === 'number' ? v : def [ k ] as number
}
let mailboxCollapsed : { [ mailboxID : number ] : boolean } = x . mailboxCollapsed
if ( ! mailboxCollapsed || typeof mailboxCollapsed !== 'object' ) {
mailboxCollapsed = def . mailboxCollapsed
}
return {
refine : getString ( 'refine' ) ,
orderAsc : getBool ( 'orderAsc' ) ,
mailboxesWidth : getInt ( 'mailboxesWidth' ) ,
leftWidthPct : getInt ( 'leftWidthPct' ) ,
topHeightPct : getInt ( 'topHeightPct' ) ,
msglistflagsWidth : getInt ( 'msglistflagsWidth' ) ,
msglistageWidth : getInt ( 'msglistageWidth' ) ,
msglistfromPct : getInt ( 'msglistfromPct' ) ,
ignoreErrorsUntil : getInt ( 'ignoreErrorsUntil' ) ,
layout : getString ( 'layout' , 'auto' , 'leftright' , 'topbottom' ) ,
mailboxCollapsed : mailboxCollapsed ,
showAllHeaders : getBool ( 'showAllHeaders' ) ,
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
threading : getString ( 'threading' , api . ThreadMode . ThreadOff , api . ThreadMode . ThreadOn , api . ThreadMode . ThreadUnread ) as api . ThreadMode ,
checkConsistency : getBool ( 'checkConsistency' ) ,
2024-04-20 11:26:54 +03:00
composeWidth : getInt ( 'composeWidth' ) ,
composeViewportWidth : getInt ( 'composeViewportWidth' ) ,
composeHeight : getInt ( 'composeHeight' ) ,
composeViewportHeight : getInt ( 'composeViewportHeight' ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
}
} catch ( err ) {
console . log ( 'getting settings from localstorage' , err )
return { . . . defaultSettings }
}
}
// Store new settings. Called as settingsPut({...settings, updatedField: newValue}).
const settingsPut = ( nsettings : typeof defaultSettings ) = > {
settings = nsettings
try {
window . localStorage . setItem ( 'settings' , JSON . stringify ( nsettings ) )
} catch ( err ) {
console . log ( 'storing settings in localstorage' , err )
}
}
let settings = parseSettings ( )
// All addresses for this account, can include "@domain" wildcard, User is empty in
// that case. Set when SSE connection is initialized.
let accountAddresses : api.MessageAddress [ ] = [ ]
// Username/email address of login. Used as default From address when composing
// a new message.
let loginAddress : api.MessageAddress | null = null
// Localpart config (catchall separator and case sensitivity) for each domain
// the account has an address for.
let domainAddressConfigs : { [ domainASCII : string ] : api . DomainAddressConfig } = { }
2023-11-27 09:34:18 +03:00
// Mailbox containing rejects.
let rejectsMailbox : string = ''
2023-11-27 10:02:01 +03:00
// Last known server version. For asking to reload.
2024-01-01 16:51:17 +03:00
let lastServerVersion : string = ''
2023-11-27 10:02:01 +03:00
replace http basic auth for web interfaces with session cookie & csrf-based auth
the http basic auth we had was very simple to reason about, and to implement.
but it has a major downside:
there is no way to logout, browsers keep sending credentials. ideally, browsers
themselves would show a button to stop sending credentials.
a related downside: the http auth mechanism doesn't indicate for which server
paths the credentials are.
another downside: the original password is sent to the server with each
request. though sending original passwords to web servers seems to be
considered normal.
our new approach uses session cookies, along with csrf values when we can. the
sessions are server-side managed, automatically extended on each use. this
makes it easy to invalidate sessions and keeps the frontend simpler (than with
long- vs short-term sessions and refreshing). the cookies are httponly,
samesite=strict, scoped to the path of the web interface. cookies are set
"secure" when set over https. the cookie is set by a successful call to Login.
a call to Logout invalidates a session. changing a password invalidates all
sessions for a user, but keeps the session with which the password was changed
alive. the csrf value is also random, and associated with the session cookie.
the csrf must be sent as header for api calls, or as parameter for direct form
posts (where we cannot set a custom header). rest-like calls made directly by
the browser, e.g. for images, don't have a csrf protection. the csrf value is
returned by the Login api call and stored in localstorage.
api calls without credentials return code "user:noAuth", and with bad
credentials return "user:badAuth". the api client recognizes this and triggers
a login. after a login, all auth-failed api calls are automatically retried.
only for "user:badAuth" is an error message displayed in the login form (e.g.
session expired).
in an ideal world, browsers would take care of most session management. a
server would indicate authentication is needed (like http basic auth), and the
browsers uses trusted ui to request credentials for the server & path. the
browser could use safer mechanism than sending original passwords to the
server, such as scram, along with a standard way to create sessions. for now,
web developers have to do authentication themselves: from showing the login
prompt, ensuring the right session/csrf cookies/localstorage/headers/etc are
sent with each request.
webauthn is a newer way to do authentication, perhaps we'll implement it in the
future. though hardware tokens aren't an attractive option for many users, and
it may be overkill as long as we still do old-fashioned authentication in smtp
& imap where passwords can be sent to the server.
for issue #58
2024-01-04 15:10:48 +03:00
const login = async ( reason : string ) = > {
2024-12-06 16:57:20 +03:00
popupOpen = true // Prevent global key event handler from consuming keys.
replace http basic auth for web interfaces with session cookie & csrf-based auth
the http basic auth we had was very simple to reason about, and to implement.
but it has a major downside:
there is no way to logout, browsers keep sending credentials. ideally, browsers
themselves would show a button to stop sending credentials.
a related downside: the http auth mechanism doesn't indicate for which server
paths the credentials are.
another downside: the original password is sent to the server with each
request. though sending original passwords to web servers seems to be
considered normal.
our new approach uses session cookies, along with csrf values when we can. the
sessions are server-side managed, automatically extended on each use. this
makes it easy to invalidate sessions and keeps the frontend simpler (than with
long- vs short-term sessions and refreshing). the cookies are httponly,
samesite=strict, scoped to the path of the web interface. cookies are set
"secure" when set over https. the cookie is set by a successful call to Login.
a call to Logout invalidates a session. changing a password invalidates all
sessions for a user, but keeps the session with which the password was changed
alive. the csrf value is also random, and associated with the session cookie.
the csrf must be sent as header for api calls, or as parameter for direct form
posts (where we cannot set a custom header). rest-like calls made directly by
the browser, e.g. for images, don't have a csrf protection. the csrf value is
returned by the Login api call and stored in localstorage.
api calls without credentials return code "user:noAuth", and with bad
credentials return "user:badAuth". the api client recognizes this and triggers
a login. after a login, all auth-failed api calls are automatically retried.
only for "user:badAuth" is an error message displayed in the login form (e.g.
session expired).
in an ideal world, browsers would take care of most session management. a
server would indicate authentication is needed (like http basic auth), and the
browsers uses trusted ui to request credentials for the server & path. the
browser could use safer mechanism than sending original passwords to the
server, such as scram, along with a standard way to create sessions. for now,
web developers have to do authentication themselves: from showing the login
prompt, ensuring the right session/csrf cookies/localstorage/headers/etc are
sent with each request.
webauthn is a newer way to do authentication, perhaps we'll implement it in the
future. though hardware tokens aren't an attractive option for many users, and
it may be overkill as long as we still do old-fashioned authentication in smtp
& imap where passwords can be sent to the server.
for issue #58
2024-01-04 15:10:48 +03:00
return new Promise < string > ( ( resolve : ( v : string ) = > void , _ ) = > {
const origFocus = document . activeElement
let reasonElem : HTMLElement
let fieldset : HTMLFieldSetElement
2024-01-08 23:59:15 +03:00
let autosize : HTMLElement
replace http basic auth for web interfaces with session cookie & csrf-based auth
the http basic auth we had was very simple to reason about, and to implement.
but it has a major downside:
there is no way to logout, browsers keep sending credentials. ideally, browsers
themselves would show a button to stop sending credentials.
a related downside: the http auth mechanism doesn't indicate for which server
paths the credentials are.
another downside: the original password is sent to the server with each
request. though sending original passwords to web servers seems to be
considered normal.
our new approach uses session cookies, along with csrf values when we can. the
sessions are server-side managed, automatically extended on each use. this
makes it easy to invalidate sessions and keeps the frontend simpler (than with
long- vs short-term sessions and refreshing). the cookies are httponly,
samesite=strict, scoped to the path of the web interface. cookies are set
"secure" when set over https. the cookie is set by a successful call to Login.
a call to Logout invalidates a session. changing a password invalidates all
sessions for a user, but keeps the session with which the password was changed
alive. the csrf value is also random, and associated with the session cookie.
the csrf must be sent as header for api calls, or as parameter for direct form
posts (where we cannot set a custom header). rest-like calls made directly by
the browser, e.g. for images, don't have a csrf protection. the csrf value is
returned by the Login api call and stored in localstorage.
api calls without credentials return code "user:noAuth", and with bad
credentials return "user:badAuth". the api client recognizes this and triggers
a login. after a login, all auth-failed api calls are automatically retried.
only for "user:badAuth" is an error message displayed in the login form (e.g.
session expired).
in an ideal world, browsers would take care of most session management. a
server would indicate authentication is needed (like http basic auth), and the
browsers uses trusted ui to request credentials for the server & path. the
browser could use safer mechanism than sending original passwords to the
server, such as scram, along with a standard way to create sessions. for now,
web developers have to do authentication themselves: from showing the login
prompt, ensuring the right session/csrf cookies/localstorage/headers/etc are
sent with each request.
webauthn is a newer way to do authentication, perhaps we'll implement it in the
future. though hardware tokens aren't an attractive option for many users, and
it may be overkill as long as we still do old-fashioned authentication in smtp
& imap where passwords can be sent to the server.
for issue #58
2024-01-04 15:10:48 +03:00
let username : HTMLInputElement
let password : HTMLInputElement
const root = dom . div (
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
css ( 'loginOverlay' , { position : 'absolute' , top : 0 , right : 0 , bottom : 0 , left : 0 , backgroundColor : styles.overlayOpaqueBackgroundColor , display : 'flex' , alignItems : 'center' , justifyContent : 'center' , zIndex : zindexes.login , animation : 'fadein .15s ease-in' } ) ,
replace http basic auth for web interfaces with session cookie & csrf-based auth
the http basic auth we had was very simple to reason about, and to implement.
but it has a major downside:
there is no way to logout, browsers keep sending credentials. ideally, browsers
themselves would show a button to stop sending credentials.
a related downside: the http auth mechanism doesn't indicate for which server
paths the credentials are.
another downside: the original password is sent to the server with each
request. though sending original passwords to web servers seems to be
considered normal.
our new approach uses session cookies, along with csrf values when we can. the
sessions are server-side managed, automatically extended on each use. this
makes it easy to invalidate sessions and keeps the frontend simpler (than with
long- vs short-term sessions and refreshing). the cookies are httponly,
samesite=strict, scoped to the path of the web interface. cookies are set
"secure" when set over https. the cookie is set by a successful call to Login.
a call to Logout invalidates a session. changing a password invalidates all
sessions for a user, but keeps the session with which the password was changed
alive. the csrf value is also random, and associated with the session cookie.
the csrf must be sent as header for api calls, or as parameter for direct form
posts (where we cannot set a custom header). rest-like calls made directly by
the browser, e.g. for images, don't have a csrf protection. the csrf value is
returned by the Login api call and stored in localstorage.
api calls without credentials return code "user:noAuth", and with bad
credentials return "user:badAuth". the api client recognizes this and triggers
a login. after a login, all auth-failed api calls are automatically retried.
only for "user:badAuth" is an error message displayed in the login form (e.g.
session expired).
in an ideal world, browsers would take care of most session management. a
server would indicate authentication is needed (like http basic auth), and the
browsers uses trusted ui to request credentials for the server & path. the
browser could use safer mechanism than sending original passwords to the
server, such as scram, along with a standard way to create sessions. for now,
web developers have to do authentication themselves: from showing the login
prompt, ensuring the right session/csrf cookies/localstorage/headers/etc are
sent with each request.
webauthn is a newer way to do authentication, perhaps we'll implement it in the
future. though hardware tokens aren't an attractive option for many users, and
it may be overkill as long as we still do old-fashioned authentication in smtp
& imap where passwords can be sent to the server.
for issue #58
2024-01-04 15:10:48 +03:00
dom . div (
2024-08-23 15:48:45 +03:00
style ( { display : 'flex' , flexDirection : 'column' , alignItems : 'center' } ) ,
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
reasonElem = reason ? dom . div ( css ( 'sessionError' , { marginBottom : '2ex' , textAlign : 'center' } ) , reason ) : dom . div ( ) ,
replace http basic auth for web interfaces with session cookie & csrf-based auth
the http basic auth we had was very simple to reason about, and to implement.
but it has a major downside:
there is no way to logout, browsers keep sending credentials. ideally, browsers
themselves would show a button to stop sending credentials.
a related downside: the http auth mechanism doesn't indicate for which server
paths the credentials are.
another downside: the original password is sent to the server with each
request. though sending original passwords to web servers seems to be
considered normal.
our new approach uses session cookies, along with csrf values when we can. the
sessions are server-side managed, automatically extended on each use. this
makes it easy to invalidate sessions and keeps the frontend simpler (than with
long- vs short-term sessions and refreshing). the cookies are httponly,
samesite=strict, scoped to the path of the web interface. cookies are set
"secure" when set over https. the cookie is set by a successful call to Login.
a call to Logout invalidates a session. changing a password invalidates all
sessions for a user, but keeps the session with which the password was changed
alive. the csrf value is also random, and associated with the session cookie.
the csrf must be sent as header for api calls, or as parameter for direct form
posts (where we cannot set a custom header). rest-like calls made directly by
the browser, e.g. for images, don't have a csrf protection. the csrf value is
returned by the Login api call and stored in localstorage.
api calls without credentials return code "user:noAuth", and with bad
credentials return "user:badAuth". the api client recognizes this and triggers
a login. after a login, all auth-failed api calls are automatically retried.
only for "user:badAuth" is an error message displayed in the login form (e.g.
session expired).
in an ideal world, browsers would take care of most session management. a
server would indicate authentication is needed (like http basic auth), and the
browsers uses trusted ui to request credentials for the server & path. the
browser could use safer mechanism than sending original passwords to the
server, such as scram, along with a standard way to create sessions. for now,
web developers have to do authentication themselves: from showing the login
prompt, ensuring the right session/csrf cookies/localstorage/headers/etc are
sent with each request.
webauthn is a newer way to do authentication, perhaps we'll implement it in the
future. though hardware tokens aren't an attractive option for many users, and
it may be overkill as long as we still do old-fashioned authentication in smtp
& imap where passwords can be sent to the server.
for issue #58
2024-01-04 15:10:48 +03:00
dom . div (
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
css ( 'loginPopup' , {
backgroundColor : styles.popupBackgroundColor ,
boxShadow : styles.boxShadow ,
border : '1px solid' ,
borderColor : styles.popupBorderColor ,
borderRadius : '.25em' ,
padding : '1em' ,
maxWidth : '95vw' ,
overflowX : 'auto' ,
maxHeight : '95vh' ,
overflowY : 'auto' ,
marginBottom : '20vh' ,
} ) ,
replace http basic auth for web interfaces with session cookie & csrf-based auth
the http basic auth we had was very simple to reason about, and to implement.
but it has a major downside:
there is no way to logout, browsers keep sending credentials. ideally, browsers
themselves would show a button to stop sending credentials.
a related downside: the http auth mechanism doesn't indicate for which server
paths the credentials are.
another downside: the original password is sent to the server with each
request. though sending original passwords to web servers seems to be
considered normal.
our new approach uses session cookies, along with csrf values when we can. the
sessions are server-side managed, automatically extended on each use. this
makes it easy to invalidate sessions and keeps the frontend simpler (than with
long- vs short-term sessions and refreshing). the cookies are httponly,
samesite=strict, scoped to the path of the web interface. cookies are set
"secure" when set over https. the cookie is set by a successful call to Login.
a call to Logout invalidates a session. changing a password invalidates all
sessions for a user, but keeps the session with which the password was changed
alive. the csrf value is also random, and associated with the session cookie.
the csrf must be sent as header for api calls, or as parameter for direct form
posts (where we cannot set a custom header). rest-like calls made directly by
the browser, e.g. for images, don't have a csrf protection. the csrf value is
returned by the Login api call and stored in localstorage.
api calls without credentials return code "user:noAuth", and with bad
credentials return "user:badAuth". the api client recognizes this and triggers
a login. after a login, all auth-failed api calls are automatically retried.
only for "user:badAuth" is an error message displayed in the login form (e.g.
session expired).
in an ideal world, browsers would take care of most session management. a
server would indicate authentication is needed (like http basic auth), and the
browsers uses trusted ui to request credentials for the server & path. the
browser could use safer mechanism than sending original passwords to the
server, such as scram, along with a standard way to create sessions. for now,
web developers have to do authentication themselves: from showing the login
prompt, ensuring the right session/csrf cookies/localstorage/headers/etc are
sent with each request.
webauthn is a newer way to do authentication, perhaps we'll implement it in the
future. though hardware tokens aren't an attractive option for many users, and
it may be overkill as long as we still do old-fashioned authentication in smtp
& imap where passwords can be sent to the server.
for issue #58
2024-01-04 15:10:48 +03:00
dom . form (
async function submit ( e : SubmitEvent ) {
e . preventDefault ( )
e . stopPropagation ( )
reasonElem . remove ( )
try {
fieldset . disabled = true
const loginToken = await client . LoginPrep ( )
const token = await client . Login ( loginToken , username . value , password . value )
try {
window . localStorage . setItem ( 'webmailcsrftoken' , token )
} catch ( err ) {
console . log ( 'saving csrf token in localStorage' , err )
}
root . remove ( )
if ( origFocus && origFocus instanceof HTMLElement && origFocus . parentNode ) {
origFocus . focus ( )
}
2024-12-06 16:57:20 +03:00
popupOpen = false
replace http basic auth for web interfaces with session cookie & csrf-based auth
the http basic auth we had was very simple to reason about, and to implement.
but it has a major downside:
there is no way to logout, browsers keep sending credentials. ideally, browsers
themselves would show a button to stop sending credentials.
a related downside: the http auth mechanism doesn't indicate for which server
paths the credentials are.
another downside: the original password is sent to the server with each
request. though sending original passwords to web servers seems to be
considered normal.
our new approach uses session cookies, along with csrf values when we can. the
sessions are server-side managed, automatically extended on each use. this
makes it easy to invalidate sessions and keeps the frontend simpler (than with
long- vs short-term sessions and refreshing). the cookies are httponly,
samesite=strict, scoped to the path of the web interface. cookies are set
"secure" when set over https. the cookie is set by a successful call to Login.
a call to Logout invalidates a session. changing a password invalidates all
sessions for a user, but keeps the session with which the password was changed
alive. the csrf value is also random, and associated with the session cookie.
the csrf must be sent as header for api calls, or as parameter for direct form
posts (where we cannot set a custom header). rest-like calls made directly by
the browser, e.g. for images, don't have a csrf protection. the csrf value is
returned by the Login api call and stored in localstorage.
api calls without credentials return code "user:noAuth", and with bad
credentials return "user:badAuth". the api client recognizes this and triggers
a login. after a login, all auth-failed api calls are automatically retried.
only for "user:badAuth" is an error message displayed in the login form (e.g.
session expired).
in an ideal world, browsers would take care of most session management. a
server would indicate authentication is needed (like http basic auth), and the
browsers uses trusted ui to request credentials for the server & path. the
browser could use safer mechanism than sending original passwords to the
server, such as scram, along with a standard way to create sessions. for now,
web developers have to do authentication themselves: from showing the login
prompt, ensuring the right session/csrf cookies/localstorage/headers/etc are
sent with each request.
webauthn is a newer way to do authentication, perhaps we'll implement it in the
future. though hardware tokens aren't an attractive option for many users, and
it may be overkill as long as we still do old-fashioned authentication in smtp
& imap where passwords can be sent to the server.
for issue #58
2024-01-04 15:10:48 +03:00
resolve ( token )
} catch ( err ) {
console . log ( 'login error' , err )
window . alert ( 'Error: ' + errmsg ( err ) )
} finally {
fieldset . disabled = false
}
} ,
fieldset = dom . fieldset (
dom . h1 ( 'Mail' ) ,
dom . label (
style ( { display : 'block' , marginBottom : '2ex' } ) ,
dom . div ( 'Email address' , style ( { marginBottom : '.5ex' } ) ) ,
2024-01-08 23:59:15 +03:00
autosize = dom . span ( dom . _class ( 'autosize' ) ,
username = dom . input (
attr . required ( '' ) ,
2024-11-29 12:40:22 +03:00
attr . autocomplete ( 'username' ) ,
2024-01-08 23:59:15 +03:00
attr . placeholder ( 'jane@example.org' ) ,
function change() { autosize . dataset . value = username . value } ,
function input() { autosize . dataset . value = username . value } ,
) ,
) ,
replace http basic auth for web interfaces with session cookie & csrf-based auth
the http basic auth we had was very simple to reason about, and to implement.
but it has a major downside:
there is no way to logout, browsers keep sending credentials. ideally, browsers
themselves would show a button to stop sending credentials.
a related downside: the http auth mechanism doesn't indicate for which server
paths the credentials are.
another downside: the original password is sent to the server with each
request. though sending original passwords to web servers seems to be
considered normal.
our new approach uses session cookies, along with csrf values when we can. the
sessions are server-side managed, automatically extended on each use. this
makes it easy to invalidate sessions and keeps the frontend simpler (than with
long- vs short-term sessions and refreshing). the cookies are httponly,
samesite=strict, scoped to the path of the web interface. cookies are set
"secure" when set over https. the cookie is set by a successful call to Login.
a call to Logout invalidates a session. changing a password invalidates all
sessions for a user, but keeps the session with which the password was changed
alive. the csrf value is also random, and associated with the session cookie.
the csrf must be sent as header for api calls, or as parameter for direct form
posts (where we cannot set a custom header). rest-like calls made directly by
the browser, e.g. for images, don't have a csrf protection. the csrf value is
returned by the Login api call and stored in localstorage.
api calls without credentials return code "user:noAuth", and with bad
credentials return "user:badAuth". the api client recognizes this and triggers
a login. after a login, all auth-failed api calls are automatically retried.
only for "user:badAuth" is an error message displayed in the login form (e.g.
session expired).
in an ideal world, browsers would take care of most session management. a
server would indicate authentication is needed (like http basic auth), and the
browsers uses trusted ui to request credentials for the server & path. the
browser could use safer mechanism than sending original passwords to the
server, such as scram, along with a standard way to create sessions. for now,
web developers have to do authentication themselves: from showing the login
prompt, ensuring the right session/csrf cookies/localstorage/headers/etc are
sent with each request.
webauthn is a newer way to do authentication, perhaps we'll implement it in the
future. though hardware tokens aren't an attractive option for many users, and
it may be overkill as long as we still do old-fashioned authentication in smtp
& imap where passwords can be sent to the server.
for issue #58
2024-01-04 15:10:48 +03:00
) ,
dom . label (
style ( { display : 'block' , marginBottom : '2ex' } ) ,
dom . div ( 'Password' , style ( { marginBottom : '.5ex' } ) ) ,
2024-11-29 12:40:22 +03:00
password = dom . input ( attr . type ( 'password' ) , attr . autocomplete ( 'current-password' ) , attr . required ( '' ) ) ,
replace http basic auth for web interfaces with session cookie & csrf-based auth
the http basic auth we had was very simple to reason about, and to implement.
but it has a major downside:
there is no way to logout, browsers keep sending credentials. ideally, browsers
themselves would show a button to stop sending credentials.
a related downside: the http auth mechanism doesn't indicate for which server
paths the credentials are.
another downside: the original password is sent to the server with each
request. though sending original passwords to web servers seems to be
considered normal.
our new approach uses session cookies, along with csrf values when we can. the
sessions are server-side managed, automatically extended on each use. this
makes it easy to invalidate sessions and keeps the frontend simpler (than with
long- vs short-term sessions and refreshing). the cookies are httponly,
samesite=strict, scoped to the path of the web interface. cookies are set
"secure" when set over https. the cookie is set by a successful call to Login.
a call to Logout invalidates a session. changing a password invalidates all
sessions for a user, but keeps the session with which the password was changed
alive. the csrf value is also random, and associated with the session cookie.
the csrf must be sent as header for api calls, or as parameter for direct form
posts (where we cannot set a custom header). rest-like calls made directly by
the browser, e.g. for images, don't have a csrf protection. the csrf value is
returned by the Login api call and stored in localstorage.
api calls without credentials return code "user:noAuth", and with bad
credentials return "user:badAuth". the api client recognizes this and triggers
a login. after a login, all auth-failed api calls are automatically retried.
only for "user:badAuth" is an error message displayed in the login form (e.g.
session expired).
in an ideal world, browsers would take care of most session management. a
server would indicate authentication is needed (like http basic auth), and the
browsers uses trusted ui to request credentials for the server & path. the
browser could use safer mechanism than sending original passwords to the
server, such as scram, along with a standard way to create sessions. for now,
web developers have to do authentication themselves: from showing the login
prompt, ensuring the right session/csrf cookies/localstorage/headers/etc are
sent with each request.
webauthn is a newer way to do authentication, perhaps we'll implement it in the
future. though hardware tokens aren't an attractive option for many users, and
it may be overkill as long as we still do old-fashioned authentication in smtp
& imap where passwords can be sent to the server.
for issue #58
2024-01-04 15:10:48 +03:00
) ,
dom . div (
style ( { textAlign : 'center' } ) ,
dom . submitbutton ( 'Login' ) ,
) ,
) ,
)
)
)
)
document . body . appendChild ( root )
username . focus ( )
} )
}
const localStorageGet = ( k : string ) : string | null = > {
try {
return window . localStorage . getItem ( k )
} catch ( err ) {
return null
}
}
const localStorageRemove = ( k : string ) = > {
try {
return window . localStorage . removeItem ( k )
} catch ( err ) {
}
}
const client = new api . Client ( ) . withOptions ( { csrfHeader : 'x-mox-csrf' , login : login } ) . withAuthToken ( localStorageGet ( 'webmailcsrftoken' ) || '' )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
// Link returns a clickable link with rel="noopener noreferrer".
const link = ( href : string , anchorOpt? : string ) : HTMLElement = > dom . a ( attr . href ( href ) , attr . rel ( 'noopener noreferrer' ) , attr . target ( '_blank' ) , anchorOpt || href )
// Returns first own account address matching an address in l.
const envelopeIdentity = ( l : api.MessageAddress [ ] ) : api . MessageAddress | null = > {
for ( const a of l ) {
const ma = accountAddresses . find ( aa = > ( ! aa . User || aa . User === a . User ) && aa . Domain . ASCII === a . Domain . ASCII )
if ( ma ) {
return { Name : ma.Name , User : a.User , Domain : a.Domain }
}
}
return null
}
// We can display keyboard shortcuts when a user clicks a button that has a shortcut.
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
let shortcutElem = dom . div ( css ( 'shortcutFlash' , { fontSize : '2em' , position : 'absolute' , left : '.25em' , bottom : '.25em' , backgroundColor : '#888' , padding : '0.25em .5em' , color : 'white' , borderRadius : '.15em' } ) )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
let shortcutTimer = 0
const showShortcut = ( c : string ) = > {
2024-12-07 14:32:54 +03:00
if ( accountSettings ? . NoShowShortcuts ) {
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
return
}
if ( shortcutTimer ) {
window . clearTimeout ( shortcutTimer )
}
shortcutElem . remove ( )
dom . _kids ( shortcutElem , c )
document . body . appendChild ( shortcutElem )
shortcutTimer = setTimeout ( ( ) = > {
shortcutElem . remove ( )
shortcutTimer = 0
} , 1500 )
}
// Commands for buttons that can have a shortcut.
type command = ( ) = > Promise < void >
// Call cmdfn and display the shortcut for the command if it occurs in shortcuts.
const shortcutCmd = async ( cmdfn : command , shortcuts : { [ key : string ] : command } ) = > {
let shortcut = ''
for ( const k in shortcuts ) {
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
if ( shortcuts [ k ] === cmdfn ) {
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
shortcut = k
break
}
}
if ( shortcut ) {
showShortcut ( shortcut )
}
await cmdfn ( )
}
// clickCmd returns a click handler that runs a cmd and shows its shortcut.
const clickCmd = ( cmdfn : command , shortcuts : { [ key : string ] : command } ) = > {
return async function click() {
shortcutCmd ( cmdfn , shortcuts )
}
}
// enterCmd returns a keydown handler that runs a cmd when Enter is pressed and shows its shortcut.
const enterCmd = ( cmdfn : command , shortcuts : { [ key : string ] : command } ) = > {
return async function keydown ( e : KeyboardEvent ) {
if ( e . key === 'Enter' ) {
e . stopPropagation ( )
shortcutCmd ( cmdfn , shortcuts )
}
}
}
// keyHandler returns a function that handles keyboard events for a map of
// shortcuts, calling the shortcut function if found.
const keyHandler = ( shortcuts : { [ key : string ] : command } ) = > {
return async ( k : string , e : KeyboardEvent ) = > {
const fn = shortcuts [ k ]
if ( fn ) {
e . preventDefault ( )
e . stopPropagation ( )
fn ( )
}
}
}
// For attachment sizes.
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
const formatSize = ( size : number ) = > size > 1024 * 1024 ? ( size / ( 1024 * 1024 ) ) . toFixed ( 1 ) + 'mb' : Math . ceil ( size / 1024 ) + 'kb'
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
// Parse size as used in minsize: and maxsize: in the search bar.
const parseSearchSize = ( s : string ) : [ string , number ] = > {
s = s . trim ( )
if ( ! s ) {
return [ '' , 0 ]
}
const digits = s . match ( /^([0-9]+)/ ) ? . [ 1 ]
if ( ! digits ) {
return [ '' , 0 ]
}
let num = parseInt ( digits )
if ( isNaN ( num ) ) {
return [ '' , 0 ]
}
const suffix = s . substring ( digits . length ) . trim ( ) . toLowerCase ( )
if ( [ 'b' , 'kb' , 'mb' , 'gb' ] . includes ( suffix ) ) {
return [ digits + suffix , num * Math . pow ( 2 , 10 * [ 'b' , 'kb' , 'mb' , 'gb' ] . indexOf ( suffix ) ) ]
}
if ( [ 'k' , 'm' , 'g' ] . includes ( suffix ) ) {
return [ digits + suffix + 'b' , num * Math . pow ( 2 , 10 * ( 1 + [ 'k' , 'm' , 'g' ] . indexOf ( suffix ) ) ) ]
}
return [ '' , 0 ]
}
// JS date does not allow months and days as single digit, it requires a 0
// prefix in those cases, so fix up such dates.
const fixDate = ( dt : string ) : string = > {
const t = dt . split ( '-' )
if ( t . length !== 3 ) {
return dt
}
if ( t [ 1 ] . length === 1 ) {
t [ 1 ] = '0' + t [ 1 ]
}
if ( t [ 2 ] . length === 1 ) {
t [ 2 ] = '0' + t [ 2 ]
}
return t . join ( '-' )
}
// Parse date and/or time, for use in searchbarElem with start: and end:.
const parseSearchDateTime = ( s : string , isstart : boolean ) : string | undefined = > {
const t = s . split ( 'T' , 2 )
if ( t . length === 2 ) {
const d = new Date ( fixDate ( t [ 0 ] ) + 'T' + t [ 1 ] )
return d ? d . toJSON ( ) : undefined
} else if ( t . length === 1 ) {
if ( isNaN ( Date . parse ( fixDate ( t [ 0 ] ) ) ) ) {
const d = new Date ( fixDate ( t [ 0 ] ) )
if ( ! isstart ) {
d . setDate ( d . getDate ( ) + 1 )
}
return d . toJSON ( )
} else {
const tm = t [ 0 ]
const now = new Date ( )
const pad0 = ( v : number ) = > v <= 9 ? '0' + v : '' + v
const d = new Date ( [ now . getFullYear ( ) , pad0 ( now . getMonth ( ) + 1 ) , pad0 ( now . getDate ( ) ) ] . join ( '-' ) + 'T' + tm )
return d ? d . toJSON ( ) : undefined
}
}
return undefined
}
// The searchbarElem is parsed into tokens, each with: minus prefix ("not" match),
// a tag (e.g. "minsize" in "minsize:1m"), a string, and whether the string was
// quoted (text that starts with a dash or looks like a tag needs to be quoted). A
// final ending quote is implicit. All input can be parsed into tokens, there is no
// invalid syntax (at most unexpected parsing).
type Token = [ boolean , string , boolean , string ]
const dquote = ( s : string ) : string = > '"' + s . replaceAll ( '"' , '""' ) + '"'
const needsDquote = ( s : string ) : boolean = > /[ \t"]/ . test ( s )
const packToken = ( t : Token ) : string = > ( t [ 0 ] ? '-' : '' ) + ( t [ 1 ] ? t [ 1 ] + ':' : '' ) + ( t [ 2 ] || needsDquote ( t [ 3 ] ) ? dquote ( t [ 3 ] ) : t [ 3 ] )
// Parse the text from the searchbarElem into tokens. All input is valid.
const parseSearchTokens = ( s : string ) : Token [ ] = > {
if ( ! s ) {
return [ ]
}
const l : Token [ ] = [ ] // Tokens we gathered.
let not = false
let quoted = false // If double quote was seen.
let quoteend = false // Possible closing quote seen. Can also be escaped quote.
let t = '' // Current token. We only keep non-empty tokens.
let tquoted = false // If t started out quoted.
const add = ( ) = > {
if ( t && ( tquoted || ! t . includes ( ':' ) ) ) {
l . push ( [ not , '' , tquoted , t ] )
} else if ( t ) {
const tag = t . split ( ':' , 1 ) [ 0 ]
l . push ( [ not , tag , tquoted , t . substring ( tag . length + 1 ) ] )
}
t = ''
quoted = false
quoteend = false
tquoted = false
not = false
}
; [ . . . s ] . forEach ( c = > {
if ( quoteend ) {
if ( c === '"' ) {
t += '"'
quoteend = false
} else if ( t ) {
add ( )
}
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
} else if ( quoted && c === '"' ) {
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
quoteend = true
} else if ( c === '"' ) {
quoted = true
if ( ! t ) {
tquoted = true
}
} else if ( ! quoted && ( c === ' ' || c === '\t' ) ) {
add ( )
} else if ( c === '-' && ! t && ! tquoted && ! not ) {
not = true
} else {
t += c
}
} )
add ( )
return l
}
// returns a filter with empty/zero required fields.
const newFilter = ( ) : api . Filter = > {
return {
MailboxID : 0 ,
MailboxChildrenIncluded : false ,
MailboxName : '' ,
Attachments : api.AttachmentType.AttachmentIndifferent ,
SizeMin : 0 ,
SizeMax : 0 ,
}
}
const newNotFilter = ( ) : api . NotFilter = > {
return {
Attachments : api.AttachmentType.AttachmentIndifferent ,
}
}
// We keep the original strings typed in by the user, we don't send them to the
// backend, so we keep them separately from api.Filter.
type FilterStrs = {
Oldest : string
Newest : string
SizeMin : string
SizeMax : string
}
// Parse search bar into filters that we can use to populate the form again, or
// send to the server.
const parseSearch = ( searchquery : string , mailboxlistView : MailboxlistView ) : [ api . Filter , api . NotFilter , FilterStrs ] = > {
const tokens = parseSearchTokens ( searchquery )
const fpos = newFilter ( )
fpos . MailboxID = - 1 // All mailboxes excluding Trash/Junk/Rejects.
const notf = newNotFilter ( )
const strs = { Oldest : '' , Newest : '' , SizeMin : '' , SizeMax : '' }
tokens . forEach ( t = > {
const [ not , tag , _ , s ] = t
const f = not ? notf : fpos
if ( ! not ) {
if ( tag === 'mb' || tag === 'mailbox' ) {
const mb = mailboxlistView . findMailboxByName ( s )
if ( mb ) {
fpos . MailboxID = mb . ID
} else if ( s === '' ) {
fpos . MailboxID = 0 // All mailboxes, including Trash/Junk/Rejects.
} else {
fpos . MailboxName = s
fpos . MailboxID = 0
}
return
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
} else if ( tag === 'submb' ) {
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
fpos . MailboxChildrenIncluded = true
return
} else if ( tag === 'start' ) {
const dt = parseSearchDateTime ( s , true )
if ( dt ) {
fpos . Oldest = new Date ( dt )
strs . Oldest = s
return
}
} else if ( tag === 'end' ) {
const dt = parseSearchDateTime ( s , false )
if ( dt ) {
fpos . Newest = new Date ( dt )
strs . Newest = s
return
}
} else if ( tag === 'a' || tag === 'attachments' ) {
if ( s === 'none' || s === 'any' || s === 'image' || s === 'pdf' || s === 'archive' || s === 'zip' || s === 'spreadsheet' || s === 'document' || s === 'presentation' ) {
fpos . Attachments = s as api . AttachmentType
return
}
} else if ( tag === 'h' || tag === 'header' ) {
const k = s . split ( ':' ) [ 0 ]
const v = s . substring ( k . length + 1 )
if ( ! fpos . Headers ) {
fpos . Headers = [ [ k , v ] ]
} else {
fpos . Headers . push ( [ k , v ] )
}
return
} else if ( tag === 'minsize' ) {
const [ str , size ] = parseSearchSize ( s )
if ( str ) {
fpos . SizeMin = size
strs . SizeMin = str
return
}
} else if ( tag === 'maxsize' ) {
const [ str , size ] = parseSearchSize ( s )
if ( str ) {
fpos . SizeMax = size
strs . SizeMax = str
return
}
}
}
if ( tag === 'f' || tag === 'from' ) {
f . From = f . From || [ ]
f . From . push ( s )
return
} else if ( tag === 't' || tag === 'to' ) {
f . To = f . To || [ ]
f . To . push ( s )
return
} else if ( tag === 's' || tag === 'subject' ) {
f . Subject = f . Subject || [ ]
f . Subject . push ( s )
return
} else if ( tag === 'l' || tag === 'label' ) {
f . Labels = f . Labels || [ ]
f . Labels . push ( s )
return
}
f . Words = f . Words || [ ]
f . Words . push ( ( tag ? tag + ':' : '' ) + s )
} )
return [ fpos , notf , strs ]
}
// Errors in catch statements are of type unknown, we normally want its
// message.
const errmsg = ( err : unknown ) = > '' + ( ( err as any ) . message || '(no error message)' )
// Return keydown handler that creates or updates the datalist of its target with
// autocompletion addresses. The tab key completes with the first selection.
let datalistgen = 1
const newAddressComplete = ( ) : any = > {
let datalist : HTMLElement
let completeMatches : string [ ] | null
let completeSearch : string
let completeFull : boolean
2023-12-14 16:31:06 +03:00
let aborter : { abort ? : ( ) = > void } = { }
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
return async function keydown ( e : KeyboardEvent ) {
const target = e . target as HTMLInputElement
if ( ! datalist ) {
datalist = dom . datalist ( attr . id ( 'list-' + datalistgen ++ ) )
target . parentNode ! . insertBefore ( datalist , target )
target . setAttribute ( 'list' , datalist . id )
}
const search = target . value
if ( e . key === 'Tab' ) {
const matches = ( completeMatches || [ ] ) . filter ( s = > s . includes ( search ) )
if ( matches . length > 0 ) {
target . value = matches [ 0 ]
return
} else if ( ( completeMatches || [ ] ) . length === 0 && ! search ) {
return
}
}
if ( completeSearch && search . includes ( completeSearch ) && completeFull ) {
dom . _kids ( datalist , ( completeMatches || [ ] ) . filter ( s = > s . includes ( search ) ) . map ( s = > dom . option ( s ) ) )
return
} else if ( search === completeSearch ) {
return
}
2023-12-14 16:31:06 +03:00
if ( aborter . abort ) {
aborter . abort ( )
}
aborter = { }
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
try {
2023-12-14 16:31:06 +03:00
[ completeMatches , completeFull ] = await withStatus ( 'Autocompleting addresses' , client . withOptions ( { aborter : aborter } ) . CompleteRecipient ( search ) )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
completeSearch = search
dom . _kids ( datalist , ( completeMatches || [ ] ) . map ( s = > dom . option ( s ) ) )
} catch ( err ) {
log ( 'autocomplete error' , errmsg ( err ) )
2023-12-14 16:31:06 +03:00
} finally {
aborter = { }
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
}
}
}
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
const flagList = ( miv : MsgitemView ) : HTMLElement [ ] = > {
const msgflags : [ string , string ] [ ] = [ ] // Flags for message in miv.
const othermsgflags : [ string , string ] [ ] = [ ] // Flags for descendant messages if miv is collapsed. Only flags not in msgflags.
let l = msgflags
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
const seen = new Set < string > ( )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
const flag = ( v : boolean , char : string , name : string ) = > {
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
if ( v && ! seen . has ( name ) ) {
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
l . push ( [ name , char ] )
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
seen . add ( name )
}
}
const addFlags = ( mi : api.MessageItem ) = > {
const m = mi . Message
flag ( m . Answered , 'r' , 'Replied/answered' )
flag ( m . Flagged , '!' , 'Flagged' )
flag ( m . Forwarded , 'f' , 'Forwarded' )
flag ( m . Junk , 'j' , 'Junk' )
flag ( m . Deleted , 'D' , 'Deleted, used in IMAP, message will likely be removed soon.' )
flag ( m . Draft , 'd' , 'Draft' )
flag ( m . Phishing , 'p' , 'Phishing' )
flag ( ! m . Junk && ! m . Notjunk , '?' , 'Unclassified, neither junk nor not junk: message does not contribute to spam classification of new incoming messages' )
flag ( mi . Attachments && mi . Attachments . length > 0 ? true : false , 'a' , 'Has at least one attachment' )
if ( m . ThreadMuted ) {
flag ( true , 'm' , 'Muted, new messages are automatically marked as read.' )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
}
}
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
addFlags ( miv . messageitem )
if ( miv . isCollapsedThreadRoot ( ) ) {
l = othermsgflags
for ( miv of miv . descendants ( ) ) {
addFlags ( miv . messageitem )
}
}
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
const msgItemFlagStyle = css ( 'msgItemFlag' , { marginRight : '1px' , fontWeight : 'normal' , fontSize : '.9em' } )
return msgflags . map ( t = > dom . span ( msgItemFlagStyle , t [ 1 ] , attr . title ( t [ 0 ] ) ) )
. concat ( othermsgflags . map ( t = > dom . span ( msgItemFlagStyle , css ( 'msgItemFlagCollapsed' , { color : styles.colorMilder } ) , t [ 1 ] , attr . title ( t [ 0 ] ) ) ) )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
}
// Turn filters from the search bar into filters with the refine filters (buttons
// above message list) applied, to send to the server in a request. The original
// filters are not modified.
const refineFilters = ( f : api.Filter , notf : api.NotFilter ) : [ api . Filter , api . NotFilter ] = > {
const refine = settings . refine
if ( refine ) {
f = { . . . f }
notf = { . . . notf }
if ( refine === 'unread' ) {
notf . Labels = [ . . . ( notf . Labels || [ ] ) ]
notf . Labels = ( notf . Labels || [ ] ) . concat ( [ '\\Seen' ] )
} else if ( refine === 'read' ) {
f . Labels = [ . . . ( f . Labels || [ ] ) ]
f . Labels = ( f . Labels || [ ] ) . concat ( [ '\\Seen' ] )
} else if ( refine === 'attachments' ) {
f . Attachments = 'any' as api . AttachmentType
} else if ( refine . startsWith ( 'label:' ) ) {
f . Labels = [ . . . ( f . Labels || [ ] ) ]
f . Labels = ( f . Labels || [ ] ) . concat ( [ refine . substring ( 'label:' . length ) ] )
}
}
return [ f , notf ]
}
// For dragging the splitter bars. This function should be called on mousedown. e
// is the mousedown event. Move is the function to call when the bar was dragged,
// typically adjusting styling, e.g. absolutely positioned offsets, possibly based
// on the event.clientX and element bounds offset.
2024-08-03 15:49:38 +03:00
// The returned promise is resolved when dragging is done (and immediately if
// dragging wasn't activated).
const startDrag = ( e : MouseEvent , move : ( e : MouseEvent ) = > void ) : Promise < void > = > {
if ( e . buttons !== 1 ) {
return Promise . resolve ( )
}
return new Promise ( ( resolve , _ ) = > {
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
e . preventDefault ( )
e . stopPropagation ( )
const stop = ( ) = > {
document . body . removeEventListener ( 'mousemove' , move )
document . body . removeEventListener ( 'mouseup' , stop )
2024-08-03 15:49:38 +03:00
resolve ( )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
}
document . body . addEventListener ( 'mousemove' , move )
document . body . addEventListener ( 'mouseup' , stop )
2024-08-03 15:49:38 +03:00
} )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
}
// Returns two handler functions: one for focus that sets a placeholder on the
// target element, and one for blur that restores/clears it again. Keeps forms uncluttered,
// only showing contextual help just before you start typing.
const focusPlaceholder = ( s : string ) : any [ ] = > {
let orig = ''
return [
function focus ( e : FocusEvent ) {
const target = ( e . target ! as HTMLElement )
orig = target . getAttribute ( 'placeholder' ) || ''
target . setAttribute ( 'placeholder' , s )
} ,
function blur ( e : FocusEvent ) {
const target = ( e . target ! as HTMLElement )
if ( orig ) {
target . setAttribute ( 'placeholder' , orig )
} else {
target . removeAttribute ( 'placeholder' )
}
} ,
]
}
2024-02-09 13:21:33 +03:00
// Parse a location hash, with either mailbox or search terms, and optional
// selected message id. The special "#compose " hash, used for handling
// "mailto:"-links, must be handled before calling this function.
//
// Examples:
// #Inbox
// #Inbox,1
// #search mb:Inbox
// #search mb:Inbox,1
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
const parseLocationHash = ( mailboxlistView : MailboxlistView ) : [ string | undefined , number , api . Filter , api . NotFilter ] = > {
let hash = decodeURIComponent ( ( window . location . hash || '#' ) . substring ( 1 ) )
const m = hash . match ( /,([0-9]+)$/ )
let msgid = 0
if ( m ) {
msgid = parseInt ( m [ 1 ] )
hash = hash . substring ( 0 , hash . length - ( ',' . length + m [ 1 ] . length ) )
}
let initmailbox , initsearch
if ( hash . startsWith ( 'search ' ) ) {
initsearch = hash . substring ( 'search ' . length ) . trim ( )
}
let f : api.Filter , notf : api.NotFilter
if ( initsearch ) {
[ f , notf , ] = parseSearch ( initsearch , mailboxlistView )
} else {
initmailbox = hash
if ( ! initmailbox ) {
initmailbox = 'Inbox'
}
f = newFilter ( )
const mb = mailboxlistView . findMailboxByName ( initmailbox )
if ( mb ) {
f . MailboxID = mb . ID
} else {
f . MailboxName = initmailbox
}
notf = newNotFilter ( )
}
return [ initsearch , msgid , f , notf ]
}
// For HTMLElements like fieldset, input, buttons. We make it easy to disable
// elements while the API call they initiated is still in progress. Prevents
// accidental duplicate API call for twitchy clickers.
interface Disablable {
disabled : boolean
}
// When API calls are made, we start displaying what we're doing after 1 second.
// Hopefully the command has completed by then, but slow operations, or in case of
// high latency, we'll start showing it. And hide it again when done. This should
// give a non-cluttered instant feeling most of the time, but informs the user when
// needed.
let statusElem : HTMLElement
const withStatus = async < T > ( action : string , promise : Promise < T > , disablable? : Disablable , noAlert? : boolean ) : Promise < T > = > {
let elem : HTMLElement | undefined
let id = window . setTimeout ( ( ) = > {
2023-10-14 12:13:26 +03:00
elem = dom . span ( action + '... ' )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
statusElem . appendChild ( elem )
id = 0
} , 1000 )
// Could be the element we are going to disable, causing it to lose its focus. We'll restore afterwards.
let origFocus = document . activeElement
try {
if ( disablable ) {
disablable . disabled = true
}
return await promise
} catch ( err ) {
if ( id ) {
window . clearTimeout ( id )
id = 0
}
// Generated by client for aborted requests, e.g. for api.ParsedMessage when loading a message.
if ( ( err as any ) . code === 'sherpa:aborted' ) {
throw err
}
if ( ! noAlert ) {
window . alert ( 'Error: ' + action + ': ' + errmsg ( err ) )
}
// We throw the error again. The ensures callers that await their withStatus call
// won't continue executing. We have a global handler for uncaught promises, but it
// only handles javascript-level errors, not api call/operation errors.
throw err
} finally {
if ( disablable ) {
disablable . disabled = false
}
2024-03-05 10:46:56 +03:00
if ( disablable && origFocus && document . activeElement !== origFocus && origFocus instanceof HTMLElement && origFocus . parentNode ) {
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
origFocus . focus ( )
}
if ( id ) {
window . clearTimeout ( id )
}
if ( elem ) {
elem . remove ( )
}
}
}
2024-04-19 18:24:54 +03:00
const withDisabled = async < T > ( elem : { disabled : boolean } , p : Promise < T > ) : Promise < T > = > {
try {
elem . disabled = true
return await p
} catch ( err ) {
console . log ( { err } )
window . alert ( 'Error: ' + errmsg ( err ) )
throw err
} finally {
elem . disabled = false
}
}
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
// Popover shows kids in a div on top of a mostly transparent overlay on top of
// the document. If transparent is set, the div the kids are in will not get a
// white background. If focus is set, it will be called after adding the
// popover change focus to it, instead of focusing the popover itself.
// Popover returns a function that removes the popover. Clicking the
// transparent overlay, or hitting Escape, closes the popover.
// The div with the kids is positioned around mouse event e, preferably
// towards the right and bottom. But when the position is beyond 2/3's of the
// width or height, it is positioned towards the other direction. The div with
// kids is scrollable if needed.
const popover = ( target : HTMLElement , opts : { transparent? : boolean , fullscreen? : boolean } , . . . kids : HTMLElement [ ] ) = > {
const origFocus = document . activeElement
const pos = target . getBoundingClientRect ( )
const close = ( ) = > {
if ( ! root . parentNode ) {
return
}
root . remove ( )
if ( origFocus && origFocus instanceof HTMLElement && origFocus . parentNode ) {
origFocus . focus ( )
}
}
const posx = opts . fullscreen ?
style ( { left : 0 , right : 0 } ) :
(
pos . x < window . innerWidth / 3 ?
style ( { left : '' + ( pos . x ) + 'px' } ) :
style ( { right : '' + ( window . innerWidth - pos . x - pos . width ) + 'px' } )
)
const posy = opts . fullscreen ?
style ( { top : 0 , bottom : 0 } ) :
(
pos . y + pos . height > window . innerHeight * 2 / 3 ?
style ( { bottom : '' + ( window . innerHeight - ( pos . y - 1 ) ) + 'px' , maxHeight : '' + ( pos . y - 1 - 10 ) + 'px' } ) :
style ( { top : '' + ( pos . y + pos . height + 1 ) + 'px' , maxHeight : '' + ( window . innerHeight - ( pos . y + pos . height + 1 ) - 10 ) + 'px' } )
)
let content : HTMLElement
const root = dom . div (
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
css ( 'popoverOverlay' , { position : 'absolute' , left : 0 , right : 0 , top : 0 , bottom : 0 , zIndex : zindexes.popover , backgroundColor : styles.overlayBackgroundColor } ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
function click ( e : MouseEvent ) {
e . stopPropagation ( )
close ( )
} ,
function keydown ( e : KeyboardEvent ) {
if ( e . key === 'Escape' ) {
e . stopPropagation ( )
close ( )
}
} ,
content = dom . div (
attr . tabindex ( '0' ) ,
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
css ( 'popoverContent' , {
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
position : 'absolute' ,
overflowY : 'auto' ,
} ) ,
posx , posy ,
opts . transparent ? [ ] : [
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
css ( 'popoverContentOpaque' , {
backgroundColor : styles.popupBackgroundColor ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
padding : '1em' ,
borderRadius : '.15em' ,
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
boxShadow : styles.boxShadow ,
border : '1px solid' ,
borderColor : styles.popupBorderColor ,
color : styles.popupColor ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
} ) ,
function click ( e : MouseEvent ) {
e . stopPropagation ( )
} ,
] ,
. . . kids ,
) ,
)
document . body . appendChild ( root )
const first = root . querySelector ( 'input, select, textarea, button' )
if ( first && first instanceof HTMLElement ) {
first . focus ( )
} else {
content . focus ( )
}
return close
}
// Popup shows kids in a centered div with white background on top of a
// transparent overlay on top of the window. Clicking the overlay or hitting
// Escape closes the popup. Scrollbars are automatically added to the div with
// kids. Returns a function that removes the popup.
// While a popup is open, no global keyboard shortcuts are handled. Popups get
// to handle keys themselves, e.g. for scrolling.
let popupOpen = false
const popup = ( . . . kids : ElemArg [ ] ) = > {
const origFocus = document . activeElement
const close = ( ) = > {
if ( ! root . parentNode ) {
return
}
popupOpen = false
root . remove ( )
if ( origFocus && origFocus instanceof HTMLElement && origFocus . parentNode ) {
origFocus . focus ( )
}
}
let content : HTMLElement
const root = dom . div (
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
css ( 'popupOverlay' , { position : 'absolute' , top : 0 , right : 0 , bottom : 0 , left : 0 , backgroundColor : styles.overlayBackgroundColor , display : 'flex' , alignItems : 'center' , justifyContent : 'center' , zIndex : zindexes.popup } ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
function keydown ( e : KeyboardEvent ) {
if ( e . key === 'Escape' ) {
e . stopPropagation ( )
close ( )
}
} ,
function click ( e : MouseEvent ) {
e . stopPropagation ( )
close ( )
} ,
content = dom . div (
attr . tabindex ( '0' ) ,
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
css ( 'popupContent' , { backgroundColor : styles.popupBackgroundColor , boxShadow : styles.boxShadow , border : '1px solid' , borderColor : styles.popupBorderColor , borderRadius : '.25em' , padding : '1em' , maxWidth : '95vw' , overflowX : 'auto' , maxHeight : '95vh' , overflowY : 'auto' } ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
function click ( e : MouseEvent ) {
e . stopPropagation ( )
} ,
kids ,
)
)
popupOpen = true
document . body . appendChild ( root )
content . focus ( )
return close
}
2024-04-19 18:24:54 +03:00
// Show settings screen.
const cmdSettings = async ( ) = > {
let fieldset : HTMLFieldSetElement
let signature : HTMLTextAreaElement
let quoting : HTMLSelectElement
let showAddressSecurity : HTMLInputElement
2024-08-23 15:02:55 +03:00
let showHTML : HTMLInputElement
2024-12-07 14:32:54 +03:00
let showShortcuts : HTMLInputElement
let showHeaders : HTMLTextAreaElement
2024-04-19 18:24:54 +03:00
if ( ! accountSettings ) {
2024-10-10 15:29:52 +03:00
throw new Error ( 'No account settings fetched yet.' )
2024-04-19 18:24:54 +03:00
}
const remove = popup (
2025-01-13 16:53:43 +03:00
css ( 'popupSettings' , { minWidth : '30em' } ) ,
style ( { maxWidth : '50em' } ) ,
2024-04-19 18:24:54 +03:00
dom . h1 ( 'Settings' ) ,
dom . form (
async function submit ( e : SubmitEvent ) {
e . preventDefault ( )
e . stopPropagation ( )
const accSet : api.Settings = {
ID : accountSettings.ID ,
Signature : signature.value ,
Quoting : quoting.value as api . Quoting ,
ShowAddressSecurity : showAddressSecurity.checked ,
2024-08-23 15:02:55 +03:00
ShowHTML : showHTML.checked ,
2024-12-07 14:32:54 +03:00
NoShowShortcuts : ! showShortcuts . checked ,
ShowHeaders : showHeaders.value.split ( '\n' ) . map ( s = > s . trim ( ) ) . filter ( s = > ! ! s ) ,
2024-04-19 18:24:54 +03:00
}
await withDisabled ( fieldset , client . SettingsSave ( accSet ) )
accountSettings = accSet
remove ( )
} ,
fieldset = dom . fieldset (
dom . label (
style ( { margin : '1ex 0' , display : 'block' } ) ,
dom . div ( 'Signature' ) ,
signature = dom . textarea (
new String ( accountSettings . Signature ) ,
style ( { width : '100%' } ) ,
attr . rows ( '' + Math . max ( 3 , 1 + accountSettings . Signature . split ( '\n' ) . length ) ) ,
) ,
) ,
dom . label (
style ( { margin : '1ex 0' , display : 'block' } ) ,
dom . div ( 'Reply above/below original' ) ,
attr . title ( 'Auto: If text is selected, only the replied text is quoted and editing starts below. Otherwise, the full message is quoted and editing starts at the top.' ) ,
quoting = dom . select (
dom . option ( attr . value ( '' ) , 'Auto' ) ,
dom . option ( attr . value ( 'bottom' ) , 'Bottom' , accountSettings . Quoting === api . Quoting . Bottom ? attr . selected ( '' ) : [ ] ) ,
dom . option ( attr . value ( 'top' ) , 'Top' , accountSettings . Quoting === api . Quoting . Top ? attr . selected ( '' ) : [ ] ) ,
) ,
) ,
dom . label (
style ( { margin : '1ex 0' , display : 'block' } ) ,
showAddressSecurity = dom . input ( attr . type ( 'checkbox' ) , accountSettings . ShowAddressSecurity ? attr . checked ( '' ) : [ ] ) ,
' Show address security indications' ,
attr . title ( 'Show bars underneath address input fields, indicating support for STARTTLS/DNSSEC/DANE/MTA-STS/RequireTLS.' ) ,
) ,
2024-08-23 15:02:55 +03:00
dom . label (
style ( { margin : '1ex 0' , display : 'block' } ) ,
showHTML = dom . input ( attr . type ( 'checkbox' ) , accountSettings . ShowHTML ? attr . checked ( '' ) : [ ] ) ,
2024-12-07 14:32:54 +03:00
' Show email as HTML instead of text by default for first-time senders' ,
attr . title ( 'Whether to show HTML or text is remembered per sender. This sets the default for unknown correspondents.' ) ,
2024-08-23 15:02:55 +03:00
) ,
2024-12-07 14:32:54 +03:00
dom . label (
style ( { margin : '1ex 0' , display : 'block' } ) ,
showShortcuts = dom . input ( attr . type ( 'checkbox' ) , accountSettings . NoShowShortcuts ? [ ] : attr . checked ( '' ) ) ,
' Show shortcut keys in bottom left after interaction with mouse' ,
) ,
dom . label (
style ( { margin : '1ex 0' , display : 'block' } ) ,
dom . div ( 'Show additional headers' ) ,
showHeaders = dom . textarea (
new String ( ( accountSettings . ShowHeaders || [ ] ) . join ( '\n' ) ) ,
style ( { width : '100%' } ) ,
attr . rows ( '' + Math . max ( 3 , 1 + ( accountSettings . ShowHeaders || [ ] ) . length ) ) ,
) ,
2025-01-13 16:53:43 +03:00
dom . div ( style ( { fontStyle : 'italic' } ) , 'One header name per line, for example Delivered-To, X-Mox-Reason, User-Agent, ...; Refresh mailbox view for changes to take effect.' ) ,
2024-12-07 14:32:54 +03:00
) ,
dom . div (
style ( { marginTop : '2ex' } ) ,
'Register "mailto:" links with the browser/operating system to compose a message in webmail.' ,
dom . br ( ) ,
dom . clickbutton ( 'Register' , attr . title ( 'In most browsers, registering is only allowed on HTTPS URLs. Your browser may ask for confirmation. If nothing appears to happen, the registration may already have been present.' ) , function click() {
if ( ! window . navigator . registerProtocolHandler ) {
window . alert ( 'Registering a protocol handler ("mailto:") is not supported by your browser.' )
return
}
try {
window . navigator . registerProtocolHandler ( 'mailto' , '#compose %s' )
window . alert ( '"mailto:"-links have been registered' )
} catch ( err ) {
window . alert ( 'Error registering "mailto:" protocol handler: ' + errmsg ( err ) )
}
} ) ,
' ' ,
dom . clickbutton ( 'Unregister' , attr . title ( 'Not all browsers implement unregistering via JavaScript.' ) , function click() {
// Not supported on firefox at the time of writing, and the signature is not in the types.
if ( ! ( window . navigator as any ) . unregisterProtocolHandler ) {
window . alert ( 'Unregistering a protocol handler ("mailto:") via JavaScript is not supported by your browser. See your browser settings to unregister.' )
return
}
try {
( window . navigator as any ) . unregisterProtocolHandler ( 'mailto' , '#compose %s' )
} catch ( err ) {
window . alert ( 'Error unregistering "mailto:" protocol handler: ' + errmsg ( err ) )
return
}
window . alert ( '"mailto:" protocol handler unregistered.' )
} ) ,
) ,
2024-04-19 18:24:54 +03:00
dom . br ( ) ,
dom . div (
dom . submitbutton ( 'Save' ) ,
) ,
) ,
) ,
)
}
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
// Show help popup, with shortcuts and basic explanation.
const cmdHelp = async ( ) = > {
2024-12-07 14:32:54 +03:00
popup (
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
css ( 'popupHelp' , { padding : '1em 1em 2em 1em' } ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
dom . h1 ( 'Help and keyboard shortcuts' ) ,
dom . div ( style ( { display : 'flex' } ) ,
dom . div (
style ( { width : '40em' } ) ,
dom . table (
dom . tr ( dom . td ( attr . colspan ( '2' ) , dom . h2 ( 'Global' , style ( { margin : '0' } ) ) ) ) ,
[
[ 'c' , 'compose new message' ] ,
[ '/' , 'search' ] ,
[ 'i' , 'open inbox' ] ,
[ '?' , 'help' ] ,
[ 'ctrl ?' , 'tooltip for focused element' ] ,
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
[ 'ctrl m' , 'focus message' ] ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
] . map ( t = > dom . tr ( dom . td ( t [ 0 ] ) , dom . td ( t [ 1 ] ) ) ) ,
dom . tr ( dom . td ( attr . colspan ( '2' ) , dom . h2 ( 'Mailbox' , style ( { margin : '0' } ) ) ) ) ,
[
[ '←' , 'collapse' ] ,
[ '→' , 'expand' ] ,
[ 'b' , 'show more actions' ] ,
] . map ( t = > dom . tr ( dom . td ( t [ 0 ] ) , dom . td ( t [ 1 ] ) ) ) ,
dom . tr ( dom . td ( attr . colspan ( '2' ) , dom . h2 ( 'Message list' , style ( { margin : '1ex 0 0 0' } ) ) ) ) ,
dom . tr (
dom . td ( '↓' , ', j' ) ,
dom . td ( 'down one message' ) ,
2024-12-07 13:51:11 +03:00
dom . td (
attr . rowspan ( '6' ) ,
css ( 'helpSideNote' , { color : '#888' , borderLeft : '2px solid' , borderLeftColor : '#888' , paddingLeft : '.5em' } ) ,
dom . div ( 'hold ctrl to only move focus' , attr . title ( 'ctrl-l and ctrl-u are left for the browser the handle' ) ) ,
dom . div ( 'hold shift to expand selection' ) ,
) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
) ,
[
[ [ '↑' , ', k' ] , 'up one message' ] ,
[ 'PageDown, l' , 'down one screen' ] ,
[ 'PageUp, h' , 'up one screen' ] ,
[ 'End, .' , 'to last message' ] ,
[ 'Home, ,' , 'to first message' ] ,
[ 'Space' , 'toggle selection of message' ] ,
] . map ( t = > dom . tr ( dom . td ( t [ 0 ] ) , dom . td ( t [ 1 ] ) ) ) ,
[
[ '' , '' ] ,
[ 'd, Delete' , 'move to trash folder' ] ,
[ 'D' , 'delete permanently' ] ,
[ 'q' , 'move to junk folder' ] ,
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
[ 'Q' , 'mark not junk' ] ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
[ 'a' , 'move to archive folder' ] ,
2024-11-28 20:24:03 +03:00
[ 'M' , 'mark unread and clear (non)junk flags' ] ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
[ 'm' , 'mark read' ] ,
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
[ 'u' , 'to next unread message' ] ,
[ 'p' , 'to root of thread or previous thread' ] ,
[ 'n' , 'to root of next thread' ] ,
[ 'S' , 'select thread messages' ] ,
[ 'C' , 'toggle thread collapse' ] ,
[ 'X' , 'toggle thread mute, automatically marking new messages as read' ] ,
2023-09-21 12:51:38 +03:00
[ '←' , 'collapse thread' ] ,
[ '→' , 'expand thread' ] ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
] . map ( t = > dom . tr ( dom . td ( t [ 0 ] ) , dom . td ( t [ 1 ] ) ) ) ,
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
) ,
) ,
dom . div (
style ( { width : '40em' } ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
dom . table (
dom . tr ( dom . td ( attr . colspan ( '2' ) , dom . h2 ( 'Compose' , style ( { margin : '0' } ) ) ) ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
[
[ 'ctrl Enter' , 'send message' ] ,
2024-04-19 22:03:18 +03:00
[ 'ctrl shift Enter' , 'send message and archive thread' ] ,
2024-05-09 12:46:00 +03:00
[ 'ctrl w' , 'close message' ] ,
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
[ 'ctrl O' , 'add To' ] ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
[ 'ctrl C' , 'add Cc' ] ,
[ 'ctrl B' , 'add Bcc' ] ,
[ 'ctrl Y' , 'add Reply-To' ] ,
2024-04-19 19:03:56 +03:00
[ 'ctrl Backspace' , 'remove current address if empty' ] ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
[ 'ctrl +' , 'add address of same type' ] ,
] . map ( t = > dom . tr ( dom . td ( t [ 0 ] ) , dom . td ( t [ 1 ] ) ) ) ,
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
dom . tr ( dom . td ( attr . colspan ( '2' ) , dom . h2 ( 'Message' , style ( { margin : '1ex 0 0 0' } ) ) ) ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
[
[ 'r' , 'reply or list reply' ] ,
[ 'R' , 'reply all' ] ,
[ 'f' , 'forward message' ] ,
2024-04-20 18:38:25 +03:00
[ 'e' , 'edit draft' ] ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
[ 'v' , 'view attachments' ] ,
2023-09-15 16:51:59 +03:00
[ 't' , 'view text version' ] ,
[ 'T' , 'view HTML version' ] ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
[ 'o' , 'open message in new tab' ] ,
[ 'O' , 'show raw message' ] ,
[ 'ctrl p' , 'print message' ] ,
[ 'I' , 'toggle internals' ] ,
2024-12-07 13:51:11 +03:00
[ 'ctrl i' , 'toggle all headers' ] ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
[ 'alt k, alt ArrowUp' , 'scroll up' ] ,
[ 'alt j, alt ArrowDown' , 'scroll down' ] ,
[ 'alt K' , 'scroll to top' ] ,
[ 'alt J' , 'scroll to end' ] ,
] . map ( t = > dom . tr ( dom . td ( t [ 0 ] ) , dom . td ( t [ 1 ] ) ) ) ,
dom . tr ( dom . td ( dom . h2 ( 'Attachments' , style ( { margin : '1ex 0 0 0' } ) ) ) ) ,
[
[ 'left, h' , 'previous attachment' ] ,
[ 'right, l' , 'next attachment' ] ,
[ '0' , 'first attachment' ] ,
[ '$' , 'next attachment' ] ,
[ 'd' , 'download' ] ,
] . map ( t = > dom . tr ( dom . td ( t [ 0 ] ) , dom . td ( t [ 1 ] ) ) ) ,
) ,
dom . div ( style ( { marginTop : '2ex' , marginBottom : '1ex' } ) , dom . span ( 'Underdotted text' , attr . title ( 'Underdotted text shows additional information on hover.' ) ) , ' show an explanation or additional information when hovered.' ) ,
dom . div ( style ( { marginBottom : '1ex' } ) , 'Multiple messages can be selected by clicking messages while holding the control and/or shift keys. Dragging messages and dropping them on a mailbox moves the messages to that mailbox.' ) ,
dom . div ( style ( { marginBottom : '1ex' } ) , 'Text that changes ' , dom . span ( attr . title ( 'Unicode blocks, e.g. from basic latin to cyrillic, or to emoticons.' ) , '"character groups"' ) , ' without whitespace has an ' , dom . span ( dom . _class ( 'scriptswitch' ) , 'orange underline' ) , ', which can be a sign of an intent to mislead (e.g. phishing).' ) ,
2024-11-28 18:28:05 +03:00
dom . div ( style ( { marginTop : '2ex' } ) , 'Mox is open source email server software, this is version ' , moxversion , ', see ' , dom . a ( attr . href ( 'licenses.txt' ) , 'licenses' ) , '.' , dom . br ( ) , 'Feedback, including bug reports, is appreciated! ' , link ( 'https://github.com/mjl-/mox/issues/new' ) ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
) ,
) ,
)
}
// Show tooltips for either the focused element, or otherwise for all elements
// that aren't reachable with tabindex and aren't marked specially to prevent
// them from showing up (e.g. dates in the msglistview, which can also been
// seen by opening a message).
const cmdTooltip = async ( ) = > {
let elems : Element [ ] = [ ]
if ( document . activeElement && document . activeElement !== document . body ) {
if ( document . activeElement . getAttribute ( 'title' ) ) {
elems = [ document . activeElement ]
}
elems = [ . . . elems , . . . document . activeElement . querySelectorAll ( '[title]' ) ]
}
if ( elems . length === 0 ) {
// Find elements without a parent with tabindex=0.
const seen : { [ title : string ] : boolean } = { }
elems = [ . . . document . body . querySelectorAll ( '[title]:not(.notooltip):not(.silenttitle)' ) ] . filter ( e = > {
const title = e . getAttribute ( 'title' ) || ''
if ( seen [ title ] ) {
return false
}
seen [ title ] = true
return ! ( e instanceof HTMLInputElement || e instanceof HTMLSelectElement || e instanceof HTMLButtonElement || e instanceof HTMLTextAreaElement || e instanceof HTMLAnchorElement || e . getAttribute ( 'tabindex' ) || e . closest ( '[tabindex]' ) )
} )
}
if ( elems . length === 0 ) {
window . alert ( 'No active elements with tooltips found.' )
return
}
popover ( document . body , { transparent : true , fullscreen : true } ,
. . . elems . map ( e = > {
const title = e . getAttribute ( 'title' ) || ''
const pos = e . getBoundingClientRect ( )
return dom . div (
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
css ( 'tooltipContent' , { position : 'absolute' , backgroundColor : [ 'black' , 'white' ] , color : [ 'white' , 'black' ] , borderRadius : '.15em' , padding : '.15em .25em' , maxWidth : '50em' } ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
pos . x < window . innerWidth / 3 ?
style ( { left : '' + ( pos . x ) + 'px' } ) :
style ( { right : '' + ( window . innerWidth - pos . x - pos . width ) + 'px' } ) ,
pos . y + pos . height > window . innerHeight * 2 / 3 ?
style ( { bottom : '' + ( window . innerHeight - ( pos . y - 2 ) ) + 'px' , maxHeight : '' + ( pos . y - 2 ) + 'px' } ) :
style ( { top : '' + ( pos . y + pos . height + 2 ) + 'px' , maxHeight : '' + ( window . innerHeight - ( pos . y + pos . height + 2 ) ) + 'px' } ) ,
title ,
)
} )
)
}
type ComposeOptions = {
from ? : api . MessageAddress [ ]
// Addressees should be either directly an email address, or the header form "name
// <localpart@domain>". They are parsed on the server when the message is
// submitted.
to? : string [ ]
cc? : string [ ]
bcc? : string [ ]
replyto? : string
subject? : string
isForward? : boolean
body? : string
// Message from which to show the attachment to include.
attachmentsMessageItem? : api.MessageItem
// Message is marked as replied/answered or forwarded after submitting, and
// In-Reply-To and References headers are added pointing to this message.
responseMessageID? : number
2023-11-02 22:03:47 +03:00
// Whether message is to a list, due to List-Id header.
isList? : boolean
2024-04-19 18:24:54 +03:00
editOffset? : number // For cursor, default at start.
2024-04-20 18:38:25 +03:00
draftMessageID? : number // For composing for existing draft message, to be removed when message is sent.
webmail: during "send and archive", don't fail with error message when message that is being responded to is already in archive folder
before this change, when archiving, we would move all messages from the thread
that are in the same mailbox as that of the response message to the archive
mailbox. so if the message that was being responsed to was already in the
archive mailbox, the message would be moved from archive mailbox to archive
mailbox, resulting in an error.
with this change, when archiving, we move the thread messages that are in the
same mailbox as is currently open (independent of the mailbox the message lives
in, a common situation in the threading view). if there is no open mailbox
(search results), we still use the mailbox of the message being responded to as
reference.
with this new approach, we won't get errors moving a message to an archive
mailbox when it's already there. well, you can still get that error, but then
you've got the archive mailbox open, or you're in a search result and
responding to an archived message. the error should at least help understand
that nothing is happening.
we are only moving the messages from one active/reference mailbox because we
don't want to move messages from the thread that are in the Sent mailbox, and
we also don't want to move duplicate messages (cross-posts to mailing lists)
that are in other mailboxes. moving only the messages from the current active
mailbox seems safe, and should do what is what users would expect most of the
time.
for issue #233 by mattfbacon, thanks for reporting!
2024-10-31 18:20:11 +03:00
archiveReferenceMailboxID? : number // For "send and archive", the mailbox from which to move messages to the archive mailbox.
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
}
interface ComposeView {
root : HTMLElement
key : ( k : string , e : KeyboardEvent ) = > Promise < void >
2024-04-20 18:38:25 +03:00
unsavedChanges : ( ) = > boolean
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
}
let composeView : ComposeView | null = null
2024-04-19 22:03:18 +03:00
const compose = ( opts : ComposeOptions , listMailboxes : listMailboxes ) = > {
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
log ( 'compose' , opts )
if ( composeView ) {
// todo: should allow multiple
window . alert ( 'Can only compose one message at a time.' )
return
}
type ForwardAttachmentView = {
root : HTMLElement
path : number [ ]
checkbox : HTMLInputElement
}
type AddrView = {
root : HTMLElement
input : HTMLInputElement
implement "requiretls", rfc 8689
with requiretls, the tls verification mode/rules for email deliveries can be
changed by the sender/submitter. in two ways:
1. "requiretls" smtp extension to always enforce verified tls (with mta-sts or
dnssec+dane), along the entire delivery path until delivery into the final
destination mailbox (so entire transport is verified-tls-protected).
2. "tls-required: no" message header, to ignore any tls and tls verification
errors even if the recipient domain has a policy that requires tls verification
(mta-sts and/or dnssec+dane), allowing delivery of non-sensitive messages in
case of misconfiguration/interoperability issues (at least useful for sending
tls reports).
we enable requiretls by default (only when tls is active), for smtp and
submission. it can be disabled through the config.
for each delivery attempt, we now store (per recipient domain, in the account
of the sender) whether the smtp server supports starttls and requiretls. this
support is shown (after having sent a first message) in the webmail when
sending a message (the previous 3 bars under the address input field are now 5
bars, the first for starttls support, the last for requiretls support). when
all recipient domains for a message are known to implement requiretls,
requiretls is automatically selected for sending (instead of "default" tls
behaviour). users can also select the "fallback to insecure" to add the
"tls-required: no" header.
new metrics are added for insight into requiretls errors and (some, not yet
all) cases where tls-required-no ignored a tls/verification error.
the admin can change the requiretls status for messages in the queue. so with
default delivery attempts, when verified tls is required by failing, an admin
could potentially change the field to "tls-required: no"-behaviour.
messages received (over smtp) with the requiretls option, get a comment added
to their Received header line, just before "id", after "with".
2023-10-24 11:06:16 +03:00
isRecipient : boolean
recipientSecurity : null | api . RecipientSecurity
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
}
let fieldset : HTMLFieldSetElement
let from : HTMLSelectElement
let customFrom : HTMLInputElement | null = null
2023-10-15 11:42:20 +03:00
let subjectAutosize : HTMLElement
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
let subject : HTMLInputElement
let body : HTMLTextAreaElement
let attachments : HTMLInputElement
implement "requiretls", rfc 8689
with requiretls, the tls verification mode/rules for email deliveries can be
changed by the sender/submitter. in two ways:
1. "requiretls" smtp extension to always enforce verified tls (with mta-sts or
dnssec+dane), along the entire delivery path until delivery into the final
destination mailbox (so entire transport is verified-tls-protected).
2. "tls-required: no" message header, to ignore any tls and tls verification
errors even if the recipient domain has a policy that requires tls verification
(mta-sts and/or dnssec+dane), allowing delivery of non-sensitive messages in
case of misconfiguration/interoperability issues (at least useful for sending
tls reports).
we enable requiretls by default (only when tls is active), for smtp and
submission. it can be disabled through the config.
for each delivery attempt, we now store (per recipient domain, in the account
of the sender) whether the smtp server supports starttls and requiretls. this
support is shown (after having sent a first message) in the webmail when
sending a message (the previous 3 bars under the address input field are now 5
bars, the first for starttls support, the last for requiretls support). when
all recipient domains for a message are known to implement requiretls,
requiretls is automatically selected for sending (instead of "default" tls
behaviour). users can also select the "fallback to insecure" to add the
"tls-required: no" header.
new metrics are added for insight into requiretls errors and (some, not yet
all) cases where tls-required-no ignored a tls/verification error.
the admin can change the requiretls status for messages in the queue. so with
default delivery attempts, when verified tls is required by failing, an admin
could potentially change the field to "tls-required: no"-behaviour.
messages received (over smtp) with the requiretls option, get a comment added
to their Received header line, just before "id", after "with".
2023-10-24 11:06:16 +03:00
let requiretls : HTMLSelectElement
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
let toBtn : HTMLButtonElement , ccBtn : HTMLButtonElement , bccBtn : HTMLButtonElement , replyToBtn : HTMLButtonElement , customFromBtn : HTMLButtonElement
let replyToCell : HTMLElement , toCell : HTMLElement , ccCell : HTMLElement , bccCell : HTMLElement // Where we append new address views.
let toRow : HTMLElement , replyToRow : HTMLElement , ccRow : HTMLElement , bccRow : HTMLElement // We show/hide rows as needed.
let toViews : AddrView [ ] = [ ] , replytoViews : AddrView [ ] = [ ] , ccViews : AddrView [ ] = [ ] , bccViews : AddrView [ ] = [ ]
let forwardAttachmentViews : ForwardAttachmentView [ ] = [ ]
2024-04-20 18:38:25 +03:00
// todo future: upload attachments with draft messages. would mean we let users remove them again too.
// We automatically save drafts 1m after a change. When closing window, we ask to
// save unsaved change to draft.
let draftMessageID = opts . draftMessageID || 0
let draftSaveTimer = 0
let draftSavePromise = Promise . resolve ( 0 )
let draftLastText = opts . body
2024-11-28 19:22:01 +03:00
const draftCancelSaveTimer = ( ) = > {
2024-04-20 18:38:25 +03:00
if ( draftSaveTimer ) {
window . clearTimeout ( draftSaveTimer )
draftSaveTimer = 0
}
}
const draftScheduleSave = ( ) = > {
if ( draftSaveTimer || body . value === draftLastText ) {
return
}
draftSaveTimer = window . setTimeout ( async ( ) = > {
draftSaveTimer = 0
await withStatus ( 'Saving draft' , draftSave ( ) )
draftScheduleSave ( )
} , 60 * 1000 )
}
const draftSave = async ( ) = > {
2024-11-28 19:22:01 +03:00
draftCancelSaveTimer ( )
2024-04-20 18:38:25 +03:00
let replyTo = ''
if ( replytoViews && replytoViews . length === 1 && replytoViews [ 0 ] . input . value ) {
replyTo = replytoViews [ 0 ] . input . value
}
const cm : api.ComposeMessage = {
From : customFrom ? customFrom.value : from.value ,
To : toViews.map ( v = > v . input . value ) . filter ( s = > s ) ,
Cc : ccViews.map ( v = > v . input . value ) . filter ( s = > s ) ,
Bcc : bccViews.map ( v = > v . input . value ) . filter ( s = > s ) ,
ReplyTo : replyTo ,
Subject : subject.value ,
TextBody : body.value ,
ResponseMessageID : opts.responseMessageID || 0 ,
DraftMessageID : draftMessageID ,
}
const mbdrafts = listMailboxes ( ) . find ( mb = > mb . Draft )
if ( ! mbdrafts ) {
throw new Error ( 'no designated drafts mailbox' )
}
draftSavePromise = client . MessageCompose ( cm , mbdrafts . ID )
2024-11-28 19:22:01 +03:00
try {
draftMessageID = await draftSavePromise
} finally {
draftSavePromise = Promise . resolve ( 0 )
}
2024-04-20 18:38:25 +03:00
draftLastText = cm . TextBody
}
// todo future: on visibilitychange with visibilityState "hidden", use navigator.sendBeacon to save latest modified draft message?
// When window is closed, ask user to cancel due to unsaved changes.
const unsavedChanges = ( ) = > opts . body !== body . value && ( ! draftMessageID || draftLastText !== body . value )
// In Firefox, ctrl-w doesn't seem interceptable when focus is on a button. It is
// when focus is on a textarea or not any specific UI element. So this isn't always
// triggered. But we still have the beforeunload handler that checks for
// unsavedChanges to protect the user in such cases.
2024-05-09 12:46:00 +03:00
const cmdClose = async ( ) = > {
2024-11-28 19:22:01 +03:00
draftCancelSaveTimer ( )
2024-04-20 18:38:25 +03:00
await draftSavePromise
if ( unsavedChanges ( ) ) {
const action = await new Promise < string > ( ( resolve ) = > {
const remove = popup (
2024-05-09 12:46:00 +03:00
dom . p ( dom . b ( 'Message has unsaved changes' ) ) ,
2024-04-20 18:38:25 +03:00
dom . br ( ) ,
dom . div (
dom . clickbutton ( 'Save draft' , function click() {
resolve ( 'save' )
remove ( )
} ) , ' ' ,
2024-05-09 12:46:00 +03:00
draftMessageID ? dom . clickbutton ( 'Remove draft' , function click() {
2024-04-20 18:38:25 +03:00
resolve ( 'remove' )
remove ( )
2024-05-09 12:46:00 +03:00
} ) : [ ] , ' ' ,
dom . clickbutton ( 'Discard changes' , function click() {
resolve ( 'discard' )
remove ( )
2024-04-20 18:38:25 +03:00
} ) , ' ' ,
dom . clickbutton ( 'Cancel' , function click() {
resolve ( 'cancel' )
remove ( )
} ) ,
)
)
} )
if ( action === 'save' ) {
await withStatus ( 'Saving draft' , draftSave ( ) )
} else if ( action === 'remove' ) {
if ( draftMessageID ) {
await withStatus ( 'Removing draft' , client . MessageDelete ( [ draftMessageID ] ) )
}
2024-05-09 12:46:00 +03:00
} else if ( action === 'cancel' ) {
2024-04-20 18:38:25 +03:00
return
}
}
composeElem . remove ( )
composeView = null
}
const cmdSave = async ( ) = > {
2024-11-28 19:22:01 +03:00
draftCancelSaveTimer ( )
2024-04-20 18:38:25 +03:00
await draftSavePromise
await withStatus ( 'Saving draft' , draftSave ( ) )
}
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
2024-04-19 22:03:18 +03:00
const submit = async ( archive : boolean ) = > {
2024-11-28 19:22:01 +03:00
draftCancelSaveTimer ( )
2024-04-20 18:38:25 +03:00
await draftSavePromise
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
const files = await new Promise < api.File [ ] > ( ( resolve , reject ) = > {
const l : api.File [ ] = [ ]
if ( attachments . files && attachments . files . length === 0 ) {
resolve ( l )
return
}
[ . . . attachments . files ! ] . forEach ( f = > {
const fr = new window . FileReader ( )
fr . addEventListener ( 'load' , ( ) = > {
l . push ( { Filename : f.name , DataURI : fr.result as string } )
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
if ( attachments . files && l . length === attachments . files . length ) {
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
resolve ( l )
}
} )
fr . addEventListener ( 'error' , ( ) = > {
reject ( fr . error )
} )
fr . readAsDataURL ( f )
} )
} )
let replyTo = ''
if ( replytoViews && replytoViews . length === 1 && replytoViews [ 0 ] . input . value ) {
replyTo = replytoViews [ 0 ] . input . value
}
const forwardAttachmentPaths = forwardAttachmentViews . filter ( v = > v . checkbox . checked ) . map ( v = > v . path )
const message = {
From : customFrom ? customFrom.value : from.value ,
To : toViews.map ( v = > v . input . value ) . filter ( s = > s ) ,
Cc : ccViews.map ( v = > v . input . value ) . filter ( s = > s ) ,
Bcc : bccViews.map ( v = > v . input . value ) . filter ( s = > s ) ,
ReplyTo : replyTo ,
UserAgent : 'moxwebmail/' + moxversion ,
Subject : subject.value ,
TextBody : body.value ,
Attachments : files ,
ForwardAttachments : forwardAttachmentPaths.length === 0 ? { MessageID : 0 , Paths : [ ] } : { MessageID : opts.attachmentsMessageItem ! . Message . ID , Paths : forwardAttachmentPaths } ,
IsForward : opts.isForward || false ,
ResponseMessageID : opts.responseMessageID || 0 ,
implement "requiretls", rfc 8689
with requiretls, the tls verification mode/rules for email deliveries can be
changed by the sender/submitter. in two ways:
1. "requiretls" smtp extension to always enforce verified tls (with mta-sts or
dnssec+dane), along the entire delivery path until delivery into the final
destination mailbox (so entire transport is verified-tls-protected).
2. "tls-required: no" message header, to ignore any tls and tls verification
errors even if the recipient domain has a policy that requires tls verification
(mta-sts and/or dnssec+dane), allowing delivery of non-sensitive messages in
case of misconfiguration/interoperability issues (at least useful for sending
tls reports).
we enable requiretls by default (only when tls is active), for smtp and
submission. it can be disabled through the config.
for each delivery attempt, we now store (per recipient domain, in the account
of the sender) whether the smtp server supports starttls and requiretls. this
support is shown (after having sent a first message) in the webmail when
sending a message (the previous 3 bars under the address input field are now 5
bars, the first for starttls support, the last for requiretls support). when
all recipient domains for a message are known to implement requiretls,
requiretls is automatically selected for sending (instead of "default" tls
behaviour). users can also select the "fallback to insecure" to add the
"tls-required: no" header.
new metrics are added for insight into requiretls errors and (some, not yet
all) cases where tls-required-no ignored a tls/verification error.
the admin can change the requiretls status for messages in the queue. so with
default delivery attempts, when verified tls is required by failing, an admin
could potentially change the field to "tls-required: no"-behaviour.
messages received (over smtp) with the requiretls option, get a comment added
to their Received header line, just before "id", after "with".
2023-10-24 11:06:16 +03:00
RequireTLS : requiretls.value === '' ? null : requiretls . value === 'yes' ,
2024-02-10 19:55:56 +03:00
FutureRelease : scheduleTime.value ? new Date ( scheduleTime . value ) : null ,
2024-04-19 22:03:18 +03:00
ArchiveThread : archive ,
webmail: during "send and archive", don't fail with error message when message that is being responded to is already in archive folder
before this change, when archiving, we would move all messages from the thread
that are in the same mailbox as that of the response message to the archive
mailbox. so if the message that was being responsed to was already in the
archive mailbox, the message would be moved from archive mailbox to archive
mailbox, resulting in an error.
with this change, when archiving, we move the thread messages that are in the
same mailbox as is currently open (independent of the mailbox the message lives
in, a common situation in the threading view). if there is no open mailbox
(search results), we still use the mailbox of the message being responded to as
reference.
with this new approach, we won't get errors moving a message to an archive
mailbox when it's already there. well, you can still get that error, but then
you've got the archive mailbox open, or you're in a search result and
responding to an archived message. the error should at least help understand
that nothing is happening.
we are only moving the messages from one active/reference mailbox because we
don't want to move messages from the thread that are in the Sent mailbox, and
we also don't want to move duplicate messages (cross-posts to mailing lists)
that are in other mailboxes. moving only the messages from the current active
mailbox seems safe, and should do what is what users would expect most of the
time.
for issue #233 by mattfbacon, thanks for reporting!
2024-10-31 18:20:11 +03:00
ArchiveReferenceMailboxID : opts.archiveReferenceMailboxID || 0 ,
2024-04-20 18:38:25 +03:00
DraftMessageID : draftMessageID ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
}
await client . MessageSubmit ( message )
2024-04-20 18:38:25 +03:00
composeElem . remove ( )
composeView = null
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
}
const cmdSend = async ( ) = > {
2024-04-19 22:03:18 +03:00
await withStatus ( 'Sending email' , submit ( false ) , fieldset )
}
const cmdSendArchive = async ( ) = > {
await withStatus ( 'Sending email and archive' , submit ( true ) , fieldset )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
}
implement "requiretls", rfc 8689
with requiretls, the tls verification mode/rules for email deliveries can be
changed by the sender/submitter. in two ways:
1. "requiretls" smtp extension to always enforce verified tls (with mta-sts or
dnssec+dane), along the entire delivery path until delivery into the final
destination mailbox (so entire transport is verified-tls-protected).
2. "tls-required: no" message header, to ignore any tls and tls verification
errors even if the recipient domain has a policy that requires tls verification
(mta-sts and/or dnssec+dane), allowing delivery of non-sensitive messages in
case of misconfiguration/interoperability issues (at least useful for sending
tls reports).
we enable requiretls by default (only when tls is active), for smtp and
submission. it can be disabled through the config.
for each delivery attempt, we now store (per recipient domain, in the account
of the sender) whether the smtp server supports starttls and requiretls. this
support is shown (after having sent a first message) in the webmail when
sending a message (the previous 3 bars under the address input field are now 5
bars, the first for starttls support, the last for requiretls support). when
all recipient domains for a message are known to implement requiretls,
requiretls is automatically selected for sending (instead of "default" tls
behaviour). users can also select the "fallback to insecure" to add the
"tls-required: no" header.
new metrics are added for insight into requiretls errors and (some, not yet
all) cases where tls-required-no ignored a tls/verification error.
the admin can change the requiretls status for messages in the queue. so with
default delivery attempts, when verified tls is required by failing, an admin
could potentially change the field to "tls-required: no"-behaviour.
messages received (over smtp) with the requiretls option, get a comment added
to their Received header line, just before "id", after "with".
2023-10-24 11:06:16 +03:00
const cmdAddTo = async ( ) = > { newAddrView ( '' , true , toViews , toBtn , toCell , toRow ) }
const cmdAddCc = async ( ) = > { newAddrView ( '' , true , ccViews , ccBtn , ccCell , ccRow ) }
const cmdAddBcc = async ( ) = > { newAddrView ( '' , true , bccViews , bccBtn , bccCell , bccRow ) }
const cmdReplyTo = async ( ) = > { newAddrView ( '' , false , replytoViews , replyToBtn , replyToCell , replyToRow , true ) }
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
const cmdCustomFrom = async ( ) = > {
if ( customFrom ) {
return
}
customFrom = dom . input ( attr . value ( from . value ) , attr . required ( '' ) , focusPlaceholder ( 'Jane <jane@example.org>' ) )
from . replaceWith ( customFrom )
customFromBtn . remove ( )
}
const shortcuts : { [ key : string ] : command } = {
'ctrl Enter' : cmdSend ,
2024-04-19 22:03:18 +03:00
'ctrl shift Enter' : cmdSendArchive ,
2024-05-09 12:46:00 +03:00
'ctrl w' : cmdClose ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
'ctrl O' : cmdAddTo ,
'ctrl C' : cmdAddCc ,
'ctrl B' : cmdAddBcc ,
'ctrl Y' : cmdReplyTo ,
2024-04-20 18:38:25 +03:00
'ctrl s' : cmdSave ,
'ctrl S' : cmdClose ,
2024-04-19 19:03:56 +03:00
// ctrl Backspace and ctrl = (+) not included, they are handled by keydown handlers on in the inputs they remove/add.
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
}
implement "requiretls", rfc 8689
with requiretls, the tls verification mode/rules for email deliveries can be
changed by the sender/submitter. in two ways:
1. "requiretls" smtp extension to always enforce verified tls (with mta-sts or
dnssec+dane), along the entire delivery path until delivery into the final
destination mailbox (so entire transport is verified-tls-protected).
2. "tls-required: no" message header, to ignore any tls and tls verification
errors even if the recipient domain has a policy that requires tls verification
(mta-sts and/or dnssec+dane), allowing delivery of non-sensitive messages in
case of misconfiguration/interoperability issues (at least useful for sending
tls reports).
we enable requiretls by default (only when tls is active), for smtp and
submission. it can be disabled through the config.
for each delivery attempt, we now store (per recipient domain, in the account
of the sender) whether the smtp server supports starttls and requiretls. this
support is shown (after having sent a first message) in the webmail when
sending a message (the previous 3 bars under the address input field are now 5
bars, the first for starttls support, the last for requiretls support). when
all recipient domains for a message are known to implement requiretls,
requiretls is automatically selected for sending (instead of "default" tls
behaviour). users can also select the "fallback to insecure" to add the
"tls-required: no" header.
new metrics are added for insight into requiretls errors and (some, not yet
all) cases where tls-required-no ignored a tls/verification error.
the admin can change the requiretls status for messages in the queue. so with
default delivery attempts, when verified tls is required by failing, an admin
could potentially change the field to "tls-required: no"-behaviour.
messages received (over smtp) with the requiretls option, get a comment added
to their Received header line, just before "id", after "with".
2023-10-24 11:06:16 +03:00
const newAddrView = ( addr : string , isRecipient : boolean , views : AddrView [ ] , btn : HTMLButtonElement , cell : HTMLElement , row : HTMLElement , single? : boolean ) = > {
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
if ( single && views . length !== 0 ) {
return
}
2023-10-15 16:05:20 +03:00
let rcptSecPromise : Promise < api.RecipientSecurity > | null = null
let rcptSecAddr : string = ''
let rcptSecAborter : { abort ? : ( ) = > void } = { }
let autosizeElem : HTMLElement , inputElem : HTMLInputElement , securityBar : HTMLElement
const fetchRecipientSecurity = ( ) = > {
2024-04-19 18:24:54 +03:00
if ( ! accountSettings ? . ShowAddressSecurity ) {
return
}
2023-10-15 16:05:20 +03:00
if ( inputElem . value === rcptSecAddr ) {
return
}
securityBar . style . borderImage = ''
rcptSecAddr = inputElem . value
if ( ! inputElem . value ) {
return
}
if ( rcptSecAborter . abort ) {
rcptSecAborter . abort ( )
rcptSecAborter . abort = undefined
}
const color = ( v : api.SecurityResult ) = > {
if ( v === api . SecurityResult . SecurityResultYes ) {
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
return styles . underlineGreen
2023-10-15 16:05:20 +03:00
} else if ( v === api . SecurityResult . SecurityResultNo ) {
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
return styles . underlineRed
2023-10-15 16:05:20 +03:00
} else if ( v === api . SecurityResult . SecurityResultUnknown ) {
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
return 'transparent'
2023-10-15 16:05:20 +03:00
}
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
return styles . underlineGrey
2023-10-15 16:05:20 +03:00
}
implement "requiretls", rfc 8689
with requiretls, the tls verification mode/rules for email deliveries can be
changed by the sender/submitter. in two ways:
1. "requiretls" smtp extension to always enforce verified tls (with mta-sts or
dnssec+dane), along the entire delivery path until delivery into the final
destination mailbox (so entire transport is verified-tls-protected).
2. "tls-required: no" message header, to ignore any tls and tls verification
errors even if the recipient domain has a policy that requires tls verification
(mta-sts and/or dnssec+dane), allowing delivery of non-sensitive messages in
case of misconfiguration/interoperability issues (at least useful for sending
tls reports).
we enable requiretls by default (only when tls is active), for smtp and
submission. it can be disabled through the config.
for each delivery attempt, we now store (per recipient domain, in the account
of the sender) whether the smtp server supports starttls and requiretls. this
support is shown (after having sent a first message) in the webmail when
sending a message (the previous 3 bars under the address input field are now 5
bars, the first for starttls support, the last for requiretls support). when
all recipient domains for a message are known to implement requiretls,
requiretls is automatically selected for sending (instead of "default" tls
behaviour). users can also select the "fallback to insecure" to add the
"tls-required: no" header.
new metrics are added for insight into requiretls errors and (some, not yet
all) cases where tls-required-no ignored a tls/verification error.
the admin can change the requiretls status for messages in the queue. so with
default delivery attempts, when verified tls is required by failing, an admin
could potentially change the field to "tls-required: no"-behaviour.
messages received (over smtp) with the requiretls option, get a comment added
to their Received header line, just before "id", after "with".
2023-10-24 11:06:16 +03:00
const setBar = ( c0 : string , c1 : string , c2 : string , c3 : string , c4 : string ) = > {
2023-10-15 16:05:20 +03:00
const stops = [
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
c0 + ' 0%' , c0 + ' 19%' , 'transparent 19%' , 'transparent 20%' ,
c1 + ' 20%' , c1 + ' 39%' , 'transparent 39%' , 'transparent 40%' ,
c2 + ' 40%' , c2 + ' 59%' , 'transparent 59%' , 'transparent 60%' ,
c3 + ' 60%' , c3 + ' 79%' , 'transparent 79%' , 'transparent 80%' ,
implement "requiretls", rfc 8689
with requiretls, the tls verification mode/rules for email deliveries can be
changed by the sender/submitter. in two ways:
1. "requiretls" smtp extension to always enforce verified tls (with mta-sts or
dnssec+dane), along the entire delivery path until delivery into the final
destination mailbox (so entire transport is verified-tls-protected).
2. "tls-required: no" message header, to ignore any tls and tls verification
errors even if the recipient domain has a policy that requires tls verification
(mta-sts and/or dnssec+dane), allowing delivery of non-sensitive messages in
case of misconfiguration/interoperability issues (at least useful for sending
tls reports).
we enable requiretls by default (only when tls is active), for smtp and
submission. it can be disabled through the config.
for each delivery attempt, we now store (per recipient domain, in the account
of the sender) whether the smtp server supports starttls and requiretls. this
support is shown (after having sent a first message) in the webmail when
sending a message (the previous 3 bars under the address input field are now 5
bars, the first for starttls support, the last for requiretls support). when
all recipient domains for a message are known to implement requiretls,
requiretls is automatically selected for sending (instead of "default" tls
behaviour). users can also select the "fallback to insecure" to add the
"tls-required: no" header.
new metrics are added for insight into requiretls errors and (some, not yet
all) cases where tls-required-no ignored a tls/verification error.
the admin can change the requiretls status for messages in the queue. so with
default delivery attempts, when verified tls is required by failing, an admin
could potentially change the field to "tls-required: no"-behaviour.
messages received (over smtp) with the requiretls option, get a comment added
to their Received header line, just before "id", after "with".
2023-10-24 11:06:16 +03:00
c4 + ' 80%' , c4 + ' 100%' ,
2023-10-15 16:05:20 +03:00
] . join ( ', ' )
securityBar . style . borderImage = 'linear-gradient(to right, ' + stops + ') 1'
}
const aborter : { abort ? : ( ) = > void } = { }
rcptSecAborter = aborter
rcptSecPromise = client . withOptions ( { aborter : aborter } ) . RecipientSecurity ( inputElem . value )
rcptSecPromise . then ( ( rs ) = > {
implement "requiretls", rfc 8689
with requiretls, the tls verification mode/rules for email deliveries can be
changed by the sender/submitter. in two ways:
1. "requiretls" smtp extension to always enforce verified tls (with mta-sts or
dnssec+dane), along the entire delivery path until delivery into the final
destination mailbox (so entire transport is verified-tls-protected).
2. "tls-required: no" message header, to ignore any tls and tls verification
errors even if the recipient domain has a policy that requires tls verification
(mta-sts and/or dnssec+dane), allowing delivery of non-sensitive messages in
case of misconfiguration/interoperability issues (at least useful for sending
tls reports).
we enable requiretls by default (only when tls is active), for smtp and
submission. it can be disabled through the config.
for each delivery attempt, we now store (per recipient domain, in the account
of the sender) whether the smtp server supports starttls and requiretls. this
support is shown (after having sent a first message) in the webmail when
sending a message (the previous 3 bars under the address input field are now 5
bars, the first for starttls support, the last for requiretls support). when
all recipient domains for a message are known to implement requiretls,
requiretls is automatically selected for sending (instead of "default" tls
behaviour). users can also select the "fallback to insecure" to add the
"tls-required: no" header.
new metrics are added for insight into requiretls errors and (some, not yet
all) cases where tls-required-no ignored a tls/verification error.
the admin can change the requiretls status for messages in the queue. so with
default delivery attempts, when verified tls is required by failing, an admin
could potentially change the field to "tls-required: no"-behaviour.
messages received (over smtp) with the requiretls option, get a comment added
to their Received header line, just before "id", after "with".
2023-10-24 11:06:16 +03:00
setBar ( color ( rs . STARTTLS ) , color ( rs . MTASTS ) , color ( rs . DNSSEC ) , color ( rs . DANE ) , color ( rs . RequireTLS ) )
const implemented : string [ ] = [ ]
const check = ( v : boolean , s : string ) = > {
if ( v ) {
implemented . push ( s )
}
}
check ( rs . STARTTLS === api . SecurityResult . SecurityResultYes , 'STARTTLS' )
check ( rs . MTASTS === api . SecurityResult . SecurityResultYes , 'MTASTS' )
check ( rs . DNSSEC === api . SecurityResult . SecurityResultYes , 'DNSSEC' )
check ( rs . DANE === api . SecurityResult . SecurityResultYes , 'DANE' )
check ( rs . RequireTLS === api . SecurityResult . SecurityResultYes , 'RequireTLS' )
const status = 'Security mechanisms known to be implemented by the recipient domain: ' + ( implemented . length === 0 ? '(none)' : implemented . join ( ', ' ) ) + '.'
inputElem . setAttribute ( 'title' , status + '\n\n' + recipientSecurityTitle )
2023-10-15 16:05:20 +03:00
aborter . abort = undefined
implement "requiretls", rfc 8689
with requiretls, the tls verification mode/rules for email deliveries can be
changed by the sender/submitter. in two ways:
1. "requiretls" smtp extension to always enforce verified tls (with mta-sts or
dnssec+dane), along the entire delivery path until delivery into the final
destination mailbox (so entire transport is verified-tls-protected).
2. "tls-required: no" message header, to ignore any tls and tls verification
errors even if the recipient domain has a policy that requires tls verification
(mta-sts and/or dnssec+dane), allowing delivery of non-sensitive messages in
case of misconfiguration/interoperability issues (at least useful for sending
tls reports).
we enable requiretls by default (only when tls is active), for smtp and
submission. it can be disabled through the config.
for each delivery attempt, we now store (per recipient domain, in the account
of the sender) whether the smtp server supports starttls and requiretls. this
support is shown (after having sent a first message) in the webmail when
sending a message (the previous 3 bars under the address input field are now 5
bars, the first for starttls support, the last for requiretls support). when
all recipient domains for a message are known to implement requiretls,
requiretls is automatically selected for sending (instead of "default" tls
behaviour). users can also select the "fallback to insecure" to add the
"tls-required: no" header.
new metrics are added for insight into requiretls errors and (some, not yet
all) cases where tls-required-no ignored a tls/verification error.
the admin can change the requiretls status for messages in the queue. so with
default delivery attempts, when verified tls is required by failing, an admin
could potentially change the field to "tls-required: no"-behaviour.
messages received (over smtp) with the requiretls option, get a comment added
to their Received header line, just before "id", after "with".
2023-10-24 11:06:16 +03:00
v . recipientSecurity = rs
if ( isRecipient ) {
2023-11-02 22:03:47 +03:00
// If we are not replying to a message from a mailing list, and all recipients
// implement REQUIRETLS, we enable it.
let reqtls = opts . isList !== true
implement "requiretls", rfc 8689
with requiretls, the tls verification mode/rules for email deliveries can be
changed by the sender/submitter. in two ways:
1. "requiretls" smtp extension to always enforce verified tls (with mta-sts or
dnssec+dane), along the entire delivery path until delivery into the final
destination mailbox (so entire transport is verified-tls-protected).
2. "tls-required: no" message header, to ignore any tls and tls verification
errors even if the recipient domain has a policy that requires tls verification
(mta-sts and/or dnssec+dane), allowing delivery of non-sensitive messages in
case of misconfiguration/interoperability issues (at least useful for sending
tls reports).
we enable requiretls by default (only when tls is active), for smtp and
submission. it can be disabled through the config.
for each delivery attempt, we now store (per recipient domain, in the account
of the sender) whether the smtp server supports starttls and requiretls. this
support is shown (after having sent a first message) in the webmail when
sending a message (the previous 3 bars under the address input field are now 5
bars, the first for starttls support, the last for requiretls support). when
all recipient domains for a message are known to implement requiretls,
requiretls is automatically selected for sending (instead of "default" tls
behaviour). users can also select the "fallback to insecure" to add the
"tls-required: no" header.
new metrics are added for insight into requiretls errors and (some, not yet
all) cases where tls-required-no ignored a tls/verification error.
the admin can change the requiretls status for messages in the queue. so with
default delivery attempts, when verified tls is required by failing, an admin
could potentially change the field to "tls-required: no"-behaviour.
messages received (over smtp) with the requiretls option, get a comment added
to their Received header line, just before "id", after "with".
2023-10-24 11:06:16 +03:00
const walk = ( l : AddrView [ ] ) = > {
for ( const v of l ) {
2023-11-09 21:57:53 +03:00
if ( v . recipientSecurity ? . RequireTLS !== api . SecurityResult . SecurityResultYes || v . recipientSecurity ? . MTASTS !== api . SecurityResult . SecurityResultYes && v . recipientSecurity ? . DANE !== api . SecurityResult . SecurityResultYes ) {
implement "requiretls", rfc 8689
with requiretls, the tls verification mode/rules for email deliveries can be
changed by the sender/submitter. in two ways:
1. "requiretls" smtp extension to always enforce verified tls (with mta-sts or
dnssec+dane), along the entire delivery path until delivery into the final
destination mailbox (so entire transport is verified-tls-protected).
2. "tls-required: no" message header, to ignore any tls and tls verification
errors even if the recipient domain has a policy that requires tls verification
(mta-sts and/or dnssec+dane), allowing delivery of non-sensitive messages in
case of misconfiguration/interoperability issues (at least useful for sending
tls reports).
we enable requiretls by default (only when tls is active), for smtp and
submission. it can be disabled through the config.
for each delivery attempt, we now store (per recipient domain, in the account
of the sender) whether the smtp server supports starttls and requiretls. this
support is shown (after having sent a first message) in the webmail when
sending a message (the previous 3 bars under the address input field are now 5
bars, the first for starttls support, the last for requiretls support). when
all recipient domains for a message are known to implement requiretls,
requiretls is automatically selected for sending (instead of "default" tls
behaviour). users can also select the "fallback to insecure" to add the
"tls-required: no" header.
new metrics are added for insight into requiretls errors and (some, not yet
all) cases where tls-required-no ignored a tls/verification error.
the admin can change the requiretls status for messages in the queue. so with
default delivery attempts, when verified tls is required by failing, an admin
could potentially change the field to "tls-required: no"-behaviour.
messages received (over smtp) with the requiretls option, get a comment added
to their Received header line, just before "id", after "with".
2023-10-24 11:06:16 +03:00
reqtls = false
break
}
}
}
walk ( toViews )
walk ( ccViews )
walk ( bccViews )
if ( requiretls . value === '' || requiretls . value === 'yes' ) {
requiretls . value = reqtls ? 'yes' : ''
}
}
2023-10-15 16:05:20 +03:00
} , ( ) = > {
implement "requiretls", rfc 8689
with requiretls, the tls verification mode/rules for email deliveries can be
changed by the sender/submitter. in two ways:
1. "requiretls" smtp extension to always enforce verified tls (with mta-sts or
dnssec+dane), along the entire delivery path until delivery into the final
destination mailbox (so entire transport is verified-tls-protected).
2. "tls-required: no" message header, to ignore any tls and tls verification
errors even if the recipient domain has a policy that requires tls verification
(mta-sts and/or dnssec+dane), allowing delivery of non-sensitive messages in
case of misconfiguration/interoperability issues (at least useful for sending
tls reports).
we enable requiretls by default (only when tls is active), for smtp and
submission. it can be disabled through the config.
for each delivery attempt, we now store (per recipient domain, in the account
of the sender) whether the smtp server supports starttls and requiretls. this
support is shown (after having sent a first message) in the webmail when
sending a message (the previous 3 bars under the address input field are now 5
bars, the first for starttls support, the last for requiretls support). when
all recipient domains for a message are known to implement requiretls,
requiretls is automatically selected for sending (instead of "default" tls
behaviour). users can also select the "fallback to insecure" to add the
"tls-required: no" header.
new metrics are added for insight into requiretls errors and (some, not yet
all) cases where tls-required-no ignored a tls/verification error.
the admin can change the requiretls status for messages in the queue. so with
default delivery attempts, when verified tls is required by failing, an admin
could potentially change the field to "tls-required: no"-behaviour.
messages received (over smtp) with the requiretls option, get a comment added
to their Received header line, just before "id", after "with".
2023-10-24 11:06:16 +03:00
setBar ( '#888' , '#888' , '#888' , '#888' , '#888' )
inputElem . setAttribute ( 'title' , 'Error fetching security mechanisms known to be implemented by the recipient domain...\n\n' + recipientSecurityTitle )
2023-10-15 16:05:20 +03:00
aborter . abort = undefined
implement "requiretls", rfc 8689
with requiretls, the tls verification mode/rules for email deliveries can be
changed by the sender/submitter. in two ways:
1. "requiretls" smtp extension to always enforce verified tls (with mta-sts or
dnssec+dane), along the entire delivery path until delivery into the final
destination mailbox (so entire transport is verified-tls-protected).
2. "tls-required: no" message header, to ignore any tls and tls verification
errors even if the recipient domain has a policy that requires tls verification
(mta-sts and/or dnssec+dane), allowing delivery of non-sensitive messages in
case of misconfiguration/interoperability issues (at least useful for sending
tls reports).
we enable requiretls by default (only when tls is active), for smtp and
submission. it can be disabled through the config.
for each delivery attempt, we now store (per recipient domain, in the account
of the sender) whether the smtp server supports starttls and requiretls. this
support is shown (after having sent a first message) in the webmail when
sending a message (the previous 3 bars under the address input field are now 5
bars, the first for starttls support, the last for requiretls support). when
all recipient domains for a message are known to implement requiretls,
requiretls is automatically selected for sending (instead of "default" tls
behaviour). users can also select the "fallback to insecure" to add the
"tls-required: no" header.
new metrics are added for insight into requiretls errors and (some, not yet
all) cases where tls-required-no ignored a tls/verification error.
the admin can change the requiretls status for messages in the queue. so with
default delivery attempts, when verified tls is required by failing, an admin
could potentially change the field to "tls-required: no"-behaviour.
messages received (over smtp) with the requiretls option, get a comment added
to their Received header line, just before "id", after "with".
2023-10-24 11:06:16 +03:00
if ( requiretls . value === 'yes' ) {
requiretls . value = ''
}
2023-10-15 16:05:20 +03:00
} )
}
implement "requiretls", rfc 8689
with requiretls, the tls verification mode/rules for email deliveries can be
changed by the sender/submitter. in two ways:
1. "requiretls" smtp extension to always enforce verified tls (with mta-sts or
dnssec+dane), along the entire delivery path until delivery into the final
destination mailbox (so entire transport is verified-tls-protected).
2. "tls-required: no" message header, to ignore any tls and tls verification
errors even if the recipient domain has a policy that requires tls verification
(mta-sts and/or dnssec+dane), allowing delivery of non-sensitive messages in
case of misconfiguration/interoperability issues (at least useful for sending
tls reports).
we enable requiretls by default (only when tls is active), for smtp and
submission. it can be disabled through the config.
for each delivery attempt, we now store (per recipient domain, in the account
of the sender) whether the smtp server supports starttls and requiretls. this
support is shown (after having sent a first message) in the webmail when
sending a message (the previous 3 bars under the address input field are now 5
bars, the first for starttls support, the last for requiretls support). when
all recipient domains for a message are known to implement requiretls,
requiretls is automatically selected for sending (instead of "default" tls
behaviour). users can also select the "fallback to insecure" to add the
"tls-required: no" header.
new metrics are added for insight into requiretls errors and (some, not yet
all) cases where tls-required-no ignored a tls/verification error.
the admin can change the requiretls status for messages in the queue. so with
default delivery attempts, when verified tls is required by failing, an admin
could potentially change the field to "tls-required: no"-behaviour.
messages received (over smtp) with the requiretls option, get a comment added
to their Received header line, just before "id", after "with".
2023-10-24 11:06:16 +03:00
const recipientSecurityTitle = 'Description of security mechanisms recipient domains may implement:\n1. STARTTLS: Opportunistic (unverified) TLS with STARTTLS, successfully negotiated during the most recent delivery attempt.\n2. MTA-STS: For PKIX/WebPKI-verified TLS.\n3. DNSSEC: MX DNS records are DNSSEC-signed.\n4. DANE: First delivery destination host implements DANE for verified TLS.\n5. RequireTLS: SMTP extension for verified TLS delivery into recipient mailbox, support detected during the most recent delivery attempt.\n\nChecks STARTTLS, DANE and RequireTLS cover the most recently used delivery path, not necessarily all possible delivery paths.\n\nThe bars below the input field indicate implementation status by the recipient domain:\n- Red, not implemented/unsupported\n- Green, implemented/supported\n- Gray, error while determining\n- Absent/white, unknown or skipped (e.g. no previous delivery attempt, or DANE check skipped due to DNSSEC-lookup error)'
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
const root = dom . span (
2023-10-15 11:42:20 +03:00
autosizeElem = dom . span (
dom . _class ( 'autosize' ) ,
inputElem = dom . input (
focusPlaceholder ( 'Jane <jane@example.org>' ) ,
style ( { width : 'auto' } ) ,
attr . value ( addr ) ,
newAddressComplete ( ) ,
2024-04-19 18:24:54 +03:00
accountSettings ? . ShowAddressSecurity ? attr . title ( recipientSecurityTitle ) : [ ] ,
2023-10-15 11:42:20 +03:00
function keydown ( e : KeyboardEvent ) {
2024-04-19 19:03:56 +03:00
if ( e . key === 'Backspace' && e . ctrlKey && inputElem . value === '' ) {
2023-10-15 11:42:20 +03:00
remove ( )
} else if ( e . key === '=' && e . ctrlKey ) {
implement "requiretls", rfc 8689
with requiretls, the tls verification mode/rules for email deliveries can be
changed by the sender/submitter. in two ways:
1. "requiretls" smtp extension to always enforce verified tls (with mta-sts or
dnssec+dane), along the entire delivery path until delivery into the final
destination mailbox (so entire transport is verified-tls-protected).
2. "tls-required: no" message header, to ignore any tls and tls verification
errors even if the recipient domain has a policy that requires tls verification
(mta-sts and/or dnssec+dane), allowing delivery of non-sensitive messages in
case of misconfiguration/interoperability issues (at least useful for sending
tls reports).
we enable requiretls by default (only when tls is active), for smtp and
submission. it can be disabled through the config.
for each delivery attempt, we now store (per recipient domain, in the account
of the sender) whether the smtp server supports starttls and requiretls. this
support is shown (after having sent a first message) in the webmail when
sending a message (the previous 3 bars under the address input field are now 5
bars, the first for starttls support, the last for requiretls support). when
all recipient domains for a message are known to implement requiretls,
requiretls is automatically selected for sending (instead of "default" tls
behaviour). users can also select the "fallback to insecure" to add the
"tls-required: no" header.
new metrics are added for insight into requiretls errors and (some, not yet
all) cases where tls-required-no ignored a tls/verification error.
the admin can change the requiretls status for messages in the queue. so with
default delivery attempts, when verified tls is required by failing, an admin
could potentially change the field to "tls-required: no"-behaviour.
messages received (over smtp) with the requiretls option, get a comment added
to their Received header line, just before "id", after "with".
2023-10-24 11:06:16 +03:00
newAddrView ( '' , isRecipient , views , btn , cell , row , single )
2023-10-15 11:42:20 +03:00
} else {
return
}
e . preventDefault ( )
e . stopPropagation ( )
} ,
function input() {
// data-value is used for size of ::after css pseudo-element to stretch input field.
autosizeElem . dataset . value = inputElem . value
} ,
2023-10-15 16:05:20 +03:00
function change() {
2024-01-08 23:59:15 +03:00
autosizeElem . dataset . value = inputElem . value
2023-10-15 16:05:20 +03:00
fetchRecipientSecurity ( )
} ,
2024-11-23 16:39:54 +03:00
function paste ( e : ClipboardEvent ) {
const data = e . clipboardData ? . getData ( 'text/plain' )
if ( typeof data !== 'string' || data === '' ) {
return
}
const split = data . split ( ',' )
if ( split . length <= 1 ) {
return
}
autosizeElem . dataset . value = inputElem . value = split [ 0 ]
let last
for ( const rest of split . splice ( 1 ) ) {
last = newAddrView ( rest . trim ( ) , isRecipient , views , btn , cell , row , single )
}
last ! ! . input . focus ( )
e . preventDefault ( )
e . stopPropagation ( )
} ,
2023-10-15 16:05:20 +03:00
) ,
securityBar = dom . span (
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
css ( 'securitybar' , {
2023-10-15 16:05:20 +03:00
margin : '0 1px' ,
borderBottom : '1.5px solid' ,
borderBottomColor : 'transparent' ,
} ) ,
2023-10-15 11:42:20 +03:00
) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
) ,
' ' ,
dom . clickbutton ( '-' , style ( { padding : '0 .25em' } ) , attr . arialabel ( 'Remove address.' ) , attr . title ( 'Remove address.' ) , function click() {
remove ( )
if ( single && views . length === 0 ) {
btn . style . display = ''
}
} ) ,
' ' ,
)
2023-10-15 11:42:20 +03:00
autosizeElem . dataset . value = inputElem . value
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
const remove = ( ) = > {
const i = views . indexOf ( v )
views . splice ( i , 1 )
root . remove ( )
if ( views . length === 0 ) {
row . style . display = 'none'
}
if ( views . length === 0 && single ) {
btn . style . display = ''
}
let next = cell . querySelector ( 'input' )
if ( ! next ) {
let tr = row ! . nextSibling as Element
while ( tr ) {
next = tr . querySelector ( 'input' )
if ( ! next && tr . nextSibling ) {
tr = tr . nextSibling as Element
continue
}
break
}
}
if ( next ) {
next . focus ( )
}
}
implement "requiretls", rfc 8689
with requiretls, the tls verification mode/rules for email deliveries can be
changed by the sender/submitter. in two ways:
1. "requiretls" smtp extension to always enforce verified tls (with mta-sts or
dnssec+dane), along the entire delivery path until delivery into the final
destination mailbox (so entire transport is verified-tls-protected).
2. "tls-required: no" message header, to ignore any tls and tls verification
errors even if the recipient domain has a policy that requires tls verification
(mta-sts and/or dnssec+dane), allowing delivery of non-sensitive messages in
case of misconfiguration/interoperability issues (at least useful for sending
tls reports).
we enable requiretls by default (only when tls is active), for smtp and
submission. it can be disabled through the config.
for each delivery attempt, we now store (per recipient domain, in the account
of the sender) whether the smtp server supports starttls and requiretls. this
support is shown (after having sent a first message) in the webmail when
sending a message (the previous 3 bars under the address input field are now 5
bars, the first for starttls support, the last for requiretls support). when
all recipient domains for a message are known to implement requiretls,
requiretls is automatically selected for sending (instead of "default" tls
behaviour). users can also select the "fallback to insecure" to add the
"tls-required: no" header.
new metrics are added for insight into requiretls errors and (some, not yet
all) cases where tls-required-no ignored a tls/verification error.
the admin can change the requiretls status for messages in the queue. so with
default delivery attempts, when verified tls is required by failing, an admin
could potentially change the field to "tls-required: no"-behaviour.
messages received (over smtp) with the requiretls option, get a comment added
to their Received header line, just before "id", after "with".
2023-10-24 11:06:16 +03:00
const v : AddrView = { root : root , input : inputElem , isRecipient : isRecipient , recipientSecurity : null }
fetchRecipientSecurity ( )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
views . push ( v )
cell . appendChild ( v . root )
row . style . display = ''
if ( single ) {
btn . style . display = 'none'
}
2023-10-15 11:42:20 +03:00
inputElem . focus ( )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
return v
}
let noAttachmentsWarning : HTMLElement
const checkAttachments = ( ) = > {
const missingAttachments = ! attachments . files ? . length && ! forwardAttachmentViews . find ( v = > v . checkbox . checked ) && ! ! body . value . split ( '\n' ) . find ( s = > ! s . startsWith ( '>' ) && s . match ( /attach(ed|ment)/ ) )
noAttachmentsWarning . style . display = missingAttachments ? '' : 'none'
}
const normalizeUser = ( a : api.MessageAddress ) = > {
let user = a . User
const domconf = domainAddressConfigs [ a . Domain . ASCII ]
const localpartCatchallSeparator = domconf . LocalpartCatchallSeparator
if ( localpartCatchallSeparator ) {
user = user . split ( localpartCatchallSeparator ) [ 0 ]
}
const localpartCaseSensitive = domconf . LocalpartCaseSensitive
if ( ! localpartCaseSensitive ) {
user = user . toLowerCase ( )
}
return user
}
// Find own address matching the specified address, taking wildcards, localpart
// separators and case-sensitivity into account.
const addressSelf = ( addr : api.MessageAddress ) = > {
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
return accountAddresses . find ( a = > a . Domain . ASCII === addr . Domain . ASCII && ( a . User === '' || normalizeUser ( a ) === normalizeUser ( addr ) ) )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
}
let haveFrom = false
2024-05-09 21:55:03 +03:00
const fromOptions = accountAddresses . filter ( a = > a . User ) . map ( a = > {
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
const selected = opts . from && opts . from . length === 1 && equalAddress ( a , opts . from [ 0 ] ) || loginAddress && equalAddress ( a , loginAddress ) && ( ! opts . from || envelopeIdentity ( opts . from ) )
2024-02-08 20:03:48 +03:00
const o = dom . option ( formatAddress ( a ) , selected ? attr . selected ( '' ) : [ ] )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
if ( selected ) {
haveFrom = true
}
return o
} )
if ( ! haveFrom && opts . from && opts . from . length === 1 ) {
const a = addressSelf ( opts . from [ 0 ] )
if ( a ) {
const fromAddr : api.MessageAddress = { Name : a.Name , User : opts.from [ 0 ] . User , Domain : a.Domain }
2024-02-08 20:03:48 +03:00
const o = dom . option ( formatAddress ( fromAddr ) , attr . selected ( '' ) )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
fromOptions . unshift ( o )
}
}
2024-02-10 19:55:56 +03:00
let scheduleLink : HTMLElement
let scheduleElem : HTMLElement
let scheduleTime : HTMLInputElement
let scheduleWeekday : HTMLElement
const pad0 = ( v : number ) = > v >= 10 ? '' + v : '0' + v
const localdate = ( d : Date ) = > [ d . getFullYear ( ) , pad0 ( d . getMonth ( ) + 1 ) , pad0 ( d . getDate ( ) ) ] . join ( '-' )
const localdatetime = ( d : Date ) = > localdate ( d ) + 'T' + pad0 ( d . getHours ( ) ) + ':' + pad0 ( d . getMinutes ( ) ) + ':00'
const weekdays = [ 'Sunday' , 'Monday' , 'Tuesday' , 'Wednesday' , 'Thursday' , 'Friday' , 'Saturday' ]
const scheduleTimeChanged = ( ) = > {
console . log ( 'datetime change' , scheduleTime . value )
dom . _kids ( scheduleWeekday , weekdays [ new Date ( scheduleTime . value ) . getDay ( ) ] )
}
2024-04-20 11:26:54 +03:00
let resizeLast : { x : number , y : number } | null = null
let resizeTimer : number = 0
const initWidth = window . innerWidth === settings . composeViewportWidth ? settings.composeWidth : 0
const initHeight = window . innerHeight === settings . composeViewportHeight ? settings.composeHeight : 0
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
const composeTextMildStyle = css ( 'composeTextMild' , { textAlign : 'right' , color : styles.colorMild } )
const composeCellStyle = css ( 'composeCell' , { lineHeight : '1.5' } )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
const composeElem = dom . div (
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
css ( 'composePopup' , {
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
position : 'fixed' ,
bottom : '1ex' ,
right : '1ex' ,
zIndex : zindexes.compose ,
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
backgroundColor : styles.popupBackgroundColor ,
boxShadow : styles.boxShadow ,
border : '1px solid' ,
borderColor : styles.popupBorderColor ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
padding : '1em' ,
minWidth : '40em' ,
2023-10-15 11:42:20 +03:00
maxWidth : '95vw' ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
borderRadius : '.25em' ,
2024-04-20 11:26:54 +03:00
display : 'flex' ,
flexDirection : 'column' ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
} ) ,
2024-04-20 11:26:54 +03:00
initWidth ? style ( { width : initWidth + 'px' } ) : [ ] ,
initHeight ? style ( { height : initHeight + 'px' } ) : [ ] ,
dom . div (
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
css ( 'composeResizeGrab' , { position : 'absolute' , marginTop : '-1em' , marginLeft : '-1em' , width : '1em' , height : '1em' , cursor : 'nw-resize' } ) ,
2024-11-28 20:34:48 +03:00
async function mousedown ( e : MouseEvent ) {
// Disable pointer events on the message view. If it has an iframe with a message,
// mouse events while dragging would be consumed by the iframe, breaking our
// resize.
page . style . pointerEvents = 'none'
2024-04-20 11:26:54 +03:00
resizeLast = null
2024-11-28 20:34:48 +03:00
await startDrag ( e , ( e : MouseEvent ) = > {
2024-04-20 11:26:54 +03:00
if ( resizeLast ) {
const bounds = composeElem . getBoundingClientRect ( )
const width = Math . round ( bounds . width + resizeLast . x - e . clientX )
const height = Math . round ( bounds . height + resizeLast . y - e . clientY )
composeElem . style . width = width + 'px'
composeElem . style . height = height + 'px'
body . removeAttribute ( 'rows' )
if ( resizeTimer ) {
window . clearTimeout ( resizeTimer )
}
resizeTimer = window . setTimeout ( ( ) = > {
settingsPut ( { . . . settings , composeWidth : width , composeHeight : height , composeViewportWidth : window.innerWidth , composeViewportHeight : window.innerHeight } )
} , 1000 )
}
resizeLast = { x : e.clientX , y : e.clientY }
} )
2024-11-28 20:34:48 +03:00
page . style . pointerEvents = ''
2024-04-20 11:26:54 +03:00
} ,
) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
dom . form (
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
css ( 'composeForm' , {
2024-04-20 11:26:54 +03:00
flexGrow : '1' ,
display : 'flex' ,
flexDirection : 'column' ,
} ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
fieldset = dom . fieldset (
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
css ( 'composeFields' , {
2024-04-20 11:26:54 +03:00
flexGrow : '1' ,
display : 'flex' ,
flexDirection : 'column' ,
} ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
dom . table (
style ( { width : '100%' } ) ,
dom . tr (
dom . td (
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
composeTextMildStyle ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
dom . span ( 'From:' ) ,
) ,
dom . td (
2024-04-20 18:38:25 +03:00
dom . div (
2024-05-09 12:46:00 +03:00
css ( 'composeButtonsSpread' , { display : 'flex' , gap : '1em' , justifyContent : 'space-between' } ) ,
2024-04-20 18:38:25 +03:00
dom . div (
from = dom . select (
attr . required ( '' ) ,
style ( { width : 'auto' } ) ,
fromOptions ,
) ,
' ' ,
toBtn = dom . clickbutton ( 'To' , clickCmd ( cmdAddTo , shortcuts ) ) , ' ' ,
ccBtn = dom . clickbutton ( 'Cc' , clickCmd ( cmdAddCc , shortcuts ) ) , ' ' ,
bccBtn = dom . clickbutton ( 'Bcc' , clickCmd ( cmdAddBcc , shortcuts ) ) , ' ' ,
replyToBtn = dom . clickbutton ( 'ReplyTo' , clickCmd ( cmdReplyTo , shortcuts ) ) , ' ' ,
customFromBtn = dom . clickbutton ( 'From' , attr . title ( 'Set custom From address/name.' ) , clickCmd ( cmdCustomFrom , shortcuts ) ) ,
) ,
dom . div (
listMailboxes ( ) . find ( mb = > mb . Draft ) ? [
dom . clickbutton ( 'Save' , attr . title ( 'Save draft message.' ) , clickCmd ( cmdSave , shortcuts ) ) , ' ' ,
] : [ ] ,
2024-05-09 12:46:00 +03:00
dom . clickbutton ( 'Close' , attr . title ( 'Close window, saving draft message if body has changed or a draft was saved earlier.' ) , clickCmd ( cmdClose , shortcuts ) ) ,
2024-04-20 18:38:25 +03:00
) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
) ,
) ,
) ,
toRow = dom . tr (
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
dom . td ( 'To:' , composeTextMildStyle ) ,
toCell = dom . td ( composeCellStyle ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
) ,
replyToRow = dom . tr (
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
dom . td ( 'Reply-To:' , composeTextMildStyle ) ,
replyToCell = dom . td ( composeCellStyle ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
) ,
ccRow = dom . tr (
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
dom . td ( 'Cc:' , composeTextMildStyle ) ,
ccCell = dom . td ( composeCellStyle ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
) ,
bccRow = dom . tr (
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
dom . td ( 'Bcc:' , composeTextMildStyle ) ,
bccCell = dom . td ( composeCellStyle ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
) ,
dom . tr (
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
dom . td ( 'Subject:' , composeTextMildStyle ) ,
2023-10-15 11:42:20 +03:00
dom . td (
subjectAutosize = dom . span (
dom . _class ( 'autosize' ) ,
style ( { width : '100%' } ) , // Without 100% width, the span takes minimal width for input, we want the full table cell.
subject = dom . input (
style ( { width : '100%' } ) ,
attr . value ( opts . subject || '' ) ,
attr . required ( '' ) ,
focusPlaceholder ( 'subject...' ) ,
function input() {
subjectAutosize . dataset . value = subject . value
} ,
) ,
) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
) ,
) ,
) ,
2024-04-20 11:26:54 +03:00
body = dom . textarea (
dom . _class ( 'mono' ) ,
style ( {
flexGrow : '1' ,
width : '100%' ,
} ) ,
initHeight === 0 ? attr . rows ( '15' ) : [ ] , // Drives default size, removed on compose window resize.
2023-10-14 15:47:24 +03:00
// Explicit string object so it doesn't get the highlight-unicode-block-changes
// treatment, which would cause characters to disappear.
new String ( opts . body || '' ) ,
2024-04-19 18:24:54 +03:00
prop ( { selectionStart : opts.editOffset || 0 , selectionEnd : opts.editOffset || 0 } ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
function keyup ( e : KeyboardEvent ) {
if ( e . key === 'Enter' ) {
checkAttachments ( )
}
} ,
2024-04-20 18:38:25 +03:00
! listMailboxes ( ) . find ( mb = > mb . Draft ) ? [ ] : function input() {
draftScheduleSave ( )
} ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
) ,
! ( opts . attachmentsMessageItem && opts . attachmentsMessageItem . Attachments && opts . attachmentsMessageItem . Attachments . length > 0 ) ? [ ] : dom . div (
style ( { margin : '.5em 0' } ) ,
'Forward attachments: ' ,
forwardAttachmentViews = ( opts . attachmentsMessageItem ? . Attachments || [ ] ) . map ( a = > {
const filename = a . Filename || '(unnamed)'
const size = formatSize ( a . Part . DecodedSize )
const checkbox = dom . input ( attr . type ( 'checkbox' ) , function change() { checkAttachments ( ) } )
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
const root = dom . label ( checkbox , ' ' + filename + ' ' , dom . span ( '(' + size + ') ' , styleClasses . textMild ) )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
const v : ForwardAttachmentView = {
path : a.Path || [ ] ,
root : root ,
checkbox : checkbox
}
return v
} ) ,
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
dom . label ( styleClasses . textMild , dom . input ( attr . type ( 'checkbox' ) , function change ( e : Event ) {
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
forwardAttachmentViews . forEach ( v = > v . checkbox . checked = ( e . target ! as HTMLInputElement ) . checked )
} ) , ' (Toggle all)' )
) ,
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
noAttachmentsWarning = dom . div ( style ( { display : 'none' } ) , css ( 'composeNoAttachmentsWarning' , { backgroundColor : styles.warningBackgroundColor , padding : '0.15em .25em' , margin : '.5em 0' } ) , 'Message mentions attachments, but no files are attached.' ) ,
implement "requiretls", rfc 8689
with requiretls, the tls verification mode/rules for email deliveries can be
changed by the sender/submitter. in two ways:
1. "requiretls" smtp extension to always enforce verified tls (with mta-sts or
dnssec+dane), along the entire delivery path until delivery into the final
destination mailbox (so entire transport is verified-tls-protected).
2. "tls-required: no" message header, to ignore any tls and tls verification
errors even if the recipient domain has a policy that requires tls verification
(mta-sts and/or dnssec+dane), allowing delivery of non-sensitive messages in
case of misconfiguration/interoperability issues (at least useful for sending
tls reports).
we enable requiretls by default (only when tls is active), for smtp and
submission. it can be disabled through the config.
for each delivery attempt, we now store (per recipient domain, in the account
of the sender) whether the smtp server supports starttls and requiretls. this
support is shown (after having sent a first message) in the webmail when
sending a message (the previous 3 bars under the address input field are now 5
bars, the first for starttls support, the last for requiretls support). when
all recipient domains for a message are known to implement requiretls,
requiretls is automatically selected for sending (instead of "default" tls
behaviour). users can also select the "fallback to insecure" to add the
"tls-required: no" header.
new metrics are added for insight into requiretls errors and (some, not yet
all) cases where tls-required-no ignored a tls/verification error.
the admin can change the requiretls status for messages in the queue. so with
default delivery attempts, when verified tls is required by failing, an admin
could potentially change the field to "tls-required: no"-behaviour.
messages received (over smtp) with the requiretls option, get a comment added
to their Received header line, just before "id", after "with".
2023-10-24 11:06:16 +03:00
dom . label ( style ( { margin : '1ex 0' , display : 'block' } ) , 'Attachments ' , attachments = dom . input ( attr . type ( 'file' ) , attr . multiple ( '' ) , function change() { checkAttachments ( ) } ) ) ,
dom . label (
style ( { margin : '1ex 0' , display : 'block' } ) ,
attr . title ( 'How to use TLS for message delivery over SMTP:\n\nDefault: Delivery attempts follow the policies published by the recipient domain: Verification with MTA-STS and/or DANE, or optional opportunistic unverified STARTTLS if the domain does not specify a policy.\n\nWith RequireTLS: For sensitive messages, you may want to require verified TLS. The recipient destination domain SMTP server must support the REQUIRETLS SMTP extension for delivery to succeed. It is automatically chosen when the destination domain mail servers of all recipients are known to support it.\n\nFallback to insecure: If delivery fails due to MTA-STS and/or DANE policies specified by the recipient domain, and the content is not sensitive, you may choose to ignore the recipient domain TLS policies so delivery can succeed.' ) ,
'TLS ' ,
requiretls = dom . select (
dom . option ( attr . value ( '' ) , 'Default' ) ,
dom . option ( attr . value ( 'yes' ) , 'With RequireTLS' ) ,
dom . option ( attr . value ( 'no' ) , 'Fallback to insecure' ) ,
) ,
) ,
2024-02-10 19:55:56 +03:00
dom . div (
scheduleLink = dom . a ( attr . href ( '' ) , 'Schedule' , function click ( e : MouseEvent ) {
e . preventDefault ( )
scheduleTime . value = localdatetime ( new Date ( ) )
scheduleTimeChanged ( )
scheduleLink . style . display = 'none'
scheduleElem . style . display = ''
scheduleTime . setAttribute ( 'required' , '' )
} ) ,
scheduleElem = dom . div (
style ( { display : 'none' } ) ,
dom . clickbutton ( 'Start of next day' , function click ( e : MouseEvent ) {
e . preventDefault ( )
const d = new Date ( scheduleTime . value )
const nextday = new Date ( d . getTime ( ) + 24 * 3600 * 1000 )
scheduleTime . value = localdate ( nextday ) + 'T09:00:00'
scheduleTimeChanged ( )
} ) , ' ' ,
dom . clickbutton ( '+1 hour' , function click ( e : MouseEvent ) {
e . preventDefault ( )
const d = new Date ( scheduleTime . value )
scheduleTime . value = localdatetime ( new Date ( d . getTime ( ) + 3600 * 1000 ) )
scheduleTimeChanged ( )
} ) , ' ' ,
dom . clickbutton ( '+1 day' , function click ( e : MouseEvent ) {
e . preventDefault ( )
const d = new Date ( scheduleTime . value )
scheduleTime . value = localdatetime ( new Date ( d . getTime ( ) + 24 * 3600 * 1000 ) )
scheduleTimeChanged ( )
} ) , ' ' ,
dom . clickbutton ( 'Now' , function click ( e : MouseEvent ) {
e . preventDefault ( )
scheduleTime . value = localdatetime ( new Date ( ) )
scheduleTimeChanged ( )
} ) , ' ' ,
dom . clickbutton ( 'Cancel' , function click ( e : MouseEvent ) {
e . preventDefault ( )
scheduleLink . style . display = ''
scheduleElem . style . display = 'none'
scheduleTime . removeAttribute ( 'required' )
scheduleTime . value = ''
} ) ,
dom . div (
style ( { marginTop : '1ex' } ) ,
scheduleTime = dom . input ( attr . type ( 'datetime-local' ) , function change() {
scheduleTimeChanged ( )
} ) ,
' in local timezone ' + ( Intl . DateTimeFormat ( ) . resolvedOptions ( ) . timeZone || '' ) + ', ' ,
scheduleWeekday = dom . span ( ) ,
) ,
) ,
) ,
implement "requiretls", rfc 8689
with requiretls, the tls verification mode/rules for email deliveries can be
changed by the sender/submitter. in two ways:
1. "requiretls" smtp extension to always enforce verified tls (with mta-sts or
dnssec+dane), along the entire delivery path until delivery into the final
destination mailbox (so entire transport is verified-tls-protected).
2. "tls-required: no" message header, to ignore any tls and tls verification
errors even if the recipient domain has a policy that requires tls verification
(mta-sts and/or dnssec+dane), allowing delivery of non-sensitive messages in
case of misconfiguration/interoperability issues (at least useful for sending
tls reports).
we enable requiretls by default (only when tls is active), for smtp and
submission. it can be disabled through the config.
for each delivery attempt, we now store (per recipient domain, in the account
of the sender) whether the smtp server supports starttls and requiretls. this
support is shown (after having sent a first message) in the webmail when
sending a message (the previous 3 bars under the address input field are now 5
bars, the first for starttls support, the last for requiretls support). when
all recipient domains for a message are known to implement requiretls,
requiretls is automatically selected for sending (instead of "default" tls
behaviour). users can also select the "fallback to insecure" to add the
"tls-required: no" header.
new metrics are added for insight into requiretls errors and (some, not yet
all) cases where tls-required-no ignored a tls/verification error.
the admin can change the requiretls status for messages in the queue. so with
default delivery attempts, when verified tls is required by failing, an admin
could potentially change the field to "tls-required: no"-behaviour.
messages received (over smtp) with the requiretls option, get a comment added
to their Received header line, just before "id", after "with".
2023-10-24 11:06:16 +03:00
dom . div (
style ( { margin : '3ex 0 1ex 0' , display : 'block' } ) ,
dom . submitbutton ( 'Send' ) ,
2024-04-19 22:03:18 +03:00
' ' ,
opts . responseMessageID && listMailboxes ( ) . find ( mb = > mb . Archive ) ? dom . clickbutton ( 'Send and archive thread' , clickCmd ( cmdSendArchive , shortcuts ) ) : [ ] ,
implement "requiretls", rfc 8689
with requiretls, the tls verification mode/rules for email deliveries can be
changed by the sender/submitter. in two ways:
1. "requiretls" smtp extension to always enforce verified tls (with mta-sts or
dnssec+dane), along the entire delivery path until delivery into the final
destination mailbox (so entire transport is verified-tls-protected).
2. "tls-required: no" message header, to ignore any tls and tls verification
errors even if the recipient domain has a policy that requires tls verification
(mta-sts and/or dnssec+dane), allowing delivery of non-sensitive messages in
case of misconfiguration/interoperability issues (at least useful for sending
tls reports).
we enable requiretls by default (only when tls is active), for smtp and
submission. it can be disabled through the config.
for each delivery attempt, we now store (per recipient domain, in the account
of the sender) whether the smtp server supports starttls and requiretls. this
support is shown (after having sent a first message) in the webmail when
sending a message (the previous 3 bars under the address input field are now 5
bars, the first for starttls support, the last for requiretls support). when
all recipient domains for a message are known to implement requiretls,
requiretls is automatically selected for sending (instead of "default" tls
behaviour). users can also select the "fallback to insecure" to add the
"tls-required: no" header.
new metrics are added for insight into requiretls errors and (some, not yet
all) cases where tls-required-no ignored a tls/verification error.
the admin can change the requiretls status for messages in the queue. so with
default delivery attempts, when verified tls is required by failing, an admin
could potentially change the field to "tls-required: no"-behaviour.
messages received (over smtp) with the requiretls option, get a comment added
to their Received header line, just before "id", after "with".
2023-10-24 11:06:16 +03:00
) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
) ,
async function submit ( e : SubmitEvent ) {
e . preventDefault ( )
shortcutCmd ( cmdSend , shortcuts )
} ,
) ,
)
2023-10-15 11:42:20 +03:00
subjectAutosize . dataset . value = subject . value
implement "requiretls", rfc 8689
with requiretls, the tls verification mode/rules for email deliveries can be
changed by the sender/submitter. in two ways:
1. "requiretls" smtp extension to always enforce verified tls (with mta-sts or
dnssec+dane), along the entire delivery path until delivery into the final
destination mailbox (so entire transport is verified-tls-protected).
2. "tls-required: no" message header, to ignore any tls and tls verification
errors even if the recipient domain has a policy that requires tls verification
(mta-sts and/or dnssec+dane), allowing delivery of non-sensitive messages in
case of misconfiguration/interoperability issues (at least useful for sending
tls reports).
we enable requiretls by default (only when tls is active), for smtp and
submission. it can be disabled through the config.
for each delivery attempt, we now store (per recipient domain, in the account
of the sender) whether the smtp server supports starttls and requiretls. this
support is shown (after having sent a first message) in the webmail when
sending a message (the previous 3 bars under the address input field are now 5
bars, the first for starttls support, the last for requiretls support). when
all recipient domains for a message are known to implement requiretls,
requiretls is automatically selected for sending (instead of "default" tls
behaviour). users can also select the "fallback to insecure" to add the
"tls-required: no" header.
new metrics are added for insight into requiretls errors and (some, not yet
all) cases where tls-required-no ignored a tls/verification error.
the admin can change the requiretls status for messages in the queue. so with
default delivery attempts, when verified tls is required by failing, an admin
could potentially change the field to "tls-required: no"-behaviour.
messages received (over smtp) with the requiretls option, get a comment added
to their Received header line, just before "id", after "with".
2023-10-24 11:06:16 +03:00
; ( opts . to && opts . to . length > 0 ? opts . to : [ '' ] ) . forEach ( s = > newAddrView ( s , true , toViews , toBtn , toCell , toRow ) )
; ( opts . cc || [ ] ) . forEach ( s = > newAddrView ( s , true , ccViews , ccBtn , ccCell , ccRow ) )
; ( opts . bcc || [ ] ) . forEach ( s = > newAddrView ( s , true , bccViews , bccBtn , bccCell , bccRow ) )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
if ( opts . replyto ) {
implement "requiretls", rfc 8689
with requiretls, the tls verification mode/rules for email deliveries can be
changed by the sender/submitter. in two ways:
1. "requiretls" smtp extension to always enforce verified tls (with mta-sts or
dnssec+dane), along the entire delivery path until delivery into the final
destination mailbox (so entire transport is verified-tls-protected).
2. "tls-required: no" message header, to ignore any tls and tls verification
errors even if the recipient domain has a policy that requires tls verification
(mta-sts and/or dnssec+dane), allowing delivery of non-sensitive messages in
case of misconfiguration/interoperability issues (at least useful for sending
tls reports).
we enable requiretls by default (only when tls is active), for smtp and
submission. it can be disabled through the config.
for each delivery attempt, we now store (per recipient domain, in the account
of the sender) whether the smtp server supports starttls and requiretls. this
support is shown (after having sent a first message) in the webmail when
sending a message (the previous 3 bars under the address input field are now 5
bars, the first for starttls support, the last for requiretls support). when
all recipient domains for a message are known to implement requiretls,
requiretls is automatically selected for sending (instead of "default" tls
behaviour). users can also select the "fallback to insecure" to add the
"tls-required: no" header.
new metrics are added for insight into requiretls errors and (some, not yet
all) cases where tls-required-no ignored a tls/verification error.
the admin can change the requiretls status for messages in the queue. so with
default delivery attempts, when verified tls is required by failing, an admin
could potentially change the field to "tls-required: no"-behaviour.
messages received (over smtp) with the requiretls option, get a comment added
to their Received header line, just before "id", after "with".
2023-10-24 11:06:16 +03:00
newAddrView ( opts . replyto , false , replytoViews , replyToBtn , replyToCell , replyToRow , true )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
}
if ( ! opts . cc || ! opts . cc . length ) {
ccRow . style . display = 'none'
}
if ( ! opts . bcc || ! opts . bcc . length ) {
bccRow . style . display = 'none'
}
if ( ! opts . replyto ) {
replyToRow . style . display = 'none'
}
document . body . appendChild ( composeElem )
if ( toViews . length > 0 && ! toViews [ 0 ] . input . value ) {
toViews [ 0 ] . input . focus ( )
} else {
body . focus ( )
}
composeView = {
root : composeElem ,
key : keyHandler ( shortcuts ) ,
2024-04-20 18:38:25 +03:00
unsavedChanges : unsavedChanges ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
}
return composeView
}
// Show popover to edit labels for msgs.
const labelsPopover = ( e : MouseEvent , msgs : api.Message [ ] , possibleLabels : possibleLabels ) : void = > {
if ( msgs . length === 0 ) {
return // Should not happen.
}
const knownLabels = possibleLabels ( )
const activeLabels = ( msgs [ 0 ] . Keywords || [ ] ) . filter ( kw = > msgs . filter ( m = > ( m . Keywords || [ ] ) . includes ( kw ) ) . length === msgs . length )
const msgIDs = msgs . map ( m = > m . ID )
let fieldsetnew : HTMLFieldSetElement
let newlabel : HTMLInputElement
const remove = popover ( e . target ! as HTMLElement , { } ,
dom . div (
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
css ( 'popoverLabels' , { display : 'flex' , flexDirection : 'column' , gap : '1ex' } ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
knownLabels . map ( l = >
dom . div (
dom . label (
dom . input (
attr . type ( 'checkbox' ) ,
activeLabels . includes ( l ) ? attr . checked ( '' ) : [ ] , style ( { marginRight : '.5em' } ) ,
attr . title ( 'Add/remove this label to the message(s), leaving other labels unchanged.' ) ,
async function change ( e : MouseEvent ) {
if ( activeLabels . includes ( l ) ) {
await withStatus ( 'Removing label' , client . FlagsClear ( msgIDs , [ l ] ) , e . target ! as HTMLInputElement )
activeLabels . splice ( activeLabels . indexOf ( l ) , 1 )
} else {
await withStatus ( 'Adding label' , client . FlagsAdd ( msgIDs , [ l ] ) , e . target ! as HTMLInputElement )
activeLabels . push ( l )
}
} ,
) ,
' ' ,
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
dom . span ( styleClasses . keyword , l ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
) ,
)
) ,
) ,
dom . hr ( style ( { margin : '2ex 0' } ) ) ,
dom . form (
async function submit ( e : SubmitEvent ) {
e . preventDefault ( )
await withStatus ( 'Adding new label' , client . FlagsAdd ( msgIDs , [ newlabel . value ] ) , fieldsetnew )
remove ( )
} ,
fieldsetnew = dom . fieldset (
dom . div (
newlabel = dom . input ( focusPlaceholder ( 'new-label' ) , attr . required ( '' ) , attr . title ( 'New label to add/set on the message(s), must be lower-case, ascii-only, without spaces and without the following special characters: (){%*"\].' ) ) ,
' ' ,
dom . submitbutton ( 'Add new label' , attr . title ( 'Add this label to the message(s), leaving other labels unchanged.' ) ) ,
) ,
) ,
) ,
)
}
// Show popover to move messages to a mailbox.
const movePopover = ( e : MouseEvent , mailboxes : api.Mailbox [ ] , msgs : api.Message [ ] ) = > {
if ( msgs . length === 0 ) {
return // Should not happen.
}
let msgsMailboxID = ( msgs [ 0 ] . MailboxID && msgs . filter ( m = > m . MailboxID === msgs [ 0 ] . MailboxID ) . length === msgs . length ) ? msgs [ 0 ] . MailboxID : 0
const remove = popover ( e . target ! as HTMLElement , { } ,
dom . div (
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
css ( 'popoverMove' , { display : 'flex' , flexDirection : 'column' , gap : '.25em' } ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
mailboxes . map ( mb = >
dom . div (
dom . clickbutton (
mb . Name ,
mb . ID === msgsMailboxID ? attr . disabled ( '' ) : [ ] ,
async function click() {
webmail: when moving a single message out of/to the inbox, ask if user wants to create a rule to automatically do that server-side for future deliveries
if the message has a list-id header, we assume this is a (mailing) list
message, and we require a dkim/spf-verified domain (we prefer the shortest that
is a suffix of the list-id value). the rule we would add will mark such
messages as from a mailing list, changing filtering rules on incoming messages
(not enforcing dmarc policies). messages will be matched on list-id header and
will only match if they have the same dkim/spf-verified domain.
if the message doesn't have a list-id header, we'll ask to match based on
"message from" address.
we don't ask the user in several cases:
- if the destination/source mailbox is a special-use mailbox (e.g.
trash,archive,sent,junk; inbox isn't included)
- if the rule already exist (no point in adding it again).
- if the user said "no, not for this list-id/from-address" in the past.
- if the user said "no, not for messages moved to this mailbox" in the past.
we'll add the rule if the message was moved out of the inbox.
if the message was moved to the inbox, we check if there is a matching rule
that we can remove.
we now remember the "no" answers (for list-id, msg-from-addr and mailbox) in
the account database.
to implement the msgfrom rules, this adds support to rulesets for matching on
message "from" address. before, we could match on smtp from address (and other
fields). rulesets now also have a field for comments. webmail adds a note that
it created the rule, with the date.
manual editing of the rulesets is still in the webaccount page. this webmail
functionality is just a convenient way to add/remove common rules.
2024-04-21 18:01:50 +03:00
const moveMsgs = msgs . filter ( m = > m . MailboxID !== mb . ID )
const msgIDs = moveMsgs . map ( m = > m . ID )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
await withStatus ( 'Moving to mailbox' , client . MessageMove ( msgIDs , mb . ID ) )
webmail: when moving a single message out of/to the inbox, ask if user wants to create a rule to automatically do that server-side for future deliveries
if the message has a list-id header, we assume this is a (mailing) list
message, and we require a dkim/spf-verified domain (we prefer the shortest that
is a suffix of the list-id value). the rule we would add will mark such
messages as from a mailing list, changing filtering rules on incoming messages
(not enforcing dmarc policies). messages will be matched on list-id header and
will only match if they have the same dkim/spf-verified domain.
if the message doesn't have a list-id header, we'll ask to match based on
"message from" address.
we don't ask the user in several cases:
- if the destination/source mailbox is a special-use mailbox (e.g.
trash,archive,sent,junk; inbox isn't included)
- if the rule already exist (no point in adding it again).
- if the user said "no, not for this list-id/from-address" in the past.
- if the user said "no, not for messages moved to this mailbox" in the past.
we'll add the rule if the message was moved out of the inbox.
if the message was moved to the inbox, we check if there is a matching rule
that we can remove.
we now remember the "no" answers (for list-id, msg-from-addr and mailbox) in
the account database.
to implement the msgfrom rules, this adds support to rulesets for matching on
message "from" address. before, we could match on smtp from address (and other
fields). rulesets now also have a field for comments. webmail adds a note that
it created the rule, with the date.
manual editing of the rulesets is still in the webaccount page. this webmail
functionality is just a convenient way to add/remove common rules.
2024-04-21 18:01:50 +03:00
if ( moveMsgs . length === 1 ) {
await moveAskRuleset ( moveMsgs [ 0 ] . ID , moveMsgs [ 0 ] . MailboxID , mb , mailboxes )
}
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
remove ( )
}
) ,
)
) ,
)
)
}
webmail: when moving a single message out of/to the inbox, ask if user wants to create a rule to automatically do that server-side for future deliveries
if the message has a list-id header, we assume this is a (mailing) list
message, and we require a dkim/spf-verified domain (we prefer the shortest that
is a suffix of the list-id value). the rule we would add will mark such
messages as from a mailing list, changing filtering rules on incoming messages
(not enforcing dmarc policies). messages will be matched on list-id header and
will only match if they have the same dkim/spf-verified domain.
if the message doesn't have a list-id header, we'll ask to match based on
"message from" address.
we don't ask the user in several cases:
- if the destination/source mailbox is a special-use mailbox (e.g.
trash,archive,sent,junk; inbox isn't included)
- if the rule already exist (no point in adding it again).
- if the user said "no, not for this list-id/from-address" in the past.
- if the user said "no, not for messages moved to this mailbox" in the past.
we'll add the rule if the message was moved out of the inbox.
if the message was moved to the inbox, we check if there is a matching rule
that we can remove.
we now remember the "no" answers (for list-id, msg-from-addr and mailbox) in
the account database.
to implement the msgfrom rules, this adds support to rulesets for matching on
message "from" address. before, we could match on smtp from address (and other
fields). rulesets now also have a field for comments. webmail adds a note that
it created the rule, with the date.
manual editing of the rulesets is still in the webaccount page. this webmail
functionality is just a convenient way to add/remove common rules.
2024-04-21 18:01:50 +03:00
// We've moved a single message. If the source or destination mailbox is not a
// "special-use" mailbox (other than inbox), and there isn't a rule yet or there is
// one we may want to delete, and we haven't asked about adding/removing this
// ruleset before, ask the user to add/remove a ruleset for moving. If the message
// has a list-id header, we ask to create a ruleset treating it as a mailing list
// message matching on future list-id header and spf/dkim verified domain,
// otherwise we make a rule based on message "from" address.
const moveAskRuleset = async ( msgID : number , mbSrcID : number , mbDst : api.Mailbox , mailboxes : api.Mailbox [ ] ) = > {
const mbSrc = mailboxes . find ( mb = > mb . ID === mbSrcID )
if ( ! mbSrc || isSpecialUse ( mbDst ) || isSpecialUse ( mbSrc ) ) {
return
}
const [ listID , msgFrom , isRemove , rcptTo , ruleset ] = await withStatus ( 'Checking rulesets' , client . RulesetSuggestMove ( msgID , mbSrc . ID , mbDst . ID ) )
if ( ! ruleset ) {
return
}
const what = listID ? [ 'list with id "' , listID , '"' ] : [ 'address "' , msgFrom , '"' ]
if ( isRemove ) {
const remove = popup (
dom . h1 ( 'Remove rule?' ) ,
dom . p (
style ( { maxWidth : '30em' } ) ,
'Would you like to remove the server-side rule that automatically delivers messages from ' , what , ' to mailbox "' , mbDst . Name , '"?' ,
) ,
dom . br ( ) ,
dom . div (
dom . clickbutton ( 'Yes, remove rule' , async function click() {
await withStatus ( 'Remove ruleset' , client . RulesetRemove ( rcptTo , ruleset ) )
remove ( )
} ) , ' ' ,
dom . clickbutton ( 'Not now' , async function click() {
remove ( )
} ) ,
) ,
dom . br ( ) ,
dom . div (
style ( { marginBottom : '1ex' } ) ,
dom . clickbutton ( "No, and don't ask again for " , what , async function click() {
await withStatus ( 'Store ruleset response' , client . RulesetMessageNever ( rcptTo , listID , msgFrom , true ) )
remove ( )
} ) ,
) ,
dom . div (
dom . clickbutton ( "No, and don't ask again when moving messages out of \"" , mbSrc . Name , '"' , async function click() {
await withStatus ( 'Store ruleset response' , client . RulesetMailboxNever ( mbSrc . ID , false ) )
remove ( )
} ) ,
) ,
)
return
}
const remove = popup (
dom . h1 ( 'Add rule?' ) ,
dom . p (
style ( { maxWidth : '30em' } ) ,
'Would you like to create a server-side ruleset that automatically delivers future messages from ' , what , ' to mailbox "' , mbDst . Name , '"?' ,
) ,
dom . br ( ) ,
dom . div (
dom . clickbutton ( 'Yes, add rule' , async function click() {
await withStatus ( 'Add ruleset' , client . RulesetAdd ( rcptTo , ruleset ) )
remove ( )
} ) , ' ' ,
dom . clickbutton ( 'Not now' , async function click() {
remove ( )
} ) ,
) ,
dom . br ( ) ,
dom . div (
style ( { marginBottom : '1ex' } ) ,
dom . clickbutton ( "No, and don't ask again for " , what , async function click() {
await withStatus ( 'Store ruleset response' , client . RulesetMessageNever ( rcptTo , listID , msgFrom , false ) )
remove ( )
} ) ,
) ,
dom . div (
dom . clickbutton ( "No, and don't ask again when moving messages to \"" , mbDst . Name , '"' , async function click() {
await withStatus ( 'Store ruleset response' , client . RulesetMailboxNever ( mbDst . ID , true ) )
remove ( )
} ) ,
) ,
)
}
const isSpecialUse = ( mb : api.Mailbox ) = > mb . Archive || mb . Draft || mb . Junk || mb . Sent || mb . Trash
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
// MsgitemView is a message-line in the list of messages. Selecting it loads and displays the message, a MsgView.
interface MsgitemView {
root : HTMLElement // MsglistView toggles active/focus classes on the root element.
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
messageitem : api.MessageItem // Can be replaced with an updated version, e.g. with message with different mailbox.
// Fields for threading.
//
// Effective received time. When sorting ascending, the oldest of all children.
// When sorting descending, the newest of all. Does not change after creating
// MsgitemView, we don't move threads around when a new message is delivered to a
// thread.
receivedTime : number
// Parent message in thread. May not be the direct replied/forwarded message, e.g.
// if the direct parent was permanently removed. Thread roots don't have a parent.
parent : MsgitemView | null
// Sub messages in thread. Can be further descendants, when an intermediate message
// is missing.
kids : MsgitemView [ ]
2023-11-01 21:12:52 +03:00
// Whether this thread root is collapsed. If so, the root is visible, all descendants
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
// are not. Value is only valid if this is a thread root.
collapsed : boolean
// Root MsgitemView for this subtree. Does not necessarily contain all messages in
// a thread, there can be multiple visible roots. A MsgitemView is visible if it is
// the threadRoot or otherwise if its threadRoot isn't collapsed.
threadRoot : ( ) = > MsgitemView
isCollapsedThreadRoot : ( ) = > boolean
descendants : ( ) = > MsgitemView [ ] // Flattened list of all descendents.
findDescendant : ( match : ( dmiv : MsgitemView ) = > boolean ) = > MsgitemView | null
lastDescendant : ( ) = > MsgitemView | null
// Removes msgitem from the DOM and cleans up the timer that updates the message
// age. Must be called when MsgitemView is no longer needed. Typically through
// msglistView.clear().
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
remove : ( ) = > void
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
// Must be called after initializing kids/parent field for proper rendering.
render : ( ) = > void
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
}
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
// Make new MsgitemView, to be added to the list.
const newMsgitemView = ( mi : api.MessageItem , msglistView : MsglistView , otherMailbox : otherMailbox , listMailboxes : listMailboxes , receivedTime : number , initialCollapsed : boolean ) : MsgitemView = > {
// note: mi may be replaced.
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
// Timer to update the age of the message.
let ageTimer = 0
// Show with a tag if we are in the cc/bcc headers, or - if none.
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
const identityTag = ( s : string , title : string ) = >
dom . span (
css ( 'msgItemIdentity' , { padding : '0 .15em' , marginLeft : '.15em' , borderRadius : '.15em' , fontWeight : 'normal' , fontSize : '.9em' , whiteSpace : 'nowrap' , backgroundColor : styles.backgroundColorMilder , color : styles.color , border : '1px solid' , borderColor : styles.colorMilder } ) ,
s ,
attr . title ( title ) ,
)
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
const identityHeader : HTMLElement [ ] = [ ]
if ( ! envelopeIdentity ( mi . Envelope . From || [ ] ) && ! envelopeIdentity ( mi . Envelope . To || [ ] ) ) {
if ( envelopeIdentity ( mi . Envelope . CC || [ ] ) ) {
identityHeader . push ( identityTag ( 'cc' , 'You are in the CC header' ) )
}
if ( envelopeIdentity ( mi . Envelope . BCC || [ ] ) ) {
identityHeader . push ( identityTag ( 'bcc' , 'You are in the BCC header' ) )
}
// todo: don't include this if this is a message to a mailling list, based on list-* headers.
if ( identityHeader . length === 0 ) {
identityHeader . push ( identityTag ( '-' , 'You are not in any To, From, CC, BCC header. Could message to a mailing list or Bcc without Bcc message header.' ) )
}
}
const remove = ( ) : void = > {
msgitemView . root . remove ( )
if ( ageTimer ) {
window . clearTimeout ( ageTimer )
ageTimer = 0
}
}
const age = ( date : Date ) : HTMLElement = > {
const r = dom . span ( dom . _class ( 'notooltip' ) , attr . title ( date . toString ( ) ) )
const set = ( ) = > {
const nowSecs = new Date ( ) . getTime ( ) / 1000
let t = nowSecs - date . getTime ( ) / 1000
let negative = ''
if ( t < 0 ) {
negative = '-'
t = - t
}
const minute = 60
const hour = 60 * minute
const day = 24 * hour
const month = 30 * day
const year = 365 * day
const periods = [ year , month , day , hour , minute ]
const suffix = [ 'y' , 'mo' , 'd' , 'h' , 'min' ]
let s
let nextSecs = 0
for ( let i = 0 ; i < periods . length ; i ++ ) {
const p = periods [ i ]
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
if ( t >= 2 * p || i === periods . length - 1 ) {
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
const n = Math . round ( t / p )
s = '' + n + suffix [ i ]
const prev = Math . floor ( t / p )
nextSecs = Math . ceil ( ( prev + 1 ) * p - t )
break
}
}
if ( t < 60 ) {
s = '<1min'
nextSecs = 60 - t
2024-01-23 19:01:34 +03:00
// Prevent showing '-<1min' when browser and server have relatively small time drift of max 1 minute.
negative = ''
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
}
dom . _kids ( r , negative + s )
// note: Cannot have delays longer than 24.8 days due to storage as 32 bit in
// browsers. Session is likely closed/reloaded/refreshed before that time anyway.
if ( nextSecs < 14 * 24 * 3600 ) {
ageTimer = window . setTimeout ( set , nextSecs * 1000 )
} else {
ageTimer = 0
}
}
set ( )
return r
}
const render = ( ) = > {
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
const mi = msgitemView . messageitem
const m = mi . Message
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
// Set by calling age().
if ( ageTimer ) {
window . clearTimeout ( ageTimer )
ageTimer = 0
}
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
// Keywords are normally shown per message. For collapsed threads, we show the
// keywords of the thread root message as normal, and any additional keywords from
// children in a way that draws less attention.
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
const keywords = ( m . Keywords || [ ] ) . map ( kw = > dom . span ( styleClasses . keyword , kw ) )
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
if ( msgitemView . isCollapsedThreadRoot ( ) ) {
const keywordsSeen = new Set < string > ( )
for ( const kw of ( m . Keywords || [ ] ) ) {
keywordsSeen . add ( kw )
}
for ( const miv of msgitemView . descendants ( ) ) {
for ( const kw of ( miv . messageitem . Message . Keywords || [ ] ) ) {
if ( ! keywordsSeen . has ( kw ) ) {
keywordsSeen . add ( kw )
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
keywords . push ( dom . span ( styleClasses . keyword , dom . _class ( 'keywordCollapsed' ) , kw ) )
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
}
}
}
}
let threadIndent = 0
for ( let miv = msgitemView ; miv . parent ; miv = miv . parent ) {
threadIndent ++
}
// For threaded messages, we draw the subject/first-line indented, and with a
// charactering indicating the relationship.
// todo: show different arrow is message is a forward? we can tell by the message flag, it will likely be a message the user sent.
let threadChar = ''
let threadCharTitle = ''
if ( msgitemView . parent ) {
threadChar = '↳' // Down-right arrow for direct response (reply/forward).
if ( msgitemView . parent . messageitem . Message . MessageID === mi . Message . MessageID ) {
// Approximately equal, for duplicate message-id, typically in Sent and incoming
// from mailing list or when sending to self.
threadChar = '≈'
threadCharTitle = 'Same Message-ID.'
} else if ( mi . Message . ThreadMissingLink || ( mi . Message . ThreadParentIDs || [ ] ) . length > 0 && ( mi . Message . ThreadParentIDs || [ ] ) [ 0 ] !== msgitemView . parent . messageitem . Message . ID ) {
// Zigzag arrow, e.g. if immediate parent is missing, or when matching was done
// based on subject.
threadChar = '↯'
threadCharTitle = 'Immediate parent message is missing.'
}
}
// Message is unread if it itself is unread, or it is collapsed and has an unread child message.
const isUnread = ( ) = > ! mi . Message . Seen || msgitemView . isCollapsedThreadRoot ( ) && ! ! msgitemView . findDescendant ( miv = > ! miv . messageitem . Message . Seen )
const isRelevant = ( ) = > ! mi . Message . ThreadMuted && mi . MatchQuery || ( msgitemView . isCollapsedThreadRoot ( ) && msgitemView . findDescendant ( miv = > ! miv . messageitem . Message . ThreadMuted && miv . messageitem . MatchQuery ) )
// Effective receive time to display. For collapsed thread roots, we show the time
// of the newest or oldest message, depending on whether you're viewing
// newest-first or oldest-first messages.
const received = ( ) = > {
let r = mi . Message . Received
if ( ! msgitemView . isCollapsedThreadRoot ( ) ) {
return r
}
msgitemView . descendants ( ) . forEach ( dmiv = > {
if ( settings . orderAsc && dmiv . messageitem . Message . Received . getTime ( ) < r . getTime ( ) ) {
r = dmiv . messageitem . Message . Received
} else if ( ! settings . orderAsc && dmiv . messageitem . Message . Received . getTime ( ) > r . getTime ( ) ) {
r = dmiv . messageitem . Message . Received
}
} )
return r
}
// For drawing half a thread bar for the last message in the thread.
const isThreadLast = ( ) = > {
let miv = msgitemView . threadRoot ( )
while ( miv . kids . length > 0 ) {
miv = miv . kids [ miv . kids . length - 1 ]
}
return miv === msgitemView
}
// If mailbox of message is not specified in filter (i.e. for a regular mailbox
// view, or search on a mailbox), we show it on the right-side of the subject. For
// collapsed thread roots, we show all additional mailboxes of descendants with
// different style.
const mailboxtags : HTMLElement [ ] = [ ]
const mailboxIDs = new Set < number > ( )
const addMailboxTag = ( mb : api.Mailbox , isCollapsedKid : boolean ) = > {
let name = mb . Name
mailboxIDs . add ( mb . ID )
if ( name . length > 8 + 1 + 3 + 1 + 8 + 4 ) {
const t = name . split ( '/' )
const first = t [ 0 ]
const last = t [ t . length - 1 ]
if ( first . length + last . length <= 8 + 8 ) {
name = first + '/.../' + last
} else {
name = first . substring ( 0 , 8 ) + '/.../' + last . substring ( 0 , 8 )
}
}
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
const e = dom . span (
css ( 'msgItemMailbox' , { padding : '0 .15em' , marginLeft : '.15em' , borderRadius : '.15em' , fontWeight : 'normal' , fontSize : '.9em' , whiteSpace : 'nowrap' , background : styles.backgroundColorMilder , color : [ 'white' , '#ddd' ] , border : '1px solid' , borderColor : styles.colorMilder } ) ,
isCollapsedKid ? css ( 'msgItemMailboxCollapsed' , { background : '#eee' , color : '#333' } , true ) : [ ] ,
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
name === mb . Name ? [ ] : attr . title ( mb . Name ) ,
name ,
)
mailboxtags . push ( e )
}
const othermb = otherMailbox ( m . MailboxID )
if ( othermb ) {
addMailboxTag ( othermb , false )
}
if ( msgitemView . isCollapsedThreadRoot ( ) ) {
for ( const miv of msgitemView . descendants ( ) ) {
const m = miv . messageitem . Message
if ( ! mailboxIDs . has ( m . MailboxID ) && otherMailbox ( m . MailboxID ) ) {
const mb = listMailboxes ( ) . find ( mb = > mb . ID === m . MailboxID )
if ( ! mb ) {
throw new ConsistencyError ( 'missing mailbox for message in thread' )
}
addMailboxTag ( mb , true )
}
}
}
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
2023-12-21 10:24:42 +03:00
const correspondentAddrs = ( miv : MsgitemView ) : [ api . MessageAddress [ ] , api . MessageAddress [ ] ] = > {
let fromAddrs = miv . messageitem . Envelope . From || [ ]
let toAddrs : api.MessageAddress [ ] = [ ]
if ( listMailboxes ( ) . find ( mb = > mb . ID === miv . messageitem . Message . MailboxID ) ? . Sent ) {
toAddrs = [ . . . ( miv . messageitem . Envelope . To || [ ] ) , . . . ( miv . messageitem . Envelope . CC || [ ] ) , . . . ( miv . messageitem . Envelope . BCC || [ ] ) ]
}
return [ fromAddrs , toAddrs ]
}
// Correspondents for a message, possibly a collapsed thread root.
const correspondents = ( ) = > {
let fromAddrs : api.MessageAddress [ ] = [ ]
let toAddrs : api.MessageAddress [ ] = [ ]
2024-03-05 11:04:59 +03:00
let junk = m . Junk || ! ! listMailboxes ( ) . find ( mb = > mb . ID === m . MailboxID && ( mb . Name === rejectsMailbox || mb . Junk ) )
2023-12-21 10:24:42 +03:00
if ( msgitemView . isCollapsedThreadRoot ( ) ) {
// Gather both all correspondents in thread.
; [ msgitemView , . . . ( msgitemView . descendants ( ) ) ] . forEach ( miv = > {
const [ fa , ta ] = correspondentAddrs ( miv )
fromAddrs = [ . . . fromAddrs , . . . fa ]
toAddrs = [ . . . toAddrs , . . . ta ]
2024-03-05 11:04:59 +03:00
junk = junk || miv . messageitem . Message . Junk
2023-12-21 10:24:42 +03:00
} )
} else {
[ fromAddrs , toAddrs ] = correspondentAddrs ( msgitemView )
}
const seen = new Set < string > ( )
let fa : api.MessageAddress [ ] = [ ]
let ta : api.MessageAddress [ ] = [ ]
for ( const a of fromAddrs ) {
const k = a . User + '@' + a . Domain . ASCII
if ( ! seen . has ( k ) ) {
seen . add ( k )
fa . push ( a )
}
}
for ( const a of toAddrs ) {
const k = a . User + '@' + a . Domain . ASCII
if ( ! seen . has ( k ) ) {
seen . add ( k )
ta . push ( a )
}
}
2024-02-08 20:03:48 +03:00
let title = fa . map ( a = > formatAddress ( a ) ) . join ( ', ' )
2023-12-21 10:24:42 +03:00
if ( ta . length > 0 ) {
if ( title ) {
title += ',\n'
}
2024-02-08 20:03:48 +03:00
title += 'addressed: ' + ta . map ( a = > formatAddress ( a ) ) . join ( ', ' )
2023-12-21 10:24:42 +03:00
}
return [
attr . title ( title ) ,
join (
[
2024-03-05 11:04:59 +03:00
. . . fa . map ( a = > formatAddressShort ( a , junk ) ) ,
. . . ta . map ( a = > dom . span ( style ( { fontStyle : 'italic' } ) , formatAddressShort ( a , junk ) ) ) ,
2023-12-21 10:24:42 +03:00
] ,
( ) = > ', '
) ,
]
}
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
const msgItemCellStyle = css ( 'msgItemCell' , { padding : '2px 4px' } )
const msgItemStyle = css ( 'msgItem' , { display : 'flex' , userSelect : 'none' , cursor : 'pointer' , borderRadius : '.15em' , border : '1px solid transparent' } )
ensureCSS ( '.msgItem.focus' , { borderColor : styles.msgItemFocusBorderColor , border : '1px solid' } )
ensureCSS ( '.msgItem:hover' , { backgroundColor : styles.msgItemHoverBackgroundColor } )
ensureCSS ( '.msgItem.active' , { background : styles.msgItemActiveBackground } )
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
// When rerendering, we remember active & focus states. So we don't have to make
// the caller also call redraw on MsglistView.
const active = msgitemView . root && msgitemView . root . classList . contains ( 'active' )
const focus = msgitemView . root && msgitemView . root . classList . contains ( 'focus' )
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
const elem = dom . div (
msgItemStyle ,
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
active ? dom . _class ( 'active' ) : [ ] ,
focus ? dom . _class ( 'focus' ) : [ ] ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
attr . draggable ( 'true' ) ,
function dragstart ( e : DragEvent ) {
2023-09-21 15:39:40 +03:00
if ( ! msglistView . selected ( ) . includes ( msgitemView ) ) {
e . preventDefault ( )
window . alert ( 'Can only drag items in selection.' )
return
}
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
// We send the Message.ID and MailboxID, so we can decide based on the destination
// mailbox whether to move. We don't move messages already in the destination
// mailbox, and also skip messages in the Sent mailbox when there are also messages
// from other mailboxes.
e . dataTransfer ! . setData ( 'application/vnd.mox.messages' , JSON . stringify ( msglistView . selected ( ) . map ( miv = > [ miv . messageitem . Message . MailboxID , miv . messageitem . Message . ID ] ) ) )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
} ,
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
// Thread root with kids can be collapsed/expanded with double click.
settings . threading !== api . ThreadMode . ThreadOff && ! msgitemView . parent && msgitemView . kids . length > 0 ?
function dblclick ( e : MouseEvent ) {
e . stopPropagation ( ) // Prevent selection.
if ( settings . threading === api . ThreadMode . ThreadOn ) {
// No await, we don't wait for the result.
withStatus ( 'Saving thread expand/collapse' , client . ThreadCollapse ( [ msgitemView . messageitem . Message . ID ] , ! msgitemView . collapsed ) )
}
if ( msgitemView . collapsed ) {
msglistView . threadExpand ( msgitemView )
} else {
msglistView . threadCollapse ( msgitemView )
msglistView . viewportEnsureMessages ( )
}
} : [ ] ,
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
isUnread ( ) ? css ( 'msgItemUnread' , { fontWeight : 'bold' } ) : [ ] ,
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
// Relevant means not muted and matching the query.
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
isRelevant ( ) ? [ ] : css ( 'msgItemNotRelevant' , { opacity : '.4' } ) ,
dom . div ( msgItemCellStyle , dom . _class ( 'msgItemFlags' ) ,
dom . div (
css ( 'msgItemFlagsSpread' , { display : 'flex' , justifyContent : 'space-between' } ) ,
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
dom . div ( flagList ( msgitemView ) ) ,
! msgitemView . parent && msgitemView . kids . length > 0 && msgitemView . collapsed ?
dom . clickbutton ( '' + ( 1 + msgitemView . descendants ( ) . length ) , attr . tabindex ( '-1' ) , attr . title ( 'Expand thread.' ) , attr . arialabel ( 'Expand thread.' ) , function click ( e : MouseEvent ) {
e . stopPropagation ( ) // Prevent selection.
if ( settings . threading === api . ThreadMode . ThreadOn ) {
withStatus ( 'Saving thread expanded' , client . ThreadCollapse ( [ msgitemView . messageitem . Message . ID ] , false ) )
}
msglistView . threadExpand ( msgitemView )
} ) : [ ] ,
! msgitemView . parent && msgitemView . kids . length > 0 && ! msgitemView . collapsed ?
dom . clickbutton ( '-' , style ( { width : '1em' } ) , attr . tabindex ( '-1' ) , attr . title ( 'Collapse thread.' ) , attr . arialabel ( 'Collapse thread.' ) , function click ( e : MouseEvent ) {
e . stopPropagation ( ) // Prevent selection.
if ( settings . threading === api . ThreadMode . ThreadOn ) {
withStatus ( 'Saving thread expanded' , client . ThreadCollapse ( [ msgitemView . messageitem . Message . ID ] , true ) )
}
msglistView . threadCollapse ( msgitemView )
msglistView . viewportEnsureMessages ( )
} ) : [ ] ,
) ,
) ,
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
dom . div ( msgItemCellStyle , dom . _class ( 'msgItemFrom' ) ,
dom . div ( css ( 'msgItemFromSpread' , { display : 'flex' , justifyContent : 'space-between' } ) ,
dom . div (
dom . _class ( 'silenttitle' ) ,
css ( 'msgItemFromText' , { whiteSpace : 'nowrap' , overflow : 'hidden' } ) ,
correspondents ( ) ,
) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
identityHeader ,
) ,
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
// Thread messages are connected by a vertical bar. The first and last message are
// only half the height of the item, to indicate start/end, and so it stands out
// from any thread above/below.
( ( msgitemView . parent || msgitemView . kids . length > 0 ) && ! msgitemView . threadRoot ( ) . collapsed ) ?
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
dom . div ( css ( 'msgItemThreadBar' , { position : 'absolute' , right : 0 , top : 0 , bottom : 0 , borderRight : '2px solid' , borderRightColor : styles.colorMilder } ) ,
! msgitemView . parent ? css ( 'msgItemThreadBarFirst' , { top : '50%' , bottom : '-1px' } ) : (
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
isThreadLast ( ) ?
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
css ( 'msgItemThreadBarLast' , { top : '-1px' , bottom : '50%' } ) :
css ( 'msgItemThreadBarMiddle' , { top : '-1px' , bottom : '-1px' } )
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
)
) : [ ]
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
) ,
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
dom . div ( msgItemCellStyle , css ( 'msgItemSubject' , { position : 'relative' } ) ,
dom . div ( css ( 'msgItemSubjectSpread' , { display : 'flex' , justifyContent : 'space-between' , position : 'relative' } ) ,
dom . div (
css ( 'msgItemSubjectText' , { whiteSpace : 'nowrap' , overflow : 'hidden' } ) ,
threadIndent > 0 ? dom . span ( threadChar , style ( { paddingLeft : ( threadIndent / 2 ) + 'em' } ) , css ( 'msgItemThreadChar' , { opacity : '.75' , fontWeight : 'normal' } ) , threadCharTitle ? attr . title ( threadCharTitle ) : [ ] ) : [ ] ,
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
msgitemView . parent ? [ ] : mi . Envelope . Subject || '(no subject)' ,
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
dom . span ( css ( 'msgItemSubjectSnippet' , { fontWeight : 'normal' , color : styles.colorMilder } ) , ' ' + mi . FirstLine ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
) ,
dom . div (
keywords ,
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
mailboxtags ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
) ,
) ,
) ,
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
dom . div ( msgItemCellStyle , dom . _class ( 'msgItemAge' ) , age ( received ( ) ) ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
function click ( e : MouseEvent ) {
e . preventDefault ( )
e . stopPropagation ( )
msglistView . click ( msgitemView , e . ctrlKey , e . shiftKey )
}
)
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
msgitemView . root . replaceWith ( elem )
msgitemView . root = elem
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
}
const msgitemView : MsgitemView = {
root : dom.div ( ) ,
messageitem : mi ,
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
receivedTime : receivedTime ,
kids : [ ] ,
parent : null ,
collapsed : initialCollapsed ,
threadRoot : ( ) = > {
let miv = msgitemView
while ( miv . parent ) {
miv = miv . parent
}
return miv
} ,
isCollapsedThreadRoot : ( ) = > ! msgitemView . parent && msgitemView . collapsed && msgitemView . kids . length > 0 ,
descendants : ( ) = > {
let l : MsgitemView [ ] = [ ]
const walk = ( miv : MsgitemView ) = > {
for ( const kmiv of miv . kids ) {
l . push ( kmiv )
walk ( kmiv )
}
}
walk ( msgitemView )
return l
} ,
// We often just need to know if a descendant with certain properties exist. No
// need to create an array, then call find on it.
findDescendant : ( matchfn ) = > {
const walk = ( miv : MsgitemView ) : MsgitemView | null = > {
if ( matchfn ( miv ) ) {
return miv
}
for ( const kmiv of miv . kids ) {
const r = walk ( kmiv )
if ( r ) {
return r
}
}
return null
}
return walk ( msgitemView )
} ,
lastDescendant : ( ) = > {
let l = msgitemView
if ( l . kids . length === 0 ) {
return null
}
while ( l . kids . length > 0 ) {
l = l . kids [ l . kids . length - 1 ]
}
return l
} ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
remove : remove ,
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
render : render ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
}
return msgitemView
}
interface MsgView {
root : HTMLElement
messageitem : api.MessageItem
// Called when keywords for a message have changed, to rerender them.
2023-08-11 09:38:57 +03:00
updateKeywords : ( modseq : number , keywords : string [ ] ) = > Promise < void >
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
// Abort loading the message.
aborter : { abort : ( ) = > void }
key : ( key : string , e : KeyboardEvent ) = > Promise < void >
}
// If attachmentView is open, keyboard shortcuts go there.
let attachmentView : { key : ( k : string , e : KeyboardEvent ) = > Promise < void > } | null = null
// MsgView is the display of a single message.
// refineKeyword is called when a user clicks a label, to filter on those.
const newMsgView = ( miv : MsgitemView , msglistView : MsglistView , listMailboxes : listMailboxes , possibleLabels : possibleLabels , messageLoaded : ( ) = > void , refineKeyword : ( kw : string ) = > Promise < void > , parsedMessageOpt? : api.ParsedMessage ) : MsgView = > {
const mi = miv . messageitem
const m = mi . Message
2024-02-08 20:03:48 +03:00
const fromAddress = mi . Envelope . From && mi . Envelope . From . length === 1 ? formatEmail ( mi . Envelope . From [ 0 ] ) : ''
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
// Some operations below, including those that can be reached through shortcuts,
// need a parsed message. So we keep a promise around for having that parsed
// message. Operations always await it. Once we have the parsed message, the await
// completes immediately.
// Typescript doesn't know the function passed to new Promise runs immediately and
// has set the Resolve and Reject variables before returning. Is there a better
// solution?
let parsedMessageResolve : ( pm : api.ParsedMessage ) = > void = ( ) = > { }
let parsedMessageReject : ( err : Error ) = > void = ( ) = > { }
let parsedMessagePromise = new Promise < api.ParsedMessage > ( ( resolve , reject ) = > {
parsedMessageResolve = resolve
parsedMessageReject = reject
} )
2024-03-04 21:51:55 +03:00
const react = async ( to : api.MessageAddress [ ] , cc : api.MessageAddress [ ] , bcc : api.MessageAddress [ ] , forward : boolean ) = > {
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
const pm = await parsedMessagePromise
let body = ''
const sel = window . getSelection ( )
2023-10-13 20:28:04 +03:00
let haveSel = false
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
if ( sel && sel . toString ( ) ) {
body = sel . toString ( )
2023-10-13 20:28:04 +03:00
haveSel = true
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
} else if ( pm . Texts && pm . Texts . length > 0 ) {
body = pm . Texts [ 0 ]
}
body = body . replace ( /\r/g , '' ) . replace ( /\n\n\n\n*/g , '\n\n' ) . trim ( )
2024-04-19 18:24:54 +03:00
let editOffset = 0
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
if ( forward ) {
body = '\n\n---- Forwarded Message ----\n\n' + body
} else {
2023-10-13 20:28:04 +03:00
body = body . split ( '\n' ) . map ( line = > '> ' + line ) . join ( '\n' )
2024-04-19 18:24:54 +03:00
let sig = accountSettings ? . Signature || ''
if ( ! accountSettings ? . Quoting && haveSel || accountSettings ? . Quoting === api . Quoting . Bottom ) {
2023-10-13 20:28:04 +03:00
body += '\n\n'
2024-04-19 18:24:54 +03:00
editOffset = body . length
body += '\n\n' + sig
2023-10-13 20:28:04 +03:00
} else {
let onWroteLine = ''
if ( mi . Envelope . Date && mi . Envelope . From && mi . Envelope . From . length === 1 ) {
const from = mi . Envelope . From [ 0 ]
2024-02-08 20:03:48 +03:00
const name = from . Name || formatEmail ( from )
2023-10-13 20:28:04 +03:00
const datetime = mi . Envelope . Date . toLocaleDateString ( undefined , { weekday : "short" , year : "numeric" , month : "short" , day : "numeric" } ) + ' at ' + mi . Envelope . Date . toLocaleTimeString ( )
onWroteLine = 'On ' + datetime + ', ' + name + ' wrote:\n'
}
2024-04-19 18:24:54 +03:00
body = '\n\n' + sig + '\n' + onWroteLine + body
2023-10-13 20:28:04 +03:00
}
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
}
const subjectPrefix = forward ? 'Fwd:' : 'Re:'
let subject = mi . Envelope . Subject || ''
subject = ( RegExp ( '^' + subjectPrefix , 'i' ) . test ( subject ) ? '' : subjectPrefix + ' ' ) + subject
const opts : ComposeOptions = {
from : mi . Envelope . To || undefined ,
2023-11-27 14:26:31 +03:00
to : to.map ( a = > formatAddress ( a ) ) ,
cc : cc.map ( a = > formatAddress ( a ) ) ,
bcc : bcc.map ( a = > formatAddress ( a ) ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
subject : subject ,
body : body ,
isForward : forward ,
attachmentsMessageItem : forward ? mi : undefined ,
responseMessageID : m.ID ,
2023-11-02 22:03:47 +03:00
isList : m.IsMailingList ,
2024-04-19 18:24:54 +03:00
editOffset : editOffset ,
webmail: during "send and archive", don't fail with error message when message that is being responded to is already in archive folder
before this change, when archiving, we would move all messages from the thread
that are in the same mailbox as that of the response message to the archive
mailbox. so if the message that was being responsed to was already in the
archive mailbox, the message would be moved from archive mailbox to archive
mailbox, resulting in an error.
with this change, when archiving, we move the thread messages that are in the
same mailbox as is currently open (independent of the mailbox the message lives
in, a common situation in the threading view). if there is no open mailbox
(search results), we still use the mailbox of the message being responded to as
reference.
with this new approach, we won't get errors moving a message to an archive
mailbox when it's already there. well, you can still get that error, but then
you've got the archive mailbox open, or you're in a search result and
responding to an archived message. the error should at least help understand
that nothing is happening.
we are only moving the messages from one active/reference mailbox because we
don't want to move messages from the thread that are in the Sent mailbox, and
we also don't want to move duplicate messages (cross-posts to mailing lists)
that are in other mailboxes. moving only the messages from the current active
mailbox seems safe, and should do what is what users would expect most of the
time.
for issue #233 by mattfbacon, thanks for reporting!
2024-10-31 18:20:11 +03:00
// For "send and archive", we only move messages from the current open mailbox
// (fallback to mailbox of response message for search results) to the archive
// mailbox. We don't want to move messages in other mailboxes, like Sent, Trash, or
// for cross-posted messages in other mailboxes.
archiveReferenceMailboxID : msglistView.activeMailbox ( ) ? . ID || m . MailboxID ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
}
2024-04-19 22:03:18 +03:00
compose ( opts , listMailboxes )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
}
2024-03-04 21:51:55 +03:00
const reply = async ( all : boolean ) = > {
const contains = ( l : api.MessageAddress [ ] , a : api.MessageAddress ) : boolean = > ! ! l . find ( e = > equalAddress ( e , a ) )
let to : api.MessageAddress [ ] = [ ]
let cc : api.MessageAddress [ ] = [ ]
let bcc : api.MessageAddress [ ] = [ ]
if ( ( mi . Envelope . From || [ ] ) . length === 1 && envelopeIdentity ( mi . Envelope . From || [ ] ) ) {
// Replying to our own message, copy the original cc/bcc.
to = mi . Envelope . To || [ ]
2023-11-27 14:26:31 +03:00
} else {
2024-03-04 21:51:55 +03:00
if ( mi . Envelope . ReplyTo && mi . Envelope . ReplyTo . length > 0 ) {
to = mi . Envelope . ReplyTo
} else {
to = mi . Envelope . From || [ ]
}
if ( all ) {
for ( const a of ( mi . Envelope . To || [ ] ) ) {
if ( ! contains ( to , a ) && ! envelopeIdentity ( [ a ] ) ) {
to . push ( a )
}
}
}
}
if ( all ) {
cc = mi . Envelope . CC || [ ]
bcc = mi . Envelope . BCC || [ ]
2023-11-27 14:26:31 +03:00
}
2024-03-04 21:51:55 +03:00
cc = cc . filter ( ( a , i ) = > ! envelopeIdentity ( [ a ] ) && ! contains ( to , a ) && ! contains ( cc . slice ( 0 , i ) , a ) )
bcc = bcc . filter ( a = > ! envelopeIdentity ( [ a ] ) )
await react ( to , cc , bcc , false )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
}
2024-03-04 21:51:55 +03:00
const cmdForward = async ( ) = > { react ( [ ] , [ ] , [ ] , true ) }
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
const cmdReplyList = async ( ) = > {
const pm = await parsedMessagePromise
if ( pm . ListReplyAddress ) {
2024-03-04 21:51:55 +03:00
await react ( [ pm . ListReplyAddress ] , [ ] , [ ] , false )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
}
}
const cmdReply = async ( ) = > { await reply ( false ) }
const cmdReplyAll = async ( ) = > { await reply ( true ) }
const cmdPrint = async ( ) = > {
if ( urlType ) {
window . open ( 'msg/' + m . ID + '/msg' + urlType + '#print' , '_blank' )
}
}
const cmdOpenNewTab = async ( ) = > {
if ( urlType ) {
window . open ( 'msg/' + m . ID + '/msg' + urlType , '_blank' )
}
}
const cmdOpenRaw = async ( ) = > { window . open ( 'msg/' + m . ID + '/raw' , '_blank' ) }
const cmdViewAttachments = async ( ) = > {
if ( attachments . length > 0 ) {
view ( attachments [ 0 ] )
}
}
2024-04-20 18:38:25 +03:00
const cmdComposeDraft = async ( ) = > {
2024-06-10 21:19:17 +03:00
if ( m . MailboxID !== draftMailboxID ) {
return
}
2024-04-20 18:38:25 +03:00
// Compose based on message. Most information is available, we just need to find
// the ID of the stored message this is a reply/forward to, based in In-Reply-To
// header.
const env = mi . Envelope
let refMsgID = 0
if ( env . InReplyTo ) {
refMsgID = await withStatus ( 'Looking up referenced message' , client . MessageFindMessageID ( env . InReplyTo ) )
}
const pm = await parsedMessagePromise
const isForward = ! ! env . Subject . match ( /^\[?fwd?:/i ) || ! ! env . Subject . match ( /\(fwd\)[ \t]*$/i )
const opts : ComposeOptions = {
from : ( env . From || [ ] ) ,
to : ( env . To || [ ] ) . map ( a = > formatAddress ( a ) ) ,
cc : ( env . CC || [ ] ) . map ( a = > formatAddress ( a ) ) ,
bcc : ( env . BCC || [ ] ) . map ( a = > formatAddress ( a ) ) ,
replyto : env.ReplyTo && env . ReplyTo . length > 0 ? formatAddress ( env . ReplyTo [ 0 ] ) : '' ,
subject : env.Subject ,
isForward : isForward ,
body : pm.Texts && pm . Texts . length > 0 ? pm . Texts [ 0 ] . replace ( /\r/g , '' ) : '' ,
responseMessageID : refMsgID ,
draftMessageID : m.ID ,
}
compose ( opts , listMailboxes )
}
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
const cmdToggleHeaders = async ( ) = > {
settingsPut ( { . . . settings , showAllHeaders : ! settings . showAllHeaders } )
2023-08-11 09:38:57 +03:00
const pm = await parsedMessagePromise
loadHeaderDetails ( pm )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
}
let textbtn : HTMLButtonElement , htmlbtn : HTMLButtonElement , htmlextbtn : HTMLButtonElement
const activeBtn = ( b : HTMLButtonElement ) = > {
for ( const xb of [ textbtn , htmlbtn , htmlextbtn ] ) {
2023-08-10 15:55:30 +03:00
if ( xb ) {
xb . classList . toggle ( 'active' , xb === b )
}
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
}
}
2024-04-20 22:25:52 +03:00
const fromAddressSettingsSave = async ( mode : api.ViewMode ) = > {
const froms = mi . Envelope . From || [ ]
if ( froms . length === 1 ) {
await withStatus ( 'Saving view mode settings for address' , client . FromAddressSettingsSave ( { FromAddress : froms [ 0 ] . User + "@" + ( froms [ 0 ] . Domain . Unicode || froms [ 0 ] . Domain . ASCII ) , ViewMode : mode } ) )
}
}
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
const cmdShowText = async ( ) = > {
2023-08-10 15:55:30 +03:00
if ( ! textbtn ) {
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
return
}
loadText ( await parsedMessagePromise )
activeBtn ( textbtn )
2024-04-20 22:25:52 +03:00
await fromAddressSettingsSave ( api . ViewMode . ModeText )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
}
const cmdShowHTML = async ( ) = > {
2023-08-10 15:55:30 +03:00
if ( ! htmlbtn || ! htmlextbtn ) {
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
return
}
loadHTML ( )
activeBtn ( htmlbtn )
2024-04-20 22:25:52 +03:00
await fromAddressSettingsSave ( api . ViewMode . ModeHTML )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
}
const cmdShowHTMLExternal = async ( ) = > {
2023-08-10 15:55:30 +03:00
if ( ! htmlbtn || ! htmlextbtn ) {
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
return
}
loadHTMLexternal ( )
activeBtn ( htmlextbtn )
2024-04-20 22:25:52 +03:00
await fromAddressSettingsSave ( api . ViewMode . ModeHTMLExt )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
}
const cmdShowHTMLCycle = async ( ) = > {
if ( urlType === 'html' ) {
await cmdShowHTMLExternal ( )
} else {
await cmdShowHTML ( )
}
}
const cmdShowInternals = async ( ) = > {
const pm = await parsedMessagePromise
const mimepart = ( p : api.Part ) : HTMLElement = > dom . li (
( p . MediaType + '/' + p . MediaSubType ) . toLowerCase ( ) ,
p . ContentTypeParams ? ' ' + JSON . stringify ( p . ContentTypeParams ) : [ ] ,
p . Parts && p . Parts . length === 0 ? [ ] : dom . ul (
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
css ( 'internalsList' , { listStyle : 'disc' , marginLeft : '1em' } ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
( p . Parts || [ ] ) . map ( pp = > mimepart ( pp ) )
)
)
popup (
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
css ( 'popupInternals' , { display : 'flex' , gap : '1em' } ) ,
dom . div ( dom . h1 ( 'Mime structure' ) , dom . ul ( css ( 'internalsList' , { listStyle : 'disc' , marginLeft : '1em' } ) , mimepart ( pm . Part ) ) ) ,
dom . div ( css ( 'internalsMessage' , { whiteSpace : 'pre-wrap' , tabSize : 4 , maxWidth : '50%' } ) , dom . h1 ( 'Message' ) , JSON . stringify ( m , undefined , '\t' ) ) ,
dom . div ( css ( 'internalsParts' , { whiteSpace : 'pre-wrap' , tabSize : 4 , maxWidth : '50%' } ) , dom . h1 ( 'Part' ) , JSON . stringify ( pm . Part , undefined , '\t' ) ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
)
}
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
const cmdUp = async ( ) = > { msgscrollElem . scrollTo ( { top : msgscrollElem.scrollTop - 3 * msgscrollElem . getBoundingClientRect ( ) . height / 4 , behavior : 'smooth' } ) }
const cmdDown = async ( ) = > { msgscrollElem . scrollTo ( { top : msgscrollElem.scrollTop + 3 * msgscrollElem . getBoundingClientRect ( ) . height / 4 , behavior : 'smooth' } ) }
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
const cmdHome = async ( ) = > { msgscrollElem . scrollTo ( { top : 0 } ) }
const cmdEnd = async ( ) = > { msgscrollElem . scrollTo ( { top : msgscrollElem.scrollHeight } ) }
const shortcuts : { [ key : string ] : command } = {
2024-04-20 18:38:25 +03:00
e : cmdComposeDraft ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
I : cmdShowInternals ,
o : cmdOpenNewTab ,
O : cmdOpenRaw ,
'ctrl p' : cmdPrint ,
f : cmdForward ,
r : cmdReply ,
R : cmdReplyAll ,
v : cmdViewAttachments ,
2023-09-15 16:51:59 +03:00
t : cmdShowText ,
T : cmdShowHTMLCycle ,
2024-12-07 13:51:11 +03:00
'ctrl i' : cmdToggleHeaders ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
'alt j' : cmdDown ,
'alt k' : cmdUp ,
'alt ArrowDown' : cmdDown ,
'alt ArrowUp' : cmdUp ,
'alt J' : cmdEnd ,
'alt K' : cmdHome ,
// For showing shortcuts only, handled in msglistView.
a : msglistView.cmdArchive ,
d : msglistView.cmdTrash ,
D : msglistView.cmdDelete ,
q : msglistView.cmdJunk ,
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
Q : msglistView.cmdMarkNotJunk ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
m : msglistView.cmdMarkRead ,
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
M : msglistView.cmdMarkUnread ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
}
let urlType : string // text, html, htmlexternal; for opening in new tab/print
2025-01-13 16:53:43 +03:00
let msgbuttonElem : HTMLElement , msgheaderElem : HTMLTableSectionElement , msgattachmentElem : HTMLElement , msgmodeElem : HTMLElement
let msgheaderFullElem : HTMLTableElement // Full headers, when enabled.
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
const msgmetaElem = dom . div (
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
css ( 'msgmeta' , { backgroundColor : styles.backgroundColorMild , borderBottom : '5px solid' , borderBottomColor : [ 'white' , 'black' ] , maxHeight : '90%' , overflowY : 'auto' } ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
attr . role ( 'region' ) , attr . arialabel ( 'Buttons and headers for message' ) ,
msgbuttonElem = dom . div ( ) ,
dom . div (
attr . arialive ( 'assertive' ) ,
2025-01-13 16:53:43 +03:00
dom . table (
styleClasses . msgHeaders ,
msgheaderElem = dom . tbody ( ) ,
) ,
msgheaderFullElem = dom . table ( ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
msgattachmentElem = dom . div ( ) ,
msgmodeElem = dom . div ( ) ,
) ,
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
// Explicit separator that separates headers from body, to
2023-11-01 20:58:04 +03:00
// prevent HTML messages from faking UI elements.
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
dom . div ( css ( 'headerBodySeparator' , { height : '2px' , backgroundColor : styles.borderColor } ) ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
)
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
const msgscrollElem = dom . div ( dom . _class ( 'pad' ) , yscrollAutoStyle ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
attr . role ( 'region' ) , attr . arialabel ( 'Message body' ) ,
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
css ( 'msgscroll' , { backgroundColor : styles.backgroundColor } ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
)
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
const msgcontentElem = dom . div (
css ( 'scrollparent' , { position : 'relative' , flexGrow : '1' } ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
)
const trashMailboxID = listMailboxes ( ) . find ( mb = > mb . Trash ) ? . ID
2024-06-10 21:19:17 +03:00
const draftMailboxID = listMailboxes ( ) . find ( mb = > mb . Draft ) ? . ID
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
// Initially called with potentially null pm, once loaded called again with pm set.
const loadButtons = ( pm : api.ParsedMessage | null ) = > {
dom . _kids ( msgbuttonElem ,
dom . div ( dom . _class ( 'pad' ) ,
2024-06-10 21:19:17 +03:00
m . MailboxID === draftMailboxID ? dom . clickbutton ( 'Edit' , attr . title ( 'Continue editing this draft message.' ) , clickCmd ( cmdComposeDraft , shortcuts ) ) : [ ] , ' ' ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
( ! pm || ! pm . ListReplyAddress ) ? [ ] : dom . clickbutton ( 'Reply to list' , attr . title ( 'Compose a reply to this mailing list.' ) , clickCmd ( cmdReplyList , shortcuts ) ) , ' ' ,
2024-02-08 20:03:48 +03:00
( pm && pm . ListReplyAddress && formatEmail ( pm . ListReplyAddress ) === fromAddress ) ? [ ] : dom . clickbutton ( 'Reply' , attr . title ( 'Compose a reply to the sender of this message.' ) , clickCmd ( cmdReply , shortcuts ) ) , ' ' ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
( mi . Envelope . To || [ ] ) . length <= 1 && ( mi . Envelope . CC || [ ] ) . length === 0 && ( mi . Envelope . BCC || [ ] ) . length === 0 ? [ ] :
dom . clickbutton ( 'Reply all' , attr . title ( 'Compose a reply to all participants of this message.' ) , clickCmd ( cmdReplyAll , shortcuts ) ) , ' ' ,
dom . clickbutton ( 'Forward' , attr . title ( 'Compose a forwarding message, optionally including attachments.' ) , clickCmd ( cmdForward , shortcuts ) ) , ' ' ,
dom . clickbutton ( 'Archive' , attr . title ( 'Move to the Archive mailbox.' ) , clickCmd ( msglistView . cmdArchive , shortcuts ) ) , ' ' ,
m . MailboxID === trashMailboxID ?
dom . clickbutton ( 'Delete' , attr . title ( 'Permanently delete message.' ) , clickCmd ( msglistView . cmdDelete , shortcuts ) ) :
dom . clickbutton ( 'Trash' , attr . title ( 'Move to the Trash mailbox.' ) , clickCmd ( msglistView . cmdTrash , shortcuts ) ) ,
' ' ,
dom . clickbutton ( 'Junk' , attr . title ( 'Move to Junk mailbox, marking as junk and causing this message to be used in spam classification of new incoming messages.' ) , clickCmd ( msglistView . cmdJunk , shortcuts ) ) , ' ' ,
dom . clickbutton ( 'Move to...' , function click ( e : MouseEvent ) {
movePopover ( e , listMailboxes ( ) , [ m ] )
} ) , ' ' ,
dom . clickbutton ( 'Labels...' , attr . title ( 'Add/remove labels.' ) , function click ( e : MouseEvent ) {
labelsPopover ( e , [ m ] , possibleLabels )
} ) , ' ' ,
dom . clickbutton ( 'More...' , attr . title ( 'Show more actions.' ) , function click ( e : MouseEvent ) {
popover ( e . target ! as HTMLElement , { transparent : true } ,
dom . div (
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
css ( 'popupMore' , { display : 'flex' , flexDirection : 'column' , gap : '.5ex' , textAlign : 'right' } ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
[
dom . clickbutton ( 'Print' , attr . title ( 'Print message, opens in new tab and opens print dialog.' ) , clickCmd ( cmdPrint , shortcuts ) ) ,
dom . clickbutton ( 'Mark Not Junk' , attr . title ( 'Mark as not junk, causing this message to be used in spam classification of new incoming messages.' ) , clickCmd ( msglistView . cmdMarkNotJunk , shortcuts ) ) ,
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
dom . clickbutton ( 'Mark Read' , clickCmd ( msglistView . cmdMarkRead , shortcuts ) ) ,
dom . clickbutton ( 'Mark Unread' , clickCmd ( msglistView . cmdMarkUnread , shortcuts ) ) ,
dom . clickbutton ( 'Mute thread' , clickCmd ( msglistView . cmdMute , shortcuts ) ) ,
dom . clickbutton ( 'Unmute thread' , clickCmd ( msglistView . cmdUnmute , shortcuts ) ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
dom . clickbutton ( 'Open in new tab' , clickCmd ( cmdOpenNewTab , shortcuts ) ) ,
dom . clickbutton ( 'Show raw original message in new tab' , clickCmd ( cmdOpenRaw , shortcuts ) ) ,
dom . clickbutton ( 'Show internals in popup' , clickCmd ( cmdShowInternals , shortcuts ) ) ,
] . map ( b = > dom . div ( b ) ) ,
) ,
)
} ) ,
)
)
}
loadButtons ( parsedMessageOpt || null )
2024-12-07 14:32:54 +03:00
loadMsgheaderView ( msgheaderElem , miv . messageitem , accountSettings . ShowHeaders || [ ] , refineKeyword , false )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
2025-01-13 16:53:43 +03:00
// Similar to lib.ts:/msgHeaderFieldStyle
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
const headerTextMildStyle = css ( 'headerTextMild' , { textAlign : 'right' , color : styles.colorMild } )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
const loadHeaderDetails = ( pm : api.ParsedMessage ) = > {
2025-01-13 16:53:43 +03:00
const table = dom . table (
css ( 'msgHeaderDetails' , { width : '100%' } ) ,
! settings . showAllHeaders ? [ ] :
Object . entries ( pm . Headers || { } ) . sort ( ) . map ( t = >
( t [ 1 ] || [ ] ) . map ( v = >
dom . tr (
dom . td ( t [ 0 ] + ':' , headerTextMildStyle ) ,
dom . td ( v ) ,
)
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
)
)
)
2025-01-13 16:53:43 +03:00
msgheaderFullElem . replaceWith ( table )
msgheaderFullElem = table
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
}
2023-11-02 00:17:02 +03:00
const isText = ( a : api.Attachment ) = > [ 'text' , 'message' ] . includes ( a . Part . MediaType . toLowerCase ( ) )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
const isPDF = ( a : api.Attachment ) = > ( a . Part . MediaType + '/' + a . Part . MediaSubType ) . toLowerCase ( ) === 'application/pdf'
2023-09-21 16:29:38 +03:00
const isViewable = ( a : api.Attachment ) = > isText ( a ) || isImage ( a ) || isPDF ( a )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
const attachments : api.Attachment [ ] = ( mi . Attachments || [ ] )
let beforeViewFocus : Element | null
const view = ( a : api.Attachment ) = > {
if ( ! beforeViewFocus ) {
beforeViewFocus = document . activeElement
}
const pathStr = [ 0 ] . concat ( a . Path || [ ] ) . join ( '.' )
const index = attachments . indexOf ( a )
const cmdViewPrev = async ( ) = > {
if ( index > 0 ) {
popupRoot . remove ( )
view ( attachments [ index - 1 ] )
}
}
const cmdViewNext = async ( ) = > {
if ( index < attachments . length - 1 ) {
popupRoot . remove ( )
view ( attachments [ index + 1 ] )
}
}
const cmdViewFirst = async ( ) = > {
popupRoot . remove ( )
view ( attachments [ 0 ] )
}
const cmdViewLast = async ( ) = > {
popupRoot . remove ( )
view ( attachments [ attachments . length - 1 ] )
}
const cmdViewClose = async ( ) = > {
popupRoot . remove ( )
if ( beforeViewFocus && beforeViewFocus instanceof HTMLElement && beforeViewFocus . parentNode ) {
beforeViewFocus . focus ( )
}
attachmentView = null
beforeViewFocus = null
}
const attachShortcuts = {
h : cmdViewPrev ,
ArrowLeft : cmdViewPrev ,
l : cmdViewNext ,
ArrowRight : cmdViewNext ,
'0' : cmdViewFirst ,
'$' : cmdViewLast ,
Escape : cmdViewClose ,
}
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
const attachmentsArrowStyle = css ( 'attachmentsArrow' , { color : styles.backgroundColor , backgroundColor : styles.color , width : '2em' , height : '2em' , borderRadius : '1em' , lineHeight : '2em' , textAlign : 'center' , fontWeight : 'bold' } )
2024-06-10 21:11:26 +03:00
const attachmentsIframeStyle = css ( 'attachmentsIframe' , { flexGrow : 1 , boxShadow : styles.boxShadow , margin : '0 5em' } )
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
let content : HTMLElement
const popupRoot = dom . div (
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
css ( 'attachmentsOverlay' , { position : 'fixed' , left : 0 , right : 0 , top : 0 , bottom : 0 , backgroundColor : styles.overlayBackgroundColor , display : 'flex' , flexDirection : 'column' , alignContent : 'stretch' , padding : '1em' , zIndex : zindexes.attachments } ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
function click ( e : MouseEvent ) {
e . stopPropagation ( )
cmdViewClose ( )
} ,
attr . tabindex ( '0' ) ,
! ( index > 0 ) ? [ ] : dom . div (
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
css ( 'attachmentsPrevious' , { position : 'absolute' , left : '1em' , top : 0 , bottom : 0 , fontSize : '1.5em' , width : '2em' , display : 'flex' , alignItems : 'center' , cursor : 'pointer' } ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
dom . div ( dom . _class ( 'silenttitle' ) ,
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
attachmentsArrowStyle ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
attr . title ( 'To previous viewable attachment.' ) ,
'←' ,
) ,
attr . tabindex ( '0' ) ,
clickCmd ( cmdViewPrev , attachShortcuts ) ,
enterCmd ( cmdViewPrev , attachShortcuts ) ,
) ,
dom . div (
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
css ( 'attachmentsDownloadHeaderBox' , { textAlign : 'center' , paddingBottom : '30px' } ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
dom . span ( dom . _class ( 'pad' ) ,
function click ( e : MouseEvent ) {
e . stopPropagation ( )
} ,
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
css ( 'attachmentsDownloadHeader' , { backgroundColor : styles.popupBackgroundColor , color : styles.popupColor , boxShadow : styles.boxShadow , border : '1px solid' , borderColor : styles.popupBorderColor , borderRadius : '.25em' } ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
a . Filename || '(unnamed)' , ' - ' ,
formatSize ( a . Part . DecodedSize ) , ' - ' ,
dom . a ( 'Download' , attr . download ( '' ) , attr . href ( 'msg/' + m . ID + '/download/' + pathStr ) , function click ( e : MouseEvent ) { e . stopPropagation ( ) } ) ,
) ,
) ,
isImage ( a ) ?
dom . div (
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
css ( 'attachmentsImageBox' , { flexGrow : 1 , display : 'flex' , alignItems : 'center' , justifyContent : 'center' , maxHeight : 'calc(100% - 50px)' , margin : '0 5em' } ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
dom . img (
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
css ( 'attachmentsImage' , { maxWidth : '100%' , maxHeight : '100%' , boxShadow : styles.boxShadow , margin : '0 30px' } ) ,
attr . src ( 'msg/' + m . ID + '/view/' + pathStr )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
) ,
) : (
2023-09-21 16:29:38 +03:00
isText ( a ) ?
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
dom . iframe (
2023-09-21 16:29:38 +03:00
attr . title ( 'Attachment shown as text.' ) ,
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
attachmentsIframeStyle ,
2023-09-21 16:29:38 +03:00
attr . src ( 'msg/' + m . ID + '/viewtext/' + pathStr )
) : (
isPDF ( a ) ?
dom . iframe (
attr . title ( 'Attachment as PDF.' ) ,
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
attachmentsIframeStyle ,
2023-09-21 16:29:38 +03:00
attr . src ( 'msg/' + m . ID + '/view/' + pathStr )
) :
content = dom . div (
function click ( e : MouseEvent ) {
e . stopPropagation ( )
} ,
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
css ( 'attachmentsBinary' , { minWidth : '30em' , padding : '2ex' , boxShadow : styles.boxShadow , backgroundColor : styles.popupBackgroundColor , margin : '0 5em' , textAlign : 'center' } ) ,
2023-09-21 16:29:38 +03:00
dom . div ( style ( { marginBottom : '2ex' } ) , 'Attachment could be a binary file.' ) ,
dom . clickbutton ( 'View as text' , function click() {
content . replaceWith (
dom . iframe (
attr . title ( 'Attachment shown as text, though it could be a binary file.' ) ,
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
attachmentsIframeStyle ,
2023-09-21 16:29:38 +03:00
attr . src ( 'msg/' + m . ID + '/viewtext/' + pathStr )
)
)
} ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
)
2023-09-21 16:29:38 +03:00
)
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
) ,
! ( index < attachments . length - 1 ) ? [ ] : dom . div (
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
css ( 'attachmentsNext' , { position : 'absolute' , right : '1em' , top : 0 , bottom : 0 , fontSize : '1.5em' , width : '2em' , display : 'flex' , alignItems : 'center' , cursor : 'pointer' } ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
dom . div ( dom . _class ( 'silenttitle' ) ,
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
attachmentsArrowStyle ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
attr . title ( 'To next viewable attachment.' ) ,
'→' ,
) ,
attr . tabindex ( '0' ) ,
clickCmd ( cmdViewNext , attachShortcuts ) ,
enterCmd ( cmdViewNext , attachShortcuts ) ,
) ,
)
document . body . appendChild ( popupRoot )
popupRoot . focus ( )
attachmentView = { key : keyHandler ( attachShortcuts ) }
}
2024-04-20 20:36:14 +03:00
var filesAll = false
const renderAttachments = ( ) = > {
2024-04-20 18:51:27 +03:00
const l = mi . Attachments || [ ]
dom . _kids ( msgattachmentElem ,
( l && l . length === 0 ) ? [ ] : dom . div (
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
css ( 'inlineAttachmentsSeparator' , { borderTop : '1px solid' , borderTopColor : styles.borderColor } ) ,
2024-04-20 18:51:27 +03:00
dom . div ( dom . _class ( 'pad' ) ,
'Attachments: ' ,
2024-04-20 20:36:14 +03:00
l . slice ( 0 , filesAll ? l.length : 4 ) . map ( a = > {
2024-04-20 18:51:27 +03:00
const name = a . Filename || '(unnamed)'
const viewable = isViewable ( a )
const size = formatSize ( a . Part . DecodedSize )
const eye = '👁'
const dl = '⤓' // \u2913, actually ⭳ \u2b73 would be better, but in fewer fonts (at least macos)
const dlurl = 'msg/' + m . ID + '/download/' + [ 0 ] . concat ( a . Path || [ ] ) . join ( '.' )
const viewbtn = dom . clickbutton ( eye , viewable ? ' ' + name : style ( { padding : '0px 0.25em' } ) , attr . title ( 'View this file. Size: ' + size ) , style ( { lineHeight : '1.5' } ) , function click() {
view ( a )
} )
const dlbtn = dom . a ( dom . _class ( 'button' ) , attr . download ( '' ) , attr . href ( dlurl ) , dl , viewable ? style ( { padding : '0px 0.25em' } ) : ' ' + name , attr . title ( 'Download this file. Size: ' + size ) , style ( { lineHeight : '1.5' } ) )
if ( viewable ) {
2024-04-20 20:36:14 +03:00
return [ dom . span ( dom . _class ( 'btngroup' ) , urlType === 'text' && isImage ( a ) ? style ( { opacity : '.6' } ) : [ ] , viewbtn , dlbtn ) , ' ' ]
2024-04-20 18:51:27 +03:00
}
return [ dom . span ( dom . _class ( 'btngroup' ) , dlbtn , viewbtn ) , ' ' ]
} ) ,
2024-04-20 20:36:14 +03:00
filesAll || l . length < 6 ? [ ] : dom . clickbutton ( 'More...' , function click() {
filesAll = true
renderAttachments ( )
2024-04-20 18:51:27 +03:00
} ) , ' ' ,
dom . a ( 'Download all as zip' , attr . download ( '' ) , style ( { color : 'inherit' } ) , attr . href ( 'msg/' + m . ID + '/attachments.zip' ) ) ,
) ,
)
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
)
2024-04-20 18:51:27 +03:00
}
2024-04-20 20:36:14 +03:00
renderAttachments ( )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
const root = dom . div ( css ( 'msgViewRoot' , { position : 'absolute' , top : 0 , right : 0 , bottom : 0 , left : 0 , display : 'flex' , flexDirection : 'column' } ) )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
dom . _kids ( root , msgmetaElem , msgcontentElem )
const loadText = ( pm : api.ParsedMessage ) : void = > {
// We render text ourselves so we can make links clickable and get any selected
// text to use when writing a reply. We still set url so the text content can be
// opened in a separate tab, even though it will look differently.
urlType = 'text'
2024-04-20 20:36:14 +03:00
const elem = dom . div ( dom . _class ( 'mono' , 'textmulti' ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
style ( { whiteSpace : 'pre-wrap' } ) ,
2024-04-20 20:36:14 +03:00
( pm . Texts || [ ] ) . map ( t = > renderText ( t . replace ( /\r\n/g , '\n' ) ) ) ,
( mi . Attachments || [ ] ) . filter ( f = > isImage ( f ) ) . map ( f = > {
const pathStr = [ 0 ] . concat ( f . Path || [ ] ) . join ( '.' )
return dom . div (
dom . div (
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
css ( 'msgAttachmentBox' , { flexGrow : 1 , display : 'flex' , alignItems : 'center' , justifyContent : 'center' , maxHeight : 'calc(100% - 50px)' } ) ,
2024-04-20 20:36:14 +03:00
dom . img (
attr . src ( 'msg/' + m . ID + '/view/' + pathStr ) ,
attr . title ( f . Filename ) ,
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
css ( 'msgInlineImage' , { boxShadow : styles.boxShadow , maxWidth : '100%' , maxHeight : '100%' } )
2024-04-20 20:36:14 +03:00
) ,
)
)
} ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
)
dom . _kids ( msgcontentElem )
dom . _kids ( msgscrollElem , elem )
dom . _kids ( msgcontentElem , msgscrollElem )
2024-04-20 20:36:14 +03:00
renderAttachments ( ) // Rerender opaciy on inline images.
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
}
const loadHTML = ( ) : void = > {
urlType = 'html'
dom . _kids ( msgcontentElem ,
dom . iframe (
attr . tabindex ( '0' ) ,
attr . title ( 'HTML version of message with images inlined, without external resources loaded.' ) ,
attr . src ( 'msg/' + m . ID + '/' + urlType ) ,
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
css ( 'msgIframeHTML' , { position : 'absolute' , width : '100%' , height : '100%' } ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
)
)
2024-04-20 20:36:14 +03:00
renderAttachments ( ) // Rerender opaciy on inline images.
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
}
const loadHTMLexternal = ( ) : void = > {
urlType = 'htmlexternal'
dom . _kids ( msgcontentElem ,
dom . iframe (
attr . tabindex ( '0' ) ,
attr . title ( 'HTML version of message with images inlined and with external resources loaded.' ) ,
attr . src ( 'msg/' + m . ID + '/' + urlType ) ,
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
css ( 'msgIframeHTML' , { position : 'absolute' , width : '100%' , height : '100%' } ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
)
)
2024-04-20 20:36:14 +03:00
renderAttachments ( ) // Rerender opaciy on inline images.
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
}
const mv : MsgView = {
root : root ,
messageitem : mi ,
key : keyHandler ( shortcuts ) ,
aborter : { abort : ( ) = > { } } ,
2023-08-11 09:38:57 +03:00
updateKeywords : async ( modseq : number , keywords : string [ ] ) = > {
2023-08-10 11:56:04 +03:00
mi . Message . ModSeq = modseq
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
mi . Message . Keywords = keywords
2024-12-07 14:32:54 +03:00
loadMsgheaderView ( msgheaderElem , miv . messageitem , accountSettings . ShowHeaders || [ ] , refineKeyword , false )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
} ,
}
; ( async ( ) = > {
let pm : api.ParsedMessage
if ( parsedMessageOpt ) {
pm = parsedMessageOpt
parsedMessageResolve ( pm )
} else {
const promise = withStatus ( 'Loading message' , client . withOptions ( { aborter : mv.aborter } ) . ParsedMessage ( m . ID ) )
try {
pm = await promise
} catch ( err ) {
if ( err instanceof Error ) {
parsedMessageReject ( err )
} else {
parsedMessageReject ( new Error ( 'fetching message failed' ) )
}
throw err
}
parsedMessageResolve ( pm )
}
loadButtons ( pm )
loadHeaderDetails ( pm )
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
const msgHeaderSeparatorStyle = css ( 'msgHeaderSeparator' , { borderTop : '1px solid' , borderTopColor : styles.borderColor } )
const msgModeWarningStyle = css ( 'msgModeWarning' , { backgroundColor : styles.warningBackgroundColor , padding : '0 .15em' } )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
const htmlNote = 'In the HTML viewer, the following potentially dangerous functionality is disabled: submitting forms, starting a download from a link, navigating away from this page by clicking a link. If a link does not work, try explicitly opening it in a new tab.'
const haveText = pm . Texts && pm . Texts . length > 0
if ( ! haveText && ! pm . HasHTML ) {
dom . _kids ( msgcontentElem )
dom . _kids ( msgmodeElem ,
dom . div ( dom . _class ( 'pad' ) ,
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
msgHeaderSeparatorStyle ,
dom . span ( 'No textual content' , msgModeWarningStyle ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
) ,
)
} else if ( haveText && ! pm . HasHTML ) {
loadText ( pm )
dom . _kids ( msgmodeElem )
} else {
2024-08-23 15:02:55 +03:00
const text = haveText && pm . ViewMode == api . ViewMode . ModeText
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
dom . _kids ( msgmodeElem ,
dom . div ( dom . _class ( 'pad' ) ,
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
msgHeaderSeparatorStyle ,
! haveText ? dom . span ( 'HTML-only message' , attr . title ( htmlNote ) , msgModeWarningStyle , style ( { marginRight : '.25em' } ) ) : [ ] ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
dom . span ( dom . _class ( 'btngroup' ) ,
2023-08-10 15:55:30 +03:00
haveText ? textbtn = dom . clickbutton ( text ? dom . _class ( 'active' ) : [ ] , 'Text' , clickCmd ( cmdShowText , shortcuts ) ) : [ ] ,
2024-08-23 14:39:16 +03:00
htmlbtn = dom . clickbutton ( text || ! text && pm . ViewMode == api . ViewMode . ModeHTMLExt ? [ ] : dom . _class ( 'active' ) , 'HTML' , attr . title ( htmlNote ) , async function click() {
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
// Shortcuts has a function that cycles through html and htmlexternal.
2023-09-15 16:51:59 +03:00
showShortcut ( 'T' )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
await cmdShowHTML ( )
} ) ,
2024-08-23 14:39:16 +03:00
htmlextbtn = dom . clickbutton ( text || ! text && pm . ViewMode != api . ViewMode . ModeHTMLExt ? [ ] : dom . _class ( 'active' ) , 'HTML with external resources' , attr . title ( htmlNote ) , clickCmd ( cmdShowHTMLExternal , shortcuts ) ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
) ,
)
)
2023-08-10 15:55:30 +03:00
if ( text ) {
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
loadText ( pm )
2024-04-20 22:25:52 +03:00
} else if ( pm . ViewMode == api . ViewMode . ModeHTMLExt ) {
loadHTMLexternal ( )
2023-08-10 15:55:30 +03:00
} else {
loadHTML ( )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
}
}
messageLoaded ( )
if ( ! miv . messageitem . Message . Seen ) {
window . setTimeout ( async ( ) = > {
if ( ! miv . messageitem . Message . Seen && miv . messageitem . Message . ID === msglistView . activeMessageID ( ) ) {
await withStatus ( 'Marking current message as read' , client . FlagsAdd ( [ miv . messageitem . Message . ID ] , [ '\\seen' ] ) )
}
} , 500 )
}
2023-08-09 10:45:54 +03:00
if ( ! miv . messageitem . Message . Junk && ! miv . messageitem . Message . Notjunk ) {
window . setTimeout ( async ( ) = > {
2023-11-27 09:34:18 +03:00
const mailboxIsReject = ( ) = > ! ! listMailboxes ( ) . find ( mb = > mb . ID === miv . messageitem . Message . MailboxID && mb . Name === rejectsMailbox )
2024-11-28 20:24:03 +03:00
if ( ! miv . messageitem . Message . Junk && ! miv . messageitem . Message . Notjunk && miv . messageitem . Message . Seen && miv . messageitem . Message . ID === msglistView . activeMessageID ( ) && ! mailboxIsReject ( ) ) {
2023-08-09 10:45:54 +03:00
await withStatus ( 'Marking current message as not junk' , client . FlagsAdd ( [ miv . messageitem . Message . ID ] , [ '$notjunk' ] ) )
}
} , 5 * 1000 )
}
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
} ) ( )
return mv
}
// MsglistView holds the list of messages for a mailbox/search query. Zero or more
// messages can be selected (active). If one message is selected, its contents are shown.
// With multiple selected, they can all be operated on, e.g. moved to
// archive/trash/junk. Focus is typically on the last clicked message, but can be
// changed with keyboard interaction without changing selected messages.
//
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
// With threading enabled, we show the messages in a thread below each other. A
// thread can have multiple "thread roots": messages without a parent message. This
// can occur if a parent message with multiple kids is permanently removed. We also
// show messages from the same thread but a different mailbox. A thread root can be
// collapsed, independently of collapsed state of other thread roots. We order
// thread roots, and kids/siblings, by received timestamp.
//
// For incoming changes (add/remove of messages), we update the thread view in a
// way that resembles a fresh mailbox load as much as possible. Exceptions: If a
// message is removed, and there are thread messages remaining, but they are all in
// other mailboxes (or don't match the search query), we still show the remaining
// messages. If you would load the mailbox/search query again, you would not see
// those remaining messages. Also, if a new message is delivered to a thread, the
// thread isn't moved. After a refresh, the thread would be the most recent (at the
// top for the default sorting).
//
// When updating the UI for threaded messages, we often take this simple approach:
// Remove a subtree of messages from the UI, sort their data structures, and add
// them to the UI again. That saves tricky code that would need to make just the
// exact changes needed.
//
// We just have one MsglistView, that is updated when a different mailbox/search
// query is opened.
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
interface MsglistView {
root : HTMLElement
webmail: during "send and archive", don't fail with error message when message that is being responded to is already in archive folder
before this change, when archiving, we would move all messages from the thread
that are in the same mailbox as that of the response message to the archive
mailbox. so if the message that was being responsed to was already in the
archive mailbox, the message would be moved from archive mailbox to archive
mailbox, resulting in an error.
with this change, when archiving, we move the thread messages that are in the
same mailbox as is currently open (independent of the mailbox the message lives
in, a common situation in the threading view). if there is no open mailbox
(search results), we still use the mailbox of the message being responded to as
reference.
with this new approach, we won't get errors moving a message to an archive
mailbox when it's already there. well, you can still get that error, but then
you've got the archive mailbox open, or you're in a search result and
responding to an archived message. the error should at least help understand
that nothing is happening.
we are only moving the messages from one active/reference mailbox because we
don't want to move messages from the thread that are in the Sent mailbox, and
we also don't want to move duplicate messages (cross-posts to mailing lists)
that are in other mailboxes. moving only the messages from the current active
mailbox seems safe, and should do what is what users would expect most of the
time.
for issue #233 by mattfbacon, thanks for reporting!
2024-10-31 18:20:11 +03:00
2023-08-10 11:56:04 +03:00
updateFlags : ( mailboxID : number , uid : number , modseq : number , mask : api.Flags , flags : api.Flags , keywords : string [ ] ) = > void
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
addMessageItems : ( messageItems : ( api . MessageItem [ ] | null ) [ ] , isChange : boolean , requestMsgID : number ) = > void
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
removeUIDs : ( mailboxID : number , uids : number [ ] ) = > void
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
updateMessageThreadFields : ( messageIDs : number [ ] , muted : boolean , collapsed : boolean ) = > void
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
activeMessageID : ( ) = > number // For single message selected, otherwise returns 0.
redraw : ( miv : MsgitemView ) = > void // To be called after updating flags or focus/active state, rendering it again.
clear : ( ) = > void // Clear all messages, reset focus/active state.
unselect : ( ) = > void
select : ( miv : MsgitemView ) = > void
selected : ( ) = > MsgitemView [ ]
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
openMessage : ( parsedMessage : api.ParsedMessage ) = > boolean
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
click : ( miv : MsgitemView , ctrl : boolean , shift : boolean ) = > void
key : ( k : string , e : KeyboardEvent ) = > void
mailboxes : ( ) = > api . Mailbox [ ]
webmail: during "send and archive", don't fail with error message when message that is being responded to is already in archive folder
before this change, when archiving, we would move all messages from the thread
that are in the same mailbox as that of the response message to the archive
mailbox. so if the message that was being responsed to was already in the
archive mailbox, the message would be moved from archive mailbox to archive
mailbox, resulting in an error.
with this change, when archiving, we move the thread messages that are in the
same mailbox as is currently open (independent of the mailbox the message lives
in, a common situation in the threading view). if there is no open mailbox
(search results), we still use the mailbox of the message being responded to as
reference.
with this new approach, we won't get errors moving a message to an archive
mailbox when it's already there. well, you can still get that error, but then
you've got the archive mailbox open, or you're in a search result and
responding to an archived message. the error should at least help understand
that nothing is happening.
we are only moving the messages from one active/reference mailbox because we
don't want to move messages from the thread that are in the Sent mailbox, and
we also don't want to move duplicate messages (cross-posts to mailing lists)
that are in other mailboxes. moving only the messages from the current active
mailbox seems safe, and should do what is what users would expect most of the
time.
for issue #233 by mattfbacon, thanks for reporting!
2024-10-31 18:20:11 +03:00
activeMailbox : ( ) = > api . Mailbox | null
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
itemHeight : ( ) = > number // For calculating how many messageitems to request to load next view.
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
threadExpand : ( miv : MsgitemView ) = > void
threadCollapse : ( miv : MsgitemView ) = > void
threadToggle : ( ) = > void // Toggle threads based on state.
viewportEnsureMessages : ( ) = > Promise < void > // Load more messages if last message is near the end of the viewport.
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
// Exported for MsgView.
cmdArchive : ( ) = > Promise < void >
cmdDelete : ( ) = > Promise < void >
cmdTrash : ( ) = > Promise < void >
cmdJunk : ( ) = > Promise < void >
cmdMarkNotJunk : ( ) = > Promise < void >
cmdMarkRead : ( ) = > Promise < void >
cmdMarkUnread : ( ) = > Promise < void >
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
cmdMute : ( ) = > Promise < void >
cmdUnmute : ( ) = > Promise < void >
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
}
webmail: during "send and archive", don't fail with error message when message that is being responded to is already in archive folder
before this change, when archiving, we would move all messages from the thread
that are in the same mailbox as that of the response message to the archive
mailbox. so if the message that was being responsed to was already in the
archive mailbox, the message would be moved from archive mailbox to archive
mailbox, resulting in an error.
with this change, when archiving, we move the thread messages that are in the
same mailbox as is currently open (independent of the mailbox the message lives
in, a common situation in the threading view). if there is no open mailbox
(search results), we still use the mailbox of the message being responded to as
reference.
with this new approach, we won't get errors moving a message to an archive
mailbox when it's already there. well, you can still get that error, but then
you've got the archive mailbox open, or you're in a search result and
responding to an archived message. the error should at least help understand
that nothing is happening.
we are only moving the messages from one active/reference mailbox because we
don't want to move messages from the thread that are in the Sent mailbox, and
we also don't want to move duplicate messages (cross-posts to mailing lists)
that are in other mailboxes. moving only the messages from the current active
mailbox seems safe, and should do what is what users would expect most of the
time.
for issue #233 by mattfbacon, thanks for reporting!
2024-10-31 18:20:11 +03:00
const newMsglistView = ( msgElem : HTMLElement , activeMailbox : ( ) = > api . Mailbox | null , listMailboxes : listMailboxes , setLocationHash : setLocationHash , otherMailbox : otherMailbox , possibleLabels : possibleLabels , scrollElemHeight : ( ) = > number , refineKeyword : ( kw : string ) = > Promise < void > , viewportEnsureMessages : ( ) = > Promise < void > ) : MsglistView = > {
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
// msgitemViews holds all visible item views: All thread roots, and kids only if
// the thread is expanded, in order of descendants. All descendants of a collapsed
// root are in collapsedMsgitemViews, unsorted. Having msgitemViews as a list is
// convenient for reasoning about the visible items, and handling changes to the
// selected messages.
// When messages for a thread are all non-matching the query, we no longer show it
// (e.g. when moving a thread to Archive), but we keep the messages around in
// oldThreadMessageItems, so an update to the thread (e.g. new delivery) can
// resurrect the messages.
let msgitemViews : MsgitemView [ ] = [ ] // Only visible msgitems, in order on screen.
let collapsedMsgitemViews : MsgitemView [ ] = [ ] // Invisible messages because collapsed, unsorted.
let oldThreadMessageItems : api.MessageItem [ ] = [ ] // Messages from threads removed from view.
// selected holds the messages that are selected, zero or more. If there is a
// single message, its content is shown. If there are multiple, just the count is
// shown. These are in order of being added, not in order of how they are shown in
// the list. This is needed to handle selection changes with the shift key. For
// collapsed thread roots, only that root will be in this list. The effective
// selection must always expand descendants, use mlv.selected() to gather all.
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
let selected : MsgitemView [ ] = [ ]
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
// Focus is the message last interacted with, or the first when messages are
// loaded. Always set when there is a message. Used for shift+click to expand
// selection.
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
let focus : MsgitemView | null = null
let msgView : MsgView | null = null
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
// Messages for actions like "archive", "trash", "move to...". We skip messages
// that are (already) in skipMBID. And we skip messages that are in the designated
// Sent mailbox, unless there is only one selected message or the view is for the
// Sent mailbox, then it must be intentional.
const moveActionMsgIDs = ( skipMBID : number ) = > {
const sentMailboxID = listMailboxes ( ) . find ( mb = > mb . Sent ) ? . ID
const effselected = mlv . selected ( )
return effselected
. filter ( miv = > miv . messageitem . Message . MailboxID !== skipMBID )
. map ( miv = > miv . messageitem . Message )
. filter ( m = > effselected . length === 1 || ! sentMailboxID || m . MailboxID !== sentMailboxID || ! otherMailbox ( sentMailboxID ) )
. map ( m = > m . ID )
}
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
const cmdArchive = async ( ) = > {
const mb = listMailboxes ( ) . find ( mb = > mb . Archive )
if ( mb ) {
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
await withStatus ( 'Moving to archive mailbox' , client . MessageMove ( moveActionMsgIDs ( mb . ID ) , mb . ID ) )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
} else {
window . alert ( 'No mailbox configured for archiving yet.' )
}
}
const cmdDelete = async ( ) = > {
2023-11-27 10:02:01 +03:00
if ( ! window . confirm ( 'Are you sure you want to permanently delete?' ) ) {
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
return
}
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
await withStatus ( 'Permanently deleting messages' , client . MessageDelete ( mlv . selected ( ) . map ( miv = > miv . messageitem . Message . ID ) ) )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
}
const cmdTrash = async ( ) = > {
const mb = listMailboxes ( ) . find ( mb = > mb . Trash )
if ( mb ) {
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
await withStatus ( 'Moving to trash mailbox' , client . MessageMove ( moveActionMsgIDs ( mb . ID ) , mb . ID ) )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
} else {
window . alert ( 'No mailbox configured for trash yet.' )
}
}
const cmdJunk = async ( ) = > {
const mb = listMailboxes ( ) . find ( mb = > mb . Junk )
if ( mb ) {
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
await withStatus ( 'Moving to junk mailbox' , client . MessageMove ( moveActionMsgIDs ( mb . ID ) , mb . ID ) )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
} else {
window . alert ( 'No mailbox configured for junk yet.' )
}
}
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
const cmdMarkNotJunk = async ( ) = > { await withStatus ( 'Marking as not junk' , client . FlagsAdd ( mlv . selected ( ) . map ( miv = > miv . messageitem . Message . ID ) , [ '$notjunk' ] ) ) }
const cmdMarkRead = async ( ) = > { await withStatus ( 'Marking as read' , client . FlagsAdd ( mlv . selected ( ) . map ( miv = > miv . messageitem . Message . ID ) , [ '\\seen' ] ) ) }
2024-11-28 20:24:03 +03:00
const cmdMarkUnread = async ( ) = > { await withStatus ( 'Marking as not read' , client . FlagsClear ( mlv . selected ( ) . map ( miv = > miv . messageitem . Message . ID ) , [ '\\seen' , '$junk' , '$notjunk' ] ) ) }
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
const cmdMute = async ( ) = > {
const l = mlv . selected ( )
await withStatus ( 'Muting thread' , client . ThreadMute ( l . map ( miv = > miv . messageitem . Message . ID ) , true ) )
const oldstate = state ( )
for ( const miv of l ) {
if ( ! miv . parent && miv . kids . length > 0 && ! miv . collapsed ) {
threadCollapse ( miv , false )
}
}
updateState ( oldstate )
viewportEnsureMessages ( )
}
const cmdUnmute = async ( ) = > { await withStatus ( 'Unmuting thread' , client . ThreadMute ( mlv . selected ( ) . map ( miv = > miv . messageitem . Message . ID ) , false ) ) }
const seletedRoots = ( ) = > {
const mivs : MsgitemView [ ] = [ ]
mlv . selected ( ) . forEach ( miv = > {
const mivroot = miv . threadRoot ( )
if ( ! mivs . includes ( mivroot ) ) {
mivs . push ( mivroot )
}
} )
return mivs
}
const cmdToggleMute = async ( ) = > {
if ( settings . threading === api . ThreadMode . ThreadOff ) {
alert ( 'Toggle muting threads is only available when threading is enabled.' )
return
}
const rootmivs = seletedRoots ( )
const unmuted = ! ! rootmivs . find ( miv = > ! miv . messageitem . Message . ThreadMuted )
await withStatus ( unmuted ? 'Muting' : 'Unmuting' , client . ThreadMute ( rootmivs . map ( miv = > miv . messageitem . Message . ID ) , unmuted ? true : false ) )
if ( unmuted ) {
const oldstate = state ( )
rootmivs . forEach ( miv = > {
if ( ! miv . collapsed ) {
threadCollapse ( miv , false )
}
} )
updateState ( oldstate )
viewportEnsureMessages ( )
}
}
const cmdToggleCollapse = async ( ) = > {
if ( settings . threading === api . ThreadMode . ThreadOff ) {
alert ( 'Toggling thread collapse/expand is only available when threading is enabled.' )
return
}
const rootmivs = seletedRoots ( )
const collapse = ! ! rootmivs . find ( miv = > ! miv . collapsed )
const oldstate = state ( )
if ( collapse ) {
rootmivs . forEach ( miv = > {
if ( ! miv . collapsed ) {
threadCollapse ( miv , false )
}
} )
selected = rootmivs
if ( focus ) {
focus = focus . threadRoot ( )
}
viewportEnsureMessages ( )
} else {
rootmivs . forEach ( miv = > {
if ( miv . collapsed ) {
threadExpand ( miv , false )
}
} )
}
updateState ( oldstate )
if ( settings . threading === api . ThreadMode . ThreadOn ) {
const action = collapse ? 'Collapsing' : 'Expanding'
await withStatus ( action , client . ThreadCollapse ( rootmivs . map ( miv = > miv . messageitem . Message . ID ) , collapse ) )
}
}
const cmdSelectThread = async ( ) = > {
if ( ! focus ) {
return
}
const oldstate = state ( )
selected = msgitemViews . filter ( miv = > miv . messageitem . Message . ThreadID === focus ! . messageitem . Message . ThreadID )
updateState ( oldstate )
}
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
2023-09-21 12:51:38 +03:00
const cmdCollapseExpand = async ( collapse : boolean ) = > {
if ( settings . threading === api . ThreadMode . ThreadOff ) {
alert ( 'Toggling thread collapse/expand is only available when threading is enabled.' )
return
}
const oldstate = state ( )
const rootmivs = seletedRoots ( )
rootmivs . forEach ( miv = > {
if ( miv . collapsed !== collapse ) {
if ( collapse ) {
threadCollapse ( miv , false )
} else {
threadExpand ( miv , false )
}
}
} )
if ( collapse ) {
selected = rootmivs
if ( focus ) {
focus = focus . threadRoot ( )
}
}
viewportEnsureMessages ( )
updateState ( oldstate )
if ( settings . threading === api . ThreadMode . ThreadOn ) {
const action = collapse ? 'Collapsing' : 'Expanding'
await withStatus ( action , client . ThreadCollapse ( rootmivs . map ( miv = > miv . messageitem . Message . ID ) , collapse ) )
}
}
const cmdCollapse = async ( ) = > cmdCollapseExpand ( true )
const cmdExpand = async ( ) = > cmdCollapseExpand ( false )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
const shortcuts : { [ key : string ] : command } = {
d : cmdTrash ,
Delete : cmdTrash ,
D : cmdDelete ,
a : cmdArchive ,
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
q : cmdJunk ,
Q : cmdMarkNotJunk ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
m : cmdMarkRead ,
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
M : cmdMarkUnread ,
X : cmdToggleMute ,
C : cmdToggleCollapse ,
S : cmdSelectThread ,
2023-09-21 12:51:38 +03:00
ArrowLeft : cmdCollapse ,
ArrowRight : cmdExpand ,
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
}
// After making changes, this function looks through the data structure for
// inconsistencies. Useful during development.
const checkConsistency = ( checkSelection : boolean ) = > {
if ( ! settings . checkConsistency ) {
return
}
// Check for duplicates in msgitemViews.
const mivseen = new Set < number > ( )
const threadActive = new Set < number > ( )
for ( const miv of msgitemViews ) {
const id = miv . messageitem . Message . ID
if ( mivseen . has ( id ) ) {
log ( 'duplicate Message.ID' , { id : id , mivseenSize : mivseen.size } )
throw new ConsistencyError ( 'duplicate Message.ID in msgitemViews' )
}
mivseen . add ( id )
if ( ! miv . root . parentNode ) {
throw new ConsistencyError ( 'msgitemView.root not in dom' )
}
threadActive . add ( miv . messageitem . Message . ThreadID )
}
// Check for duplicates in collapsedMsgitemViews, and whether also in msgitemViews.
const colseen = new Set < number > ( )
for ( const miv of collapsedMsgitemViews ) {
const id = miv . messageitem . Message . ID
if ( colseen . has ( id ) ) {
throw new ConsistencyError ( 'duplicate Message.ID in collapsedMsgitemViews' )
}
colseen . add ( id )
if ( mivseen . has ( id ) ) {
throw new ConsistencyError ( 'Message.ID in both collapsedMsgitemViews and msgitemViews' )
}
threadActive . add ( miv . messageitem . Message . ThreadID )
}
if ( settings . threading !== api . ThreadMode . ThreadOff ) {
const oldseen = new Set < number > ( )
for ( const mi of oldThreadMessageItems ) {
const id = mi . Message . ID
if ( oldseen . has ( id ) ) {
throw new ConsistencyError ( 'duplicate Message.ID in oldThreadMessageItems' )
}
oldseen . add ( id )
if ( mivseen . has ( id ) ) {
throw new ConsistencyError ( 'Message.ID in both msgitemViews and oldThreadMessageItems' )
}
if ( colseen . has ( id ) ) {
throw new ConsistencyError ( 'Message.ID in both collapsedMsgitemViews and oldThreadMessageItems' )
}
if ( threadActive . has ( mi . Message . ThreadID ) ) {
throw new ConsistencyError ( 'threadid both in active and in old thread list' )
}
}
}
// Walk all (collapsed) msgitemViews, check each and their descendants are in
// msgitemViews at the correct position, or in collapsedmsgitemViews.
msgitemViews . forEach ( ( miv , i ) = > {
if ( miv . collapsed ) {
for ( const dmiv of miv . descendants ( ) ) {
if ( ! colseen . has ( dmiv . messageitem . Message . ID ) ) {
throw new ConsistencyError ( 'descendant message id missing from collapsedMsgitemViews' )
}
}
return
}
for ( const dmiv of miv . descendants ( ) ) {
i ++
if ( ! mivseen . has ( dmiv . messageitem . Message . ID ) ) {
throw new ConsistencyError ( 'descendant missing from msgitemViews' )
}
if ( msgitemViews [ i ] !== dmiv ) {
throw new ConsistencyError ( 'descendant not at expected position in msgitemViews' )
}
}
} )
if ( ! checkSelection ) {
return
}
// Check all selected & focus exists.
const selseen = new Set < number > ( )
for ( const miv of selected ) {
const id = miv . messageitem . Message . ID
if ( selseen . has ( id ) ) {
throw new ConsistencyError ( 'duplicate miv in selected' )
}
selseen . add ( id )
if ( ! mivseen . has ( id ) ) {
throw new ConsistencyError ( 'selected id not in msgitemViews' )
}
}
if ( focus ) {
const id = focus . messageitem . Message . ID
if ( ! mivseen . has ( id ) ) {
throw new ConsistencyError ( 'focus set to unknown miv' )
}
}
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
}
type state = {
active : { [ id : string ] : MsgitemView } ,
focus : MsgitemView | null
}
// Return active & focus state, and update the UI after changing state.
const state = ( ) : state = > {
const active : { [ key : string ] : MsgitemView } = { }
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
for ( const miv of mlv . selected ( ) ) {
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
active [ miv . messageitem . Message . ID ] = miv
}
return { active : active , focus : focus }
}
const updateState = async ( oldstate : state , initial? : boolean , parsedMessageOpt? : api.ParsedMessage ) : Promise < void > = > {
// Set new focus & active classes.
const newstate = state ( )
if ( oldstate . focus !== newstate . focus ) {
if ( oldstate . focus ) {
oldstate . focus . root . classList . toggle ( 'focus' , false )
}
if ( newstate . focus ) {
newstate . focus . root . classList . toggle ( 'focus' , true )
newstate . focus . root . scrollIntoView ( { block : initial ? 'center' : 'nearest' } )
}
}
let activeChanged = false
for ( const id in oldstate . active ) {
if ( ! newstate . active [ id ] ) {
oldstate . active [ id ] . root . classList . toggle ( 'active' , false )
activeChanged = true
}
}
for ( const id in newstate . active ) {
if ( ! oldstate . active [ id ] ) {
newstate . active [ id ] . root . classList . toggle ( 'active' , true )
activeChanged = true
}
}
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
const effselected = mlv . selected ( )
if ( initial && effselected . length === 1 ) {
mlv . redraw ( effselected [ 0 ] )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
}
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
checkConsistency ( true )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
if ( ! activeChanged ) {
return
}
if ( msgView ) {
msgView . aborter . abort ( )
}
msgView = null
if ( effselected . length === 0 ) {
dom . _kids ( msgElem )
} else if ( effselected . length === 1 ) {
msgElem . classList . toggle ( 'loading' , true )
const loaded = ( ) = > { msgElem . classList . toggle ( 'loading' , false ) }
msgView = newMsgView ( effselected [ 0 ] , mlv , listMailboxes , possibleLabels , loaded , refineKeyword , parsedMessageOpt )
dom . _kids ( msgElem , msgView )
} else {
const trashMailboxID = listMailboxes ( ) . find ( mb = > mb . Trash ) ? . ID
const allTrash = trashMailboxID && ! effselected . find ( miv = > miv . messageitem . Message . MailboxID !== trashMailboxID )
dom . _kids ( msgElem ,
dom . div (
attr . role ( 'region' ) , attr . arialabel ( 'Buttons for multiple messages' ) ,
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
css ( 'multimsgBg' , { position : 'absolute' , top : 0 , right : 0 , bottom : 0 , left : 0 , display : 'flex' , alignItems : 'center' , justifyContent : 'center' } ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
dom . div (
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
css ( 'multimsgBox' , { backgroundColor : styles.backgroundColor , border : '1px solid' , borderColor : styles.borderColor , padding : '4ex' , borderRadius : '.25em' } ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
dom . div (
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
style ( { textAlign : 'center' , marginBottom : '4ex' } ) ,
'' + effselected . length + ' messages selected' ,
) ,
dom . div (
dom . clickbutton ( 'Archive' , attr . title ( 'Move to the Archive mailbox. Messages in the designated Sent mailbox are only moved if a single message is selected, or the current mailbox is the Sent mailbox.' ) , clickCmd ( cmdArchive , shortcuts ) ) , ' ' ,
allTrash ?
dom . clickbutton ( 'Delete' , attr . title ( 'Permanently delete messages.' ) , clickCmd ( cmdDelete , shortcuts ) ) :
dom . clickbutton ( 'Trash' , attr . title ( 'Move to the Trash mailbox. Messages in the designated Sent mailbox are only moved if a single message is selected, or the current mailbox is the Sent mailbox.' ) , clickCmd ( cmdTrash , shortcuts ) ) ,
' ' ,
dom . clickbutton ( 'Junk' , attr . title ( 'Move to Junk mailbox, marking as junk and causing this message to be used in spam classification of new incoming messages. Messages in the designated Sent mailbox are only moved if a single message is selected, or the current mailbox is the Sent mailbox.' ) , clickCmd ( cmdJunk , shortcuts ) ) , ' ' ,
dom . clickbutton ( 'Move to...' , function click ( e : MouseEvent ) {
const sentMailboxID = listMailboxes ( ) . find ( mb = > mb . Sent ) ? . ID
movePopover ( e , listMailboxes ( ) , effselected . map ( miv = > miv . messageitem . Message ) . filter ( m = > effselected . length === 1 || ! sentMailboxID || m . MailboxID !== sentMailboxID || ! otherMailbox ( sentMailboxID ) ) )
} ) , ' ' ,
dom . clickbutton ( 'Labels...' , attr . title ( 'Add/remove labels ...' ) , function click ( e : MouseEvent ) {
labelsPopover ( e , effselected . map ( miv = > miv . messageitem . Message ) , possibleLabels )
} ) , ' ' ,
dom . clickbutton ( 'Mark Not Junk' , attr . title ( 'Mark as not junk, causing this message to be used in spam classification of new incoming messages.' ) , clickCmd ( cmdMarkNotJunk , shortcuts ) ) , ' ' ,
dom . clickbutton ( 'Mark Read' , clickCmd ( cmdMarkRead , shortcuts ) ) , ' ' ,
dom . clickbutton ( 'Mark Unread' , clickCmd ( cmdMarkUnread , shortcuts ) ) , ' ' ,
dom . clickbutton ( 'Mute thread' , clickCmd ( cmdMute , shortcuts ) ) , ' ' ,
dom . clickbutton ( 'Unmute thread' , clickCmd ( cmdUnmute , shortcuts ) ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
) ,
) ,
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
) ,
)
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
}
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
setLocationHash ( )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
}
// Moves the currently focused msgitemView, without changing selection.
const moveFocus = ( miv : MsgitemView ) = > {
const oldstate = state ( )
focus = miv
updateState ( oldstate )
}
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
const threadExpand = ( miv : MsgitemView , changeState : boolean ) = > {
if ( miv . parent ) {
throw new ConsistencyError ( 'cannot expand non-root' )
}
const oldstate = state ( )
miv . collapsed = false
const mivl = miv . descendants ( )
miv . render ( )
mivl . forEach ( dmiv = > dmiv . render ( ) )
for ( const miv of mivl ) {
collapsedMsgitemViews . splice ( collapsedMsgitemViews . indexOf ( miv ) , 1 )
}
const pi = msgitemViews . indexOf ( miv )
msgitemViews . splice ( pi + 1 , 0 , . . . mivl )
const next = miv . root . nextSibling
for ( const miv of mivl ) {
mlv . root . insertBefore ( miv . root , next )
}
if ( changeState ) {
updateState ( oldstate )
}
}
const threadCollapse = ( miv : MsgitemView , changeState : boolean ) = > {
if ( miv . parent ) {
throw new ConsistencyError ( 'cannot expand non-root' )
}
const oldstate = state ( )
miv . collapsed = true
const mivl = miv . descendants ( )
collapsedMsgitemViews . push ( . . . mivl )
// If miv or any child was selected, ensure collapsed thread root is also selected.
let select = [ miv , . . . mivl ] . find ( xmiv = > selected . indexOf ( xmiv ) >= 0 )
let seli = selected . length // Track first index of already selected miv, which is where we insert the thread root if needed, to keep order.
msgitemViews . splice ( msgitemViews . indexOf ( miv ) + 1 , mivl . length )
for ( const dmiv of mivl ) {
dmiv . remove ( )
if ( focus === dmiv ) {
focus = miv
}
const si = selected . indexOf ( dmiv )
if ( si >= 0 ) {
if ( si < seli ) {
seli = si
}
selected . splice ( si , 1 )
}
}
if ( select ) {
const si = selected . indexOf ( miv )
if ( si < 0 ) {
selected . splice ( seli , 0 , miv )
}
}
// Selected messages may have changed.
if ( changeState ) {
updateState ( oldstate )
}
// Render remaining thread root, with tree size, effective received age/unread state.
miv . render ( )
}
const threadToggle = ( ) = > {
const oldstate = state ( )
const roots = msgitemViews . filter ( miv = > ! miv . parent && miv . kids . length > 0 )
roots . forEach ( miv = > {
let wantCollapsed = miv . messageitem . Message . ThreadCollapsed
if ( settings . threading === api . ThreadMode . ThreadUnread ) {
wantCollapsed = ! miv . messageitem . Message . Seen && ! miv . findDescendant ( miv = > ! miv . messageitem . Message . Seen )
}
if ( miv . collapsed === wantCollapsed ) {
return
}
if ( wantCollapsed ) {
threadCollapse ( miv , false )
} else {
threadExpand ( miv , false )
}
} )
updateState ( oldstate )
viewportEnsureMessages ( )
}
const removeSelected = ( miv : MsgitemView ) = > {
const si = selected . indexOf ( miv )
if ( si >= 0 ) {
selected . splice ( si , 1 )
}
if ( focus === miv ) {
const i = msgitemViews . indexOf ( miv )
if ( i > 0 ) {
focus = msgitemViews [ i - 1 ]
} else if ( i + 1 < msgitemViews . length ) {
focus = msgitemViews [ i + 1 ]
} else {
focus = null
}
}
}
// Removes message from either msgitemViews, collapsedMsgitemViews,
// oldThreadMessageItems, and updates UI.
// Returns ThreadID of removed message if active (expanded or collapsed), or 0 otherwise.
const removeUID = ( mailboxID : number , uid : number ) = > {
const match = ( miv : MsgitemView ) = > miv . messageitem . Message . MailboxID === mailboxID && miv . messageitem . Message . UID === uid
const ci = collapsedMsgitemViews . findIndex ( match )
if ( ci >= 0 ) {
const miv = collapsedMsgitemViews [ ci ]
removeCollapsed ( ci )
return miv . messageitem . Message . ThreadID
}
const i = msgitemViews . findIndex ( match )
if ( i >= 0 ) {
const miv = msgitemViews [ i ]
removeExpanded ( i )
return miv . messageitem . Message . ThreadID
}
const ti = oldThreadMessageItems . findIndex ( mi = > mi . Message . MailboxID === mailboxID && mi . Message . UID === uid )
if ( ti >= 0 ) {
oldThreadMessageItems . splice ( ti , 1 )
}
return 0
}
// Removes message from collapsedMsgitemView and UI at given index, placing
// messages in oldThreadMessageItems.
const removeCollapsed = ( ci : number ) = > {
// Message is collapsed. That means it isn't visible, and neither are its children,
// and it has a parent. So we just merge the kids with those of the parent.
const miv = collapsedMsgitemViews [ ci ]
collapsedMsgitemViews . splice ( ci , 1 )
removeSelected ( miv )
const trmiv = miv . threadRoot ( ) // To rerender, below.
const pmiv = miv . parent
if ( ! pmiv ) {
throw new ConsistencyError ( 'removing collapsed miv, but has no parent' )
}
miv . parent = null // Strict cleanup.
const pki = pmiv . kids . indexOf ( miv )
if ( pki < 0 ) {
throw new ConsistencyError ( 'miv not in parent.kids' )
}
pmiv . kids . splice ( pki , 1 , . . . miv . kids ) // In parent, replace miv with its kids.
miv . kids . forEach ( kmiv = > kmiv . parent = pmiv ) // Give kids their new parent.
miv . kids = [ ] // Strict cleanup.
pmiv . kids . sort ( ( miva , mivb ) = > miva . messageitem . Message . Received . getTime ( ) - mivb . messageitem . Message . Received . getTime ( ) ) // Sort new list of kids.
trmiv . render ( ) // For count, unread state.
return
}
// Remove message from msgitemViews and UI at the index i.
const removeExpanded = ( i : number ) = > {
log ( 'removeExpanded' , { i } )
// Note: If we remove a message we may be left with only messages from another
// mailbox. We'll leave it, new messages could be delivered for that thread. It
// would be strange to see the remaining messages of the thread disappear.
const miv = msgitemViews [ i ]
removeSelected ( miv )
const pmiv = miv . parent
miv . parent = null
if ( miv . kids . length === 0 ) {
// No kids, easy case, just remove this leaf message.
miv . remove ( )
msgitemViews . splice ( i , 1 )
if ( pmiv ) {
const pki = pmiv . kids . indexOf ( miv )
if ( pki < 0 ) {
throw new ConsistencyError ( 'miv not in parent.kids' )
}
pmiv . kids . splice ( pki , 1 ) // Remove miv from parent's kids.
miv . parent = null // Strict cleanup.
pmiv . render ( ) // Update counts.
}
return
}
if ( ! pmiv ) {
// If the kids no longer have a parent and become thread roots we leave them in
// their original location.
const next = miv . root . nextSibling
miv . remove ( )
msgitemViews . splice ( i , 1 )
if ( miv . collapsed ) {
msgitemViews . splice ( i , 0 , . . . miv . kids )
for ( const kmiv of miv . kids ) {
const pki = collapsedMsgitemViews . indexOf ( kmiv )
if ( pki < 0 ) {
throw new ConsistencyError ( 'cannot find collapsed kid in collapsedMsgitemViews' )
}
collapsedMsgitemViews . splice ( pki , 1 )
kmiv . collapsed = true
kmiv . parent = null
kmiv . render ( )
mlv . root . insertBefore ( kmiv . root , next )
}
} else {
// Note: if not collapsed, we leave the kids in the original position in msgitemViews.
miv . kids . forEach ( kmiv = > {
kmiv . collapsed = false
kmiv . parent = null
kmiv . render ( )
const lastDesc = kmiv . lastDescendant ( )
if ( lastDesc ) {
// Update end of thread bar.
lastDesc . render ( )
}
} )
}
miv . kids = [ ] // Strict cleanup.
return
}
// If the kids will have a parent, we insert them at the expected location in
// between parent's existing kids. It is easiest just to take out all kids, add the
// new ones, sort kids, and add back the subtree.
const odmivs = pmiv . descendants ( ) // Old direct descendants of parent. This includes miv and kids, and other kids, and miv siblings.
const pi = msgitemViews . indexOf ( pmiv )
if ( pi < 0 ) {
throw new ConsistencyError ( 'cannot find parent of removed miv' )
}
msgitemViews . splice ( pi + 1 , odmivs . length ) // Remove all old descendants, we'll add an updated list later.
const pki = pmiv . kids . indexOf ( miv )
if ( pki < 0 ) {
throw new Error ( 'did not find miv in parent.kids' )
}
pmiv . kids . splice ( pki , 1 ) // Remove miv from parent's kids.
pmiv . kids . push ( . . . miv . kids ) // Add miv.kids to parent's kids.
miv . kids . forEach ( kmiv = > { kmiv . parent = pmiv } ) // Set new parent for miv kids.
miv . kids = [ ] // Strict cleanup.
pmiv . kids . sort ( ( miva , mivb ) = > miva . messageitem . Message . Received . getTime ( ) - mivb . messageitem . Message . Received . getTime ( ) )
const ndmivs = pmiv . descendants ( ) // Excludes miv, that we are removing.
if ( ndmivs . length !== odmivs . length - 1 ) {
throw new ConsistencyError ( 'unexpected new descendants counts during remove' )
}
msgitemViews . splice ( pi + 1 , 0 , . . . ndmivs ) // Add all new/current descedants. There is one less than in odmivs.
odmivs . forEach ( ndimv = > ndimv . remove ( ) )
const next = pmiv . root . nextSibling
for ( const ndmiv of ndmivs ) {
mlv . root . insertBefore ( ndmiv . root , next )
}
pmiv . render ( )
ndmivs . forEach ( dmiv = > dmiv . render ( ) )
}
// If there are no query-matching messages left for this thread, remove the
// remaining messages from view and keep them around for future deliveries for the
// thread.
const possiblyTakeoutOldThreads = ( threadIDs : Set < number > ) = > {
const hasMatch = ( mivs : MsgitemView [ ] , threadID : number ) = > mivs . find ( miv = > miv . messageitem . Message . ThreadID === threadID && miv . messageitem . MatchQuery )
const takeoutOldThread = ( mivs : MsgitemView [ ] , threadID : number , visible : boolean ) = > {
let i = 0
while ( i < mivs . length ) {
const miv = mivs [ i ]
const mi = miv . messageitem
const m = mi . Message
if ( threadID !== m . ThreadID ) {
i ++
continue
}
mivs . splice ( i , 1 )
if ( visible ) {
miv . remove ( )
}
if ( focus === miv ) {
focus = null
if ( i < mivs . length ) {
focus = mivs [ i ]
} else if ( i > 0 ) {
focus = mivs [ i - 1 ]
}
2023-09-22 15:25:25 +03:00
}
const si = selected . indexOf ( miv )
if ( si >= 0 ) {
selected . splice ( si , 1 )
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
}
// Strict cleanup.
miv . parent = null
miv . kids = [ ]
oldThreadMessageItems . push ( mi )
log ( 'took out old thread message' , { mi } )
}
}
for ( const threadID of threadIDs ) {
if ( hasMatch ( msgitemViews , threadID ) || hasMatch ( collapsedMsgitemViews , threadID ) ) {
log ( 'still have query-matching message for thread' , { threadID } )
continue
}
takeoutOldThread ( msgitemViews , threadID , true )
takeoutOldThread ( collapsedMsgitemViews , threadID , false )
}
}
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
const mlv : MsglistView = {
root : dom.div ( ) ,
2023-08-10 11:56:04 +03:00
updateFlags : ( mailboxID : number , uid : number , modseq : number , mask : api.Flags , flags : api.Flags , keywords : string [ ] ) = > {
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
const updateMessageFlags = ( m : api.Message ) = > {
m . ModSeq = modseq
const maskobj = mask as unknown as { [ key : string ] : boolean }
const flagsobj = flags as unknown as { [ key : string ] : boolean }
const mobj = m as unknown as { [ key : string ] : boolean }
for ( const k in maskobj ) {
if ( maskobj [ k ] ) {
mobj [ k ] = flagsobj [ k ]
}
}
m . Keywords = keywords
}
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
// todo optimize: keep mapping of uid to msgitemView for performance. instead of using Array.find
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
let miv = msgitemViews . find ( miv = > miv . messageitem . Message . MailboxID === mailboxID && miv . messageitem . Message . UID === uid )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
if ( ! miv ) {
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
miv = collapsedMsgitemViews . find ( miv = > miv . messageitem . Message . MailboxID === mailboxID && miv . messageitem . Message . UID === uid )
}
if ( miv ) {
updateMessageFlags ( miv . messageitem . Message )
miv . render ( )
if ( miv . parent ) {
const tr = miv . threadRoot ( )
if ( tr . collapsed ) {
tr . render ( )
}
}
if ( msgView && msgView . messageitem . Message . ID === miv . messageitem . Message . ID ) {
msgView . updateKeywords ( modseq , keywords )
}
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
return
}
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
const mi = oldThreadMessageItems . find ( mi = > mi . Message . MailboxID === mailboxID && mi . Message . UID === uid )
if ( mi ) {
updateMessageFlags ( mi . Message )
} else {
// Happens for messages outside of view.
log ( 'could not find msgitemView for uid' , uid )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
}
} ,
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
// Add messages to view, either messages to fill the view with complete threads, or
// individual messages delivered later.
addMessageItems : ( messageItems : ( api . MessageItem [ ] | null ) [ ] , isChange : boolean , requestMsgID : number ) = > {
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
if ( messageItems . length === 0 ) {
return
}
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
// Each "mil" is a thread, possibly with multiple thread roots. The thread may
// already be present.
messageItems . forEach ( mil = > {
if ( ! mil ) {
return // For types, should not happen.
}
const threadID = mil [ 0 ] . Message . ThreadID
const hasMatch = ! ! mil . find ( mi = > mi . MatchQuery )
if ( hasMatch ) {
// This may be a message for a thread that had query-matching matches at some
// point, but then no longer, causing its messages to have been moved to
// oldThreadMessageItems. We add back those messages.
let i = 0
while ( i < oldThreadMessageItems . length ) {
const omi = oldThreadMessageItems [ i ]
if ( omi . Message . ThreadID === threadID ) {
oldThreadMessageItems . splice ( i , 1 )
if ( ! mil . find ( mi = > mi . Message . ID === omi . Message . ID ) ) {
mil . push ( omi )
log ( 'resurrected old message' )
} else {
log ( 'dropped old thread message' )
}
} else {
i ++
}
}
} else {
// New message(s) are not matching query. If there are no "active" messages for
// this thread, update/add oldThreadMessageItems.
const match = ( miv : MsgitemView ) = > miv . messageitem . Message . ThreadID === threadID
if ( ! msgitemViews . find ( match ) && ! collapsedMsgitemViews . find ( match ) ) {
log ( 'adding new message(s) to oldTheadMessageItems' )
for ( const mi of mil ) {
const ti = oldThreadMessageItems . findIndex ( tmi = > tmi . Message . ID === mi . Message . ID )
if ( ti ) {
oldThreadMessageItems [ ti ] = mi
} else {
oldThreadMessageItems . push ( mi )
}
}
return
}
}
if ( isChange ) {
// This could be an "add" for a message from another mailbox that we are already
// displaying because of threads. If so, it may have new properties such as the
// mailbox, so update it.
const threadIDs = new Set < number > ( )
let i = 0
while ( i < mil . length ) {
const mi = mil [ i ]
let miv = msgitemViews . find ( miv = > miv . messageitem . Message . ID === mi . Message . ID )
if ( ! miv ) {
miv = collapsedMsgitemViews . find ( miv = > miv . messageitem . Message . ID === mi . Message . ID )
}
if ( miv ) {
miv . messageitem = mi
miv . render ( )
mil . splice ( i , 1 )
miv . threadRoot ( ) . render ( )
threadIDs . add ( mi . Message . ThreadID )
} else {
i ++
}
}
log ( 'processed changes for messages with thread' , { threadIDs , mil } )
if ( mil . length === 0 ) {
const oldstate = state ( )
possiblyTakeoutOldThreads ( threadIDs )
updateState ( oldstate )
return
}
}
// Find effective receive time for messages. We'll insert at that point.
let receivedTime = mil [ 0 ] . Message . Received . getTime ( )
const tmiv = msgitemViews . find ( miv = > miv . messageitem . Message . ThreadID === mil [ 0 ] . Message . ThreadID )
if ( tmiv ) {
receivedTime = tmiv . receivedTime
} else {
for ( const mi of mil ) {
const t = mi . Message . Received . getTime ( )
if ( settings . orderAsc && t < receivedTime || ! settings . orderAsc && t > receivedTime ) {
receivedTime = t
}
}
}
// Create new MsgitemViews.
const m = new Map < number , MsgitemView > ( )
for ( const mi of mil ) {
m . set ( mi . Message . ID , newMsgitemView ( mi , mlv , otherMailbox , listMailboxes , receivedTime , false ) )
}
// Assign miv's to parents or add them to the potential roots.
let roots : MsgitemView [ ] = [ ]
if ( settings . threading === api . ThreadMode . ThreadOff ) {
roots = [ . . . m . values ( ) ]
} else {
nextmiv :
for ( const [ _ , miv ] of m ) {
for ( const pid of ( miv . messageitem . Message . ThreadParentIDs || [ ] ) ) {
const pmiv = m . get ( pid )
if ( pmiv ) {
pmiv . kids . push ( miv )
miv . parent = pmiv
continue nextmiv
}
}
roots . push ( miv )
}
}
// Ensure all kids are properly sorted, always ascending by time received.
for ( const [ _ , miv ] of m ) {
miv . kids . sort ( ( miva , mivb ) = > miva . messageitem . Message . Received . getTime ( ) - mivb . messageitem . Message . Received . getTime ( ) )
}
// Add the potential roots as kids to existing parents, if they exist. Only with threading enabled.
if ( settings . threading !== api . ThreadMode . ThreadOff ) {
nextroot :
for ( let i = 0 ; i < roots . length ; ) {
const miv = roots [ i ]
for ( const pid of ( miv . messageitem . Message . ThreadParentIDs || [ ] ) ) {
const pi = msgitemViews . findIndex ( xmiv = > xmiv . messageitem . Message . ID === pid )
let parentmiv : MsgitemView | undefined
let collapsed : boolean
if ( pi >= 0 ) {
parentmiv = msgitemViews [ pi ]
collapsed = parentmiv . collapsed
log ( 'found parent' , { pi } )
} else {
parentmiv = collapsedMsgitemViews . find ( xmiv = > xmiv . messageitem . Message . ID === pid )
collapsed = true
}
if ( ! parentmiv ) {
log ( 'no parentmiv' , pid )
continue
}
const trmiv = parentmiv . threadRoot ( )
if ( collapsed !== trmiv . collapsed ) {
log ( 'collapsed mismatch' , { collapsed : collapsed , 'trmiv.collapsed' : trmiv . collapsed , trmiv : trmiv } )
throw new ConsistencyError ( 'mismatch between msgitemViews/collapsedMsgitemViews and threadroot collapsed' )
}
let prevLastDesc : MsgitemView | null = null
if ( ! trmiv . collapsed ) {
// Remove current parent, we'll insert again after linking parent/kids.
const ndesc = parentmiv . descendants ( ) . length
log ( 'removing descendants temporarily' , { ndesc } )
prevLastDesc = parentmiv . lastDescendant ( )
msgitemViews . splice ( pi + 1 , ndesc )
}
// Link parent & kid, sort kids.
miv . parent = parentmiv
parentmiv . kids . push ( miv )
parentmiv . kids . sort ( ( miva , mivb ) = > miva . messageitem . Message . Received . getTime ( ) - mivb . messageitem . Message . Received . getTime ( ) )
if ( trmiv . collapsed ) {
// Thread root is collapsed.
collapsedMsgitemViews . push ( miv , . . . miv . descendants ( ) )
// Ensure mivs have a root.
miv . render ( )
miv . descendants ( ) . forEach ( miv = > miv . render ( ) )
// Update count/unread status.
trmiv . render ( )
} else {
const desc = parentmiv . descendants ( )
log ( 'inserting parent descendants again' , { pi , desc } )
msgitemViews . splice ( pi + 1 , 0 , . . . desc ) // We had removed the old tree, now adding the updated tree.
// Insert at correct position in dom.
const i = msgitemViews . indexOf ( miv )
if ( i < 0 ) {
throw new ConsistencyError ( 'cannot find miv just inserted' )
}
const l = [ miv , . . . miv . descendants ( ) ]
// Ensure mivs have valid root.
l . forEach ( miv = > miv . render ( ) )
const next = i + 1 < msgitemViews . length ? msgitemViews [ i + 1 ] . root : null
log ( 'inserting l before next, or appending' , { next , l } )
if ( next ) {
for ( const miv of l ) {
log ( 'inserting miv' , { root : miv.root , before : next } )
mlv . root . insertBefore ( miv . root , next )
}
} else {
mlv . root . append ( . . . l . map ( e = > e . root ) )
}
// For beginning/end of thread bar.
msgitemViews [ i - 1 ] . render ( )
if ( prevLastDesc ) {
prevLastDesc . render ( )
}
}
roots . splice ( i , 1 )
continue nextroot
}
i ++
}
}
// Sort the remaining new roots by their receive times.
const sign = settings . threading === api . ThreadMode . ThreadOff && settings . orderAsc ? - 1 : 1
roots . sort ( ( miva , mivb ) = > sign * ( mivb . messageitem . Message . Received . getTime ( ) - miva . messageitem . Message . Received . getTime ( ) ) )
// Find place to insert, based on thread receive time.
let nextmivindex : number
if ( tmiv ) {
nextmivindex = msgitemViews . indexOf ( tmiv . threadRoot ( ) )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
} else {
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
nextmivindex = msgitemViews . findIndex ( miv = > ! settings . orderAsc && miv . receivedTime <= receivedTime || settings . orderAsc && receivedTime <= miv . receivedTime )
}
for ( const miv of roots ) {
miv . collapsed = settings . threading === api . ThreadMode . ThreadOn && miv . messageitem . Message . ThreadCollapsed
if ( settings . threading === api . ThreadMode . ThreadUnread ) {
miv . collapsed = miv . messageitem . Message . Seen && ! miv . findDescendant ( dmiv = > ! dmiv . messageitem . Message . Seen )
}
if ( requestMsgID > 0 && miv . collapsed ) {
miv . collapsed = ! miv . findDescendant ( dmiv = > dmiv . messageitem . Message . ID === requestMsgID )
}
const takeThreadRoot = ( xmiv : MsgitemView ) : number = > {
log ( 'taking threadRoot' , { id : xmiv.messageitem.Message.ID } )
// Remove subtree from dom.
const xdmiv = xmiv . descendants ( )
xdmiv . forEach ( xdmiv = > xdmiv . remove ( ) )
xmiv . remove ( )
// Link to new parent.
miv . kids . push ( xmiv )
xmiv . parent = miv
miv . kids . sort ( ( miva , mivb ) = > miva . messageitem . Message . Received . getTime ( ) - mivb . messageitem . Message . Received . getTime ( ) )
return 1 + xdmiv . length
}
if ( settings . threading !== api . ThreadMode . ThreadOff ) {
// We may have to take out existing threadroots and place them under this new root.
// Because when we move a threadroot, we first remove it, then add it again.
for ( let i = 0 ; i < msgitemViews . length ; ) {
const xmiv = msgitemViews [ i ]
if ( ! xmiv . parent && xmiv . messageitem . Message . ThreadID === miv . messageitem . Message . ThreadID && ( xmiv . messageitem . Message . ThreadParentIDs || [ ] ) . includes ( miv . messageitem . Message . ID ) ) {
msgitemViews . splice ( i , takeThreadRoot ( xmiv ) )
nextmivindex = i
} else {
i ++
}
}
for ( let i = 0 ; i < collapsedMsgitemViews . length ; ) {
const xmiv = collapsedMsgitemViews [ i ]
if ( ! xmiv . parent && xmiv . messageitem . Message . ThreadID === miv . messageitem . Message . ThreadID && ( xmiv . messageitem . Message . ThreadParentIDs || [ ] ) . includes ( miv . messageitem . Message . ID ) ) {
takeThreadRoot ( xmiv )
collapsedMsgitemViews . splice ( i , 1 )
} else {
i ++
}
}
}
let l = miv . descendants ( )
miv . render ( )
l . forEach ( kmiv = > kmiv . render ( ) )
if ( miv . collapsed ) {
collapsedMsgitemViews . push ( . . . l )
l = [ miv ]
} else {
l = [ miv , . . . l ]
}
if ( nextmivindex < 0 ) {
mlv . root . append ( . . . l . map ( miv = > miv . root ) )
msgitemViews . push ( . . . l )
} else {
const next = msgitemViews [ nextmivindex ] . root
for ( const miv of l ) {
mlv . root . insertBefore ( miv . root , next )
}
msgitemViews . splice ( nextmivindex , 0 , . . . l )
}
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
}
} )
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
if ( ! isChange ) {
return
}
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
const oldstate = state ( )
if ( ! focus ) {
focus = msgitemViews [ 0 ]
}
if ( selected . length === 0 ) {
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
if ( focus ) {
selected = [ focus ]
} else if ( msgitemViews . length > 0 ) {
selected = [ msgitemViews [ 0 ] ]
}
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
}
updateState ( oldstate )
} ,
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
// Remove messages, they can be in different threads.
removeUIDs : ( mailboxID : number , uids : number [ ] ) = > {
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
const oldstate = state ( )
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
const hadSelected = selected . length > 0
const threadIDs = new Set < number > ( )
uids . forEach ( uid = > {
const threadID = removeUID ( mailboxID , uid )
log ( 'removed message with thread' , { threadID } )
if ( threadID ) {
threadIDs . add ( threadID )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
}
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
} )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
possiblyTakeoutOldThreads ( threadIDs )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
if ( hadSelected && focus && selected . length === 0 ) {
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
selected = [ focus ]
}
updateState ( oldstate )
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
} ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
// Set new muted/collapsed flags for messages in thread.
updateMessageThreadFields : ( messageIDs : number [ ] , muted : boolean , collapsed : boolean ) = > {
for ( const id of messageIDs ) {
let miv = msgitemViews . find ( miv = > miv . messageitem . Message . ID === id )
if ( ! miv ) {
miv = collapsedMsgitemViews . find ( miv = > miv . messageitem . Message . ID === id )
}
if ( miv ) {
miv . messageitem . Message . ThreadMuted = muted
miv . messageitem . Message . ThreadCollapsed = collapsed
const mivthr = miv . threadRoot ( )
if ( mivthr . collapsed ) {
mivthr . render ( )
} else {
miv . render ( )
}
} else {
const mi = oldThreadMessageItems . find ( mi = > mi . Message . ID === id )
if ( mi ) {
mi . Message . ThreadMuted = muted
mi . Message . ThreadCollapsed = collapsed
}
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
}
}
} ,
// For location hash.
activeMessageID : ( ) = > selected . length === 1 ? selected [ 0 ] . messageitem.Message.ID : 0 ,
redraw : ( miv : MsgitemView ) = > {
miv . root . classList . toggle ( 'focus' , miv === focus )
miv . root . classList . toggle ( 'active' , selected . indexOf ( miv ) >= 0 )
} ,
clear : ( ) : void = > {
dom . _kids ( mlv . root )
msgitemViews . forEach ( miv = > miv . remove ( ) )
msgitemViews = [ ]
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
collapsedMsgitemViews = [ ]
oldThreadMessageItems = [ ]
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
focus = null
selected = [ ]
dom . _kids ( msgElem )
setLocationHash ( )
} ,
unselect : ( ) : void = > {
const oldstate = state ( )
selected = [ ]
updateState ( oldstate )
} ,
select : ( miv : MsgitemView ) : void = > {
const oldstate = state ( )
focus = miv
selected = [ miv ]
updateState ( oldstate )
} ,
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
selected : ( ) = > {
const l = [ ]
for ( const miv of selected ) {
l . push ( miv )
if ( miv . collapsed ) {
l . push ( . . . miv . descendants ( ) )
}
}
return l
} ,
openMessage : ( parsedMessage : api.ParsedMessage ) = > {
let miv = msgitemViews . find ( miv = > miv . messageitem . Message . ID === parsedMessage . ID )
if ( ! miv ) {
// todo: could move focus to the nearest expanded message in this thread, if any?
return false
}
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
const oldstate = state ( )
focus = miv
selected = [ miv ]
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
updateState ( oldstate , true , parsedMessage )
return true
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
} ,
click : ( miv : MsgitemView , ctrl : boolean , shift : boolean ) = > {
if ( msgitemViews . length === 0 ) {
return
}
const oldstate = state ( )
if ( shift ) {
const mivindex = msgitemViews . indexOf ( miv )
// Set selection from start of most recent range.
let recentindex
if ( selected . length > 0 ) {
let o = selected . length - 1
recentindex = msgitemViews . indexOf ( selected [ o ] )
while ( o > 0 ) {
if ( selected [ o - 1 ] === msgitemViews [ recentindex - 1 ] ) {
recentindex --
} else if ( selected [ o - 1 ] === msgitemViews [ recentindex + 1 ] ) {
recentindex ++
} else {
break
}
o --
}
} else {
recentindex = mivindex
}
const oselected = selected
if ( mivindex < recentindex ) {
selected = msgitemViews . slice ( mivindex , recentindex + 1 )
selected . reverse ( )
} else {
selected = msgitemViews . slice ( recentindex , mivindex + 1 )
}
if ( ctrl ) {
selected = oselected . filter ( e = > ! selected . includes ( e ) ) . concat ( selected )
}
} else if ( ctrl ) {
const index = selected . indexOf ( miv )
if ( index < 0 ) {
selected . push ( miv )
} else {
selected . splice ( index , 1 )
}
} else {
selected = [ miv ]
}
focus = miv
updateState ( oldstate )
} ,
key : async ( k : string , e : KeyboardEvent ) = > {
const moveKeys = [
' ' , 'ArrowUp' , 'ArrowDown' ,
'PageUp' , 'h' , 'H' ,
'PageDown' , 'l' , 'L' ,
'j' , 'J' ,
'k' , 'K' ,
'Home' , ',' , '<' ,
'End' , '.' , '>' ,
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
'n' , 'N' ,
'p' , 'P' ,
'u' , 'U' ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
]
if ( ! e . altKey && moveKeys . includes ( e . key ) ) {
const moveclick = ( index : number , clip : boolean ) = > {
if ( clip && index < 0 ) {
index = 0
} else if ( clip && index >= msgitemViews . length ) {
index = msgitemViews . length - 1
}
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
if ( index < 0 || index >= msgitemViews . length ) {
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
return
}
if ( e . ctrlKey ) {
moveFocus ( msgitemViews [ index ] )
} else {
mlv . click ( msgitemViews [ index ] , false , e . shiftKey )
}
}
let i = msgitemViews . findIndex ( miv = > miv === focus )
if ( e . key === ' ' ) {
if ( i >= 0 ) {
mlv . click ( msgitemViews [ i ] , e . ctrlKey , e . shiftKey )
}
} else if ( e . key === 'ArrowUp' || e . key === 'k' || e . key === 'K' ) {
moveclick ( i - 1 , e . key === 'K' )
} else if ( e . key === 'ArrowDown' || e . key === 'j' || e . key === 'J' ) {
moveclick ( i + 1 , e . key === 'J' )
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
} else if ( e . key === 'PageUp' || e . key === 'h' || e . key === 'H' || e . key === 'PageDown' || e . key === 'l' || e . key === 'L' ) {
2024-12-07 13:51:11 +03:00
// Commonly bound to "focus to browser address bar", moving cursor to one page down
// without opening isn't useful enough.
if ( e . key === 'l' && e . ctrlKey ) {
return
}
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
if ( msgitemViews . length > 0 ) {
let n = Math . max ( 1 , Math . floor ( scrollElemHeight ( ) / mlv . itemHeight ( ) ) - 1 )
if ( e . key === 'PageUp' || e . key === 'h' || e . key === 'H' ) {
n = - n
}
moveclick ( i + n , true )
}
} else if ( e . key === 'Home' || e . key === ',' || e . key === '<' ) {
moveclick ( 0 , true )
} else if ( e . key === 'End' || e . key === '.' || e . key === '>' ) {
moveclick ( msgitemViews . length - 1 , true )
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
} else if ( e . key === 'n' || e . key === 'N' ) {
if ( i < 0 ) {
moveclick ( 0 , true )
} else {
const tid = msgitemViews [ i ] . messageitem . Message . ThreadID
for ( ; i < msgitemViews . length ; i ++ ) {
if ( msgitemViews [ i ] . messageitem . Message . ThreadID !== tid ) {
moveclick ( i , true )
break
}
}
}
} else if ( e . key === 'p' || e . key === 'P' ) {
if ( i < 0 ) {
moveclick ( 0 , true )
} else {
let thrmiv = msgitemViews [ i ] . threadRoot ( )
if ( thrmiv === msgitemViews [ i ] ) {
if ( i - 1 >= 0 ) {
thrmiv = msgitemViews [ i - 1 ] . threadRoot ( )
}
}
moveclick ( msgitemViews . indexOf ( thrmiv ) , true )
}
} else if ( e . key === 'u' || e . key === 'U' ) {
2024-12-07 13:51:11 +03:00
// Commonly bound to "view source", moving cursor to next unread message without
// opening isn't useful enough.
if ( e . key === 'u' && e . ctrlKey ) {
return
}
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
for ( i = i < 0 ? 0 : i + 1 ; i < msgitemViews . length ; i += 1 ) {
if ( ! msgitemViews [ i ] . messageitem . Message . Seen || msgitemViews [ i ] . collapsed && msgitemViews [ i ] . findDescendant ( miv = > ! miv . messageitem . Message . Seen ) ) {
moveclick ( i , true )
break
}
}
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
}
e . preventDefault ( )
e . stopPropagation ( )
return
}
const fn = shortcuts [ k ]
if ( fn ) {
e . preventDefault ( )
e . stopPropagation ( )
fn ( )
} else if ( msgView ) {
msgView . key ( k , e )
} else {
log ( 'key not handled' , k )
}
} ,
mailboxes : ( ) = > listMailboxes ( ) ,
webmail: during "send and archive", don't fail with error message when message that is being responded to is already in archive folder
before this change, when archiving, we would move all messages from the thread
that are in the same mailbox as that of the response message to the archive
mailbox. so if the message that was being responsed to was already in the
archive mailbox, the message would be moved from archive mailbox to archive
mailbox, resulting in an error.
with this change, when archiving, we move the thread messages that are in the
same mailbox as is currently open (independent of the mailbox the message lives
in, a common situation in the threading view). if there is no open mailbox
(search results), we still use the mailbox of the message being responded to as
reference.
with this new approach, we won't get errors moving a message to an archive
mailbox when it's already there. well, you can still get that error, but then
you've got the archive mailbox open, or you're in a search result and
responding to an archived message. the error should at least help understand
that nothing is happening.
we are only moving the messages from one active/reference mailbox because we
don't want to move messages from the thread that are in the Sent mailbox, and
we also don't want to move duplicate messages (cross-posts to mailing lists)
that are in other mailboxes. moving only the messages from the current active
mailbox seems safe, and should do what is what users would expect most of the
time.
for issue #233 by mattfbacon, thanks for reporting!
2024-10-31 18:20:11 +03:00
activeMailbox : ( ) = > activeMailbox ( ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
itemHeight : ( ) = > msgitemViews . length > 0 ? msgitemViews [ 0 ] . root . getBoundingClientRect ( ) . height : 25 ,
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
threadExpand : ( miv : MsgitemView ) = > threadExpand ( miv , true ) ,
threadCollapse : ( miv : MsgitemView ) = > threadCollapse ( miv , true ) ,
threadToggle : threadToggle ,
viewportEnsureMessages : viewportEnsureMessages ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
cmdArchive : cmdArchive ,
cmdTrash : cmdTrash ,
cmdDelete : cmdDelete ,
cmdJunk : cmdJunk ,
cmdMarkNotJunk : cmdMarkNotJunk ,
cmdMarkRead : cmdMarkRead ,
cmdMarkUnread : cmdMarkUnread ,
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
cmdMute : cmdMute ,
cmdUnmute : cmdUnmute ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
}
return mlv
}
// MailboxView is a single mailbox item in the list of mailboxes. It is a drag and
// drop target for messages. It can be hidden, when a parent/ancestor is collapsed.
// It can be collapsed itself, causing it to still be visible, but its children
// hidden.
interface MailboxView {
root : HTMLElement
// Changed by the MailboxlistView.
shortname : string // Just the last part of the slash-separated name.
parents : number // How many parents/ancestors, for indenting.
hidden : boolean // If currently hidden.
mailbox : api.Mailbox
update : ( ) = > void // Render again, e.g. after toggling hiddenness.
open : ( load : boolean ) = > Promise < void > // Open mailbox, clearing MsglistView and, if load is set, requesting messages.
setCounts : ( total :number , unread : number ) = > void
setSpecialUse : ( specialUse : api.SpecialUse ) = > void
setKeywords : ( keywords : string [ ] ) = > void
}
2024-04-22 14:41:40 +03:00
const popoverExport = ( reference : HTMLElement , mailboxName : string ) = > {
const removeExport = popover ( reference , { } ,
dom . h1 ( 'Export ' , mailboxName || 'all mailboxes' ) ,
dom . form (
function submit() {
// If we would remove the popup immediately, the form would be deleted too and never submitted.
window . setTimeout ( ( ) = > removeExport ( ) , 100 )
} ,
attr . target ( '_blank' ) , attr . method ( 'POST' ) , attr . action ( 'export' ) ,
dom . input ( attr . type ( 'hidden' ) , attr . name ( 'csrf' ) , attr . value ( localStorageGet ( 'webmailcsrftoken' ) || '' ) ) ,
dom . input ( attr . type ( 'hidden' ) , attr . name ( 'mailbox' ) , attr . value ( mailboxName ) ) ,
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
dom . div ( css ( 'exportFields' , { display : 'flex' , flexDirection : 'column' , gap : '.5ex' } ) ,
2024-04-22 14:41:40 +03:00
dom . div (
dom . label ( dom . input ( attr . type ( 'radio' ) , attr . name ( 'format' ) , attr . value ( 'maildir' ) , attr . checked ( '' ) ) , ' Maildir' ) , ' ' ,
dom . label ( dom . input ( attr . type ( 'radio' ) , attr . name ( 'format' ) , attr . value ( 'mbox' ) ) , ' Mbox' ) ,
) ,
dom . div (
dom . label ( dom . input ( attr . type ( 'radio' ) , attr . name ( 'archive' ) , attr . value ( 'tar' ) ) , ' Tar' ) , ' ' ,
dom . label ( dom . input ( attr . type ( 'radio' ) , attr . name ( 'archive' ) , attr . value ( 'tgz' ) , attr . checked ( '' ) ) , ' Tgz' ) , ' ' ,
dom . label ( dom . input ( attr . type ( 'radio' ) , attr . name ( 'archive' ) , attr . value ( 'zip' ) ) , ' Zip' ) , ' ' ,
dom . label ( dom . input ( attr . type ( 'radio' ) , attr . name ( 'archive' ) , attr . value ( 'none' ) ) , ' None' ) ,
) ,
dom . div ( dom . label ( dom . input ( attr . type ( 'checkbox' ) , attr . checked ( '' ) , attr . name ( 'recursive' ) , attr . value ( 'on' ) ) , ' Recursive' ) ) ,
dom . div ( style ( { marginTop : '1ex' } ) , dom . submitbutton ( 'Export' ) ) ,
) ,
) ,
)
}
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
const newMailboxView = ( xmb : api.Mailbox , mailboxlistView : MailboxlistView , otherMailbox : otherMailbox ) : MailboxView = > {
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
const plusbox = '⊞'
const minusbox = '⊟'
const cmdCollapse = async ( ) = > {
settings . mailboxCollapsed [ mbv . mailbox . ID ] = true
settingsPut ( settings )
mailboxlistView . updateHidden ( )
mbv . root . focus ( )
}
const cmdExpand = async ( ) = > {
delete ( settings . mailboxCollapsed [ mbv . mailbox . ID ] )
settingsPut ( settings )
mailboxlistView . updateHidden ( )
mbv . root . focus ( )
}
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
const collapseElem = dom . span ( dom . _class ( 'mailboxCollapse' ) , minusbox , function click ( e : MouseEvent ) {
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
e . stopPropagation ( )
cmdCollapse ( )
} )
const expandElem = dom . span ( plusbox , function click ( e : MouseEvent ) {
e . stopPropagation ( )
cmdExpand ( )
} )
let name : HTMLElement , unread : HTMLElement
let actionBtn : HTMLButtonElement
const cmdOpenActions = async ( ) = > {
const trashmb = mailboxlistView . mailboxes ( ) . find ( mb = > mb . Trash )
const remove = popover ( actionBtn , { transparent : true } ,
dom . div ( style ( { display : 'flex' , flexDirection : 'column' , gap : '.5ex' } ) ,
dom . div (
dom . clickbutton ( 'Move to trash' , attr . title ( 'Move mailbox, its messages and its mailboxes to the trash.' ) , async function click() {
if ( ! trashmb ) {
window . alert ( 'No mailbox configured for trash yet.' )
return
}
if ( ! window . confirm ( 'Are you sure you want to move this mailbox, its messages and its mailboxes to the trash?' ) ) {
return
}
remove ( )
await withStatus ( 'Moving mailbox to trash' , client . MailboxRename ( mbv . mailbox . ID , trashmb . Name + '/' + mbv . mailbox . Name ) )
} ) ,
) ,
dom . div (
dom . clickbutton ( 'Delete mailbox' , attr . title ( 'Permanently delete this mailbox and all its messages.' ) , async function click() {
if ( ! window . confirm ( 'Are you sure you want to permanently delete this mailbox and all its messages?' ) ) {
return
}
remove ( )
await withStatus ( 'Deleting mailbox' , client . MailboxDelete ( mbv . mailbox . ID ) )
} ) ,
) ,
dom . div (
dom . clickbutton ( 'Empty mailbox' , async function click() {
if ( ! window . confirm ( 'Are you sure you want to empty this mailbox, permanently removing its messages? Mailboxes inside this mailbox are not affected.' ) ) {
return
}
remove ( )
await withStatus ( 'Emptying mailbox' , client . MailboxEmpty ( mbv . mailbox . ID ) )
} ) ,
) ,
dom . div (
dom . clickbutton ( 'Rename mailbox' , function click() {
remove ( )
let fieldset : HTMLFieldSetElement , name : HTMLInputElement
const remove2 = popover ( actionBtn , { } ,
dom . form (
async function submit ( e : SubmitEvent ) {
e . preventDefault ( )
await withStatus ( 'Renaming mailbox' , client . MailboxRename ( mbv . mailbox . ID , name . value ) , fieldset )
remove2 ( )
} ,
fieldset = dom . fieldset (
dom . label (
'Name ' ,
name = dom . input ( attr . required ( '' ) , attr . value ( mbv . mailbox . Name ) , prop ( { selectionStart : 0 , selectionEnd : mbv.mailbox.Name.length } ) ) ,
) ,
' ' ,
dom . submitbutton ( 'Rename' ) ,
) ,
) ,
)
} ) ,
) ,
dom . div (
dom . clickbutton ( 'Set role for mailbox...' , attr . title ( 'Set a special-use role on the mailbox, making it the designated mailbox for either Archived, Sent, Draft, Trashed or Junk messages.' ) , async function click() {
remove ( )
const setUse = async ( set : ( mb : api.Mailbox ) = > void ) = > {
const mb = { . . . mbv . mailbox }
mb . Archive = mb . Draft = mb . Junk = mb . Sent = mb . Trash = false
set ( mb )
await withStatus ( 'Marking mailbox as special use' , client . MailboxSetSpecialUse ( mb ) )
}
popover ( actionBtn , { transparent : true } ,
dom . div ( style ( { display : 'flex' , flexDirection : 'column' , gap : '.5ex' } ) ,
dom . div ( dom . clickbutton ( 'Archive' , async function click() { await setUse ( ( mb : api.Mailbox ) = > { mb . Archive = true } ) } ) ) ,
dom . div ( dom . clickbutton ( 'Draft' , async function click() { await setUse ( ( mb : api.Mailbox ) = > { mb . Draft = true } ) } ) ) ,
dom . div ( dom . clickbutton ( 'Junk' , async function click() { await setUse ( ( mb : api.Mailbox ) = > { mb . Junk = true } ) } ) ) ,
dom . div ( dom . clickbutton ( 'Sent' , async function click() { await setUse ( ( mb : api.Mailbox ) = > { mb . Sent = true } ) } ) ) ,
dom . div ( dom . clickbutton ( 'Trash' , async function click() { await setUse ( ( mb : api.Mailbox ) = > { mb . Trash = true } ) } ) ) ,
) ,
)
} ) ,
) ,
2024-04-22 14:41:40 +03:00
dom . div (
dom . clickbutton ( 'Export' , function click() {
popoverExport ( actionBtn , mbv . mailbox . Name )
remove ( )
} ) ,
) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
) ,
)
}
// Keep track of dragenter/dragleave ourselves, we don't get a neat 1 enter and 1
// leave event from browsers, we get events for multiple of this elements children.
let drags = 0
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
const mailboxItemStyle = css ( 'mailboxItem' , { cursor : 'pointer' , borderRadius : '.15em' , userSelect : 'none' } )
ensureCSS ( '.mailboxItem.dropping' , { background : styles.highlightBackground } , true )
ensureCSS ( '.mailboxItem:hover' , { backgroundColor : styles.mailboxHoverBackgroundColor } )
ensureCSS ( '.mailboxItem.active' , { background : styles.mailboxActiveBackground } )
ensureCSS ( '.mailboxHoverOnly' , { visibility : 'hidden' } )
ensureCSS ( '.mailboxItem:hover .mailboxHoverOnly, .mailboxItem:focus .mailboxHoverOnly' , { visibility : 'visible' } )
ensureCSS ( '.mailboxCollapse' , { visibility : 'hidden' } )
ensureCSS ( '.mailboxItem:hover .mailboxCollapse, .mailboxItem:focus .mailboxCollapse' , { visibility : 'visible' } )
const root = dom . div (
mailboxItemStyle ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
attr . tabindex ( '0' ) ,
async function keydown ( e : KeyboardEvent ) {
if ( e . key === 'Enter' ) {
e . stopPropagation ( )
await withStatus ( 'Opening mailbox' , mbv . open ( true ) )
} else if ( e . key === 'ArrowLeft' ) {
e . stopPropagation ( )
if ( ! mailboxlistView . mailboxLeaf ( mbv ) ) {
cmdCollapse ( )
}
} else if ( e . key === 'ArrowRight' ) {
e . stopPropagation ( )
if ( settings . mailboxCollapsed [ mbv . mailbox . ID ] ) {
cmdExpand ( )
}
} else if ( e . key === 'b' ) {
cmdOpenActions ( )
}
} ,
2023-09-21 12:40:22 +03:00
async function dblclick() {
if ( mailboxlistView . mailboxLeaf ( mbv ) ) {
return
}
if ( settings . mailboxCollapsed [ mbv . mailbox . ID ] ) {
cmdExpand ( )
} else {
cmdCollapse ( )
}
} ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
async function click() {
mbv . root . focus ( )
await withStatus ( 'Opening mailbox' , mbv . open ( true ) )
} ,
function dragover ( e : DragEvent ) {
e . preventDefault ( )
e . dataTransfer ! . dropEffect = 'move'
} ,
function dragenter ( e : DragEvent ) {
e . stopPropagation ( )
drags ++
mbv . root . classList . toggle ( 'dropping' , true )
} ,
function dragleave ( e : DragEvent ) {
e . stopPropagation ( )
drags --
if ( drags <= 0 ) {
mbv . root . classList . toggle ( 'dropping' , false )
}
} ,
async function drop ( e : DragEvent ) {
e . preventDefault ( )
mbv . root . classList . toggle ( 'dropping' , false )
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
const sentMailboxID = mailboxlistView . mailboxes ( ) . find ( mb = > mb . Sent ) ? . ID
const mailboxMsgIDs = JSON . parse ( e . dataTransfer ! . getData ( 'application/vnd.mox.messages' ) ) as number [ ] [ ]
const msgIDs = mailboxMsgIDs
. filter ( mbMsgID = > mbMsgID [ 0 ] !== xmb . ID )
. filter ( mbMsgID = > mailboxMsgIDs . length === 1 || ! sentMailboxID || mbMsgID [ 0 ] !== sentMailboxID || ! otherMailbox ( sentMailboxID ) )
. map ( mbMsgID = > mbMsgID [ 1 ] )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
await withStatus ( 'Moving to ' + xmb . Name , client . MessageMove ( msgIDs , xmb . ID ) )
webmail: when moving a single message out of/to the inbox, ask if user wants to create a rule to automatically do that server-side for future deliveries
if the message has a list-id header, we assume this is a (mailing) list
message, and we require a dkim/spf-verified domain (we prefer the shortest that
is a suffix of the list-id value). the rule we would add will mark such
messages as from a mailing list, changing filtering rules on incoming messages
(not enforcing dmarc policies). messages will be matched on list-id header and
will only match if they have the same dkim/spf-verified domain.
if the message doesn't have a list-id header, we'll ask to match based on
"message from" address.
we don't ask the user in several cases:
- if the destination/source mailbox is a special-use mailbox (e.g.
trash,archive,sent,junk; inbox isn't included)
- if the rule already exist (no point in adding it again).
- if the user said "no, not for this list-id/from-address" in the past.
- if the user said "no, not for messages moved to this mailbox" in the past.
we'll add the rule if the message was moved out of the inbox.
if the message was moved to the inbox, we check if there is a matching rule
that we can remove.
we now remember the "no" answers (for list-id, msg-from-addr and mailbox) in
the account database.
to implement the msgfrom rules, this adds support to rulesets for matching on
message "from" address. before, we could match on smtp from address (and other
fields). rulesets now also have a field for comments. webmail adds a note that
it created the rule, with the date.
manual editing of the rulesets is still in the webaccount page. this webmail
functionality is just a convenient way to add/remove common rules.
2024-04-21 18:01:50 +03:00
if ( msgIDs . length === 1 ) {
const msgID = msgIDs [ 0 ]
const mbSrcID = mailboxMsgIDs . find ( mbMsgID = > mbMsgID [ 1 ] === msgID ) ! [ 0 ]
await moveAskRuleset ( msgID , mbSrcID , xmb , mailboxlistView . mailboxes ( ) )
}
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
} ,
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
dom . div (
css ( 'mailbox' , { padding : '.15em .25em' , display : 'flex' , justifyContent : 'space-between' } ) ,
name = dom . div ( css ( 'mailboxName' , { whiteSpace : 'nowrap' , overflow : 'hidden' , textOverflow : 'ellipsis' } ) ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
dom . div (
style ( { whiteSpace : 'nowrap' } ) ,
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
actionBtn = dom . clickbutton ( dom . _class ( 'mailboxHoverOnly' ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
'...' ,
attr . tabindex ( '-1' ) , // Without, tab breaks because this disappears when mailbox loses focus.
attr . arialabel ( 'Mailbox actions' ) ,
attr . title ( 'Actions on mailbox, like deleting, emptying, renaming.' ) ,
function click ( e : MouseEvent ) {
e . stopPropagation ( )
cmdOpenActions ( )
} ,
) ,
' ' ,
unread = dom . b ( dom . _class ( 'silenttitle' ) ) ,
) ,
) ,
)
const update = ( ) = > {
let moreElems : any [ ] = [ ]
if ( settings . mailboxCollapsed [ mbv . mailbox . ID ] ) {
moreElems = [ ' ' , expandElem ]
} else if ( ! mailboxlistView . mailboxLeaf ( mbv ) ) {
moreElems = [ ' ' , collapseElem ]
}
let ntotal = mbv . mailbox . Total
let nunread = mbv . mailbox . Unread
if ( settings . mailboxCollapsed [ mbv . mailbox . ID ] ) {
const prefix = mbv . mailbox . Name + '/'
for ( const mb of mailboxlistView . mailboxes ( ) ) {
if ( mb . Name . startsWith ( prefix ) ) {
ntotal += mb . Total
nunread += mb . Unread
}
}
}
dom . _kids ( name , dom . span ( mbv . parents > 0 ? style ( { paddingLeft : '' + ( mbv . parents * 2 / 3 ) + 'em' } ) : [ ] , mbv . shortname , attr . title ( 'Total messages: ' + ntotal ) , moreElems ) )
dom . _kids ( unread , nunread === 0 ? [ '' , attr . title ( '' ) ] : [ '' + nunread , attr . title ( '' + nunread + ' unread' ) ] )
}
const mbv = {
root : root ,
// Set by update(), typically through MailboxlistView updateMailboxNames after inserting.
shortname : '' ,
parents : 0 ,
hidden : false ,
update : update ,
mailbox : xmb ,
open : async ( load : boolean ) = > {
await mailboxlistView . openMailboxView ( mbv , load , false )
} ,
setCounts : ( total : number , unread : number ) = > {
mbv . mailbox . Total = total
mbv . mailbox . Unread = unread
// If mailbox is collapsed, parent needs updating.
// todo optimize: only update parents, not all.
mailboxlistView . updateCounts ( )
} ,
setSpecialUse : ( specialUse : api.SpecialUse ) = > {
mbv . mailbox . Archive = specialUse . Archive
mbv . mailbox . Draft = specialUse . Draft
mbv . mailbox . Junk = specialUse . Junk
mbv . mailbox . Sent = specialUse . Sent
mbv . mailbox . Trash = specialUse . Trash
} ,
setKeywords : ( keywords : string [ ] ) = > {
mbv . mailbox . Keywords = keywords
} ,
}
return mbv
}
// MailboxlistView is the list on the left with all mailboxes. It holds MailboxViews.
interface MailboxlistView {
root : HTMLElement
loadMailboxes : ( mailboxes : api.Mailbox [ ] , mbnameOpt? : string ) = > void
closeMailbox : ( ) = > void
openMailboxView : ( mbv : MailboxView , load : boolean , focus : boolean ) = > Promise < void >
mailboxLeaf : ( mbv : MailboxView ) = > boolean
updateHidden : ( ) = > void
updateCounts : ( ) = > void
activeMailbox : ( ) = > api . Mailbox | null
mailboxes : ( ) = > api . Mailbox [ ]
findMailboxByID : ( id : number ) = > api . Mailbox | null
findMailboxByName : ( name : string ) = > api . Mailbox | null
openMailboxID : ( id : number , focus : boolean ) = > Promise < void >
// For change events.
addMailbox : ( mb : api.Mailbox ) = > void
renameMailbox : ( mailboxID : number , newName : string ) = > void
removeMailbox : ( mailboxID : number ) = > void
setMailboxCounts : ( mailboxID : number , total : number , unread : number ) = > void
setMailboxSpecialUse : ( mailboxID : number , specialUse : api.SpecialUse ) = > void
setMailboxKeywords : ( mailboxID : number , keywords : string [ ] ) = > void
}
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
const newMailboxlistView = ( msglistView : MsglistView , requestNewView : requestNewView , updatePageTitle : updatePageTitle , setLocationHash : setLocationHash , unloadSearch : unloadSearch , otherMailbox : otherMailbox ) : MailboxlistView = > {
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
let mailboxViews : MailboxView [ ] = [ ]
let mailboxViewActive : MailboxView | null
// Reorder mailboxes and assign new short names and indenting. Called after changing the list.
const updateMailboxNames = ( ) = > {
const draftmb = mailboxViews . find ( mbv = > mbv . mailbox . Draft ) ? . mailbox
const sentmb = mailboxViews . find ( mbv = > mbv . mailbox . Sent ) ? . mailbox
const archivemb = mailboxViews . find ( mbv = > mbv . mailbox . Archive ) ? . mailbox
const trashmb = mailboxViews . find ( mbv = > mbv . mailbox . Trash ) ? . mailbox
const junkmb = mailboxViews . find ( mbv = > mbv . mailbox . Junk ) ? . mailbox
const stem = ( s : string ) = > s . split ( '/' ) [ 0 ]
const specialUse = [
( mb : api.Mailbox ) = > stem ( mb . Name ) === 'Inbox' ,
( mb : api.Mailbox ) = > draftmb && stem ( mb . Name ) === stem ( draftmb . Name ) ,
( mb : api.Mailbox ) = > sentmb && stem ( mb . Name ) === stem ( sentmb . Name ) ,
( mb : api.Mailbox ) = > archivemb && stem ( mb . Name ) === stem ( archivemb . Name ) ,
( mb : api.Mailbox ) = > trashmb && stem ( mb . Name ) === stem ( trashmb . Name ) ,
( mb : api.Mailbox ) = > junkmb && stem ( mb . Name ) === stem ( junkmb . Name ) ,
]
mailboxViews . sort ( ( mbva , mbvb ) = > {
const ai = specialUse . findIndex ( fn = > fn ( mbva . mailbox ) )
const bi = specialUse . findIndex ( fn = > fn ( mbvb . mailbox ) )
if ( ai < 0 && bi >= 0 ) {
return 1
} else if ( ai >= 0 && bi < 0 ) {
return - 1
} else if ( ai >= 0 && bi >= 0 && ai !== bi ) {
return ai < bi ? - 1 : 1
}
2023-08-23 15:57:05 +03:00
const la = mbva . mailbox . Name . split ( '/' )
const lb = mbvb . mailbox . Name . split ( '/' )
let n = Math . min ( la . length , lb . length )
for ( let i = 0 ; i < n ; i ++ ) {
if ( la [ i ] === lb [ i ] ) {
continue
}
return la [ i ] < lb [ i ] ? - 1 : 1
}
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
return mbva . mailbox . Name < mbvb . mailbox . Name ? - 1 : 1
} )
let prevmailboxname : string = ''
mailboxViews . forEach ( mbv = > {
const mb = mbv . mailbox
let shortname = mb . Name
let parents = 0
if ( prevmailboxname ) {
let prefix = ''
for ( const s of prevmailboxname . split ( '/' ) ) {
const nprefix = prefix + s + '/'
if ( mb . Name . startsWith ( nprefix ) ) {
prefix = nprefix
parents ++
} else {
break
}
}
shortname = mb . Name . substring ( prefix . length )
}
mbv . shortname = shortname
mbv . parents = parents
mbv . update ( ) // Render name.
prevmailboxname = mb . Name
} )
updateHidden ( )
}
const mailboxHidden = ( mb : api.Mailbox , mailboxesMap : { [ key : string ] : api . Mailbox } ) = > {
let s = ''
for ( const e of mb . Name . split ( '/' ) ) {
if ( s ) {
s += '/'
}
s += e
const pmb = mailboxesMap [ s ]
if ( pmb && settings . mailboxCollapsed [ pmb . ID ] && s !== mb . Name ) {
return true
}
}
return false
}
const mailboxLeaf = ( mbv : MailboxView ) = > {
const index = mailboxViews . findIndex ( v = > v === mbv )
const prefix = mbv . mailbox . Name + '/'
const r = index < 0 || index + 1 >= mailboxViews . length || ! mailboxViews [ index + 1 ] . mailbox . Name . startsWith ( prefix )
return r
}
const updateHidden = ( ) = > {
const mailboxNameMap : { [ key : string ] : api . Mailbox } = { }
mailboxViews . forEach ( ( mbv ) = > mailboxNameMap [ mbv . mailbox . Name ] = mbv . mailbox )
for ( const mbv of mailboxViews ) {
mbv . hidden = mailboxHidden ( mbv . mailbox , mailboxNameMap )
}
mailboxViews . forEach ( mbv = > mbv . update ( ) )
dom . _kids ( mailboxesElem , mailboxViews . filter ( mbv = > ! mbv . hidden ) )
}
const root = dom . div ( )
const mailboxesElem = dom . div ( )
dom . _kids ( root ,
dom . div ( attr . role ( 'region' ) , attr . arialabel ( 'Mailboxes' ) ,
dom . div (
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
dom . h1 ( 'Mailboxes' , css ( 'mailboxesTitle' , { display : 'inline' , fontSize : 'inherit' } ) ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
' ' ,
2024-04-22 14:41:40 +03:00
dom . clickbutton (
'...' ,
attr . arialabel ( 'Mailboxes actions' ) ,
attr . title ( 'Actions on mailboxes like creating a new mailbox or exporting all email.' ) ,
function click ( e : MouseEvent ) {
e . stopPropagation ( )
const remove = popover ( e . target ! as HTMLElement , { transparent : true } ,
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
dom . div ( css ( 'mailboxesActions' , { display : 'flex' , flexDirection : 'column' , gap : '.5ex' } ) ,
2024-04-22 14:41:40 +03:00
dom . div (
dom . clickbutton ( 'Create mailbox' , attr . arialabel ( 'Create new mailbox.' ) , attr . title ( 'Create new mailbox.' ) , style ( { padding : '0 .25em' } ) , function click ( e : MouseEvent ) {
let fieldset : HTMLFieldSetElement
let name : HTMLInputElement
const ref = e . target ! as HTMLElement
const removeCreate = popover ( ref , { } ,
dom . form (
async function submit ( e : SubmitEvent ) {
e . preventDefault ( )
await withStatus ( 'Creating mailbox' , client . MailboxCreate ( name . value ) , fieldset )
removeCreate ( )
} ,
fieldset = dom . fieldset (
dom . label (
'Name ' ,
name = dom . input ( attr . required ( 'yes' ) , focusPlaceholder ( 'Lists/Go/Nuts' ) ) ,
) ,
' ' ,
dom . submitbutton ( 'Create' ) ,
) ,
) ,
)
remove ( )
} ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
) ,
2024-04-22 14:41:40 +03:00
dom . div (
dom . clickbutton ( 'Export' , function click ( e : MouseEvent ) {
const ref = e . target ! as HTMLElement
popoverExport ( ref , '' )
remove ( )
} ) ,
) ,
)
)
} ,
) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
) ,
mailboxesElem ,
) ,
)
const loadMailboxes = ( mailboxes : api.Mailbox [ ] , mbnameOpt? : string ) = > {
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
mailboxViews = mailboxes . map ( mb = > newMailboxView ( mb , mblv , otherMailbox ) )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
updateMailboxNames ( )
if ( mbnameOpt ) {
const mbv = mailboxViews . find ( mbv = > mbv . mailbox . Name === mbnameOpt )
if ( mbv ) {
openMailboxView ( mbv , false , false )
}
}
}
const closeMailbox = ( ) = > {
if ( ! mailboxViewActive ) {
return
}
mailboxViewActive . root . classList . toggle ( 'active' , false )
mailboxViewActive = null
updatePageTitle ( )
}
const openMailboxView = async ( mbv : MailboxView , load : boolean , focus : boolean ) : Promise < void > = > {
// Ensure searchbarElem is in inactive state.
unloadSearch ( )
if ( mailboxViewActive ) {
mailboxViewActive . root . classList . toggle ( 'active' , false )
}
mailboxViewActive = mbv
mbv . root . classList . toggle ( 'active' , true )
updatePageTitle ( )
if ( load ) {
setLocationHash ( )
const f = newFilter ( )
f . MailboxID = mbv . mailbox . ID
await withStatus ( 'Requesting messages' , requestNewView ( true , f , newNotFilter ( ) ) )
} else {
msglistView . clear ( )
setLocationHash ( )
}
if ( focus ) {
mbv . root . focus ( )
}
}
const mblv = {
root : root ,
loadMailboxes : loadMailboxes ,
closeMailbox : closeMailbox ,
openMailboxView : openMailboxView ,
mailboxLeaf : mailboxLeaf ,
updateHidden : updateHidden ,
updateCounts : ( ) : void = > mailboxViews . forEach ( mbv = > mbv . update ( ) ) ,
activeMailbox : ( ) = > mailboxViewActive ? mailboxViewActive.mailbox : null ,
mailboxes : ( ) : api . Mailbox [ ] = > mailboxViews . map ( mbv = > mbv . mailbox ) ,
findMailboxByID : ( id : number ) : api . Mailbox | null = > mailboxViews . find ( mbv = > mbv . mailbox . ID === id ) ? . mailbox || null ,
findMailboxByName : ( name : string ) : api . Mailbox | null = > mailboxViews . find ( mbv = > mbv . mailbox . Name === name ) ? . mailbox || null ,
openMailboxID : async ( id : number , focus : boolean ) : Promise < void > = > {
const mbv = mailboxViews . find ( mbv = > mbv . mailbox . ID === id )
if ( mbv ) {
await openMailboxView ( mbv , false , focus )
} else {
throw new Error ( 'unknown mailbox' )
}
} ,
addMailbox : ( mb : api.Mailbox ) : void = > {
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
const mbv = newMailboxView ( mb , mblv , otherMailbox )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
mailboxViews . push ( mbv )
updateMailboxNames ( )
} ,
renameMailbox : ( mailboxID : number , newName : string ) : void = > {
const mbv = mailboxViews . find ( mbv = > mbv . mailbox . ID === mailboxID )
if ( ! mbv ) {
throw new Error ( 'rename event: unknown mailbox' )
}
mbv . mailbox . Name = newName
updateMailboxNames ( )
} ,
removeMailbox : ( mailboxID : number ) : void = > {
const mbv = mailboxViews . find ( mbv = > mbv . mailbox . ID === mailboxID )
if ( ! mbv ) {
throw new Error ( 'remove event: unknown mailbox' )
}
if ( mbv === mailboxViewActive ) {
const inboxv = mailboxViews . find ( mbv = > mbv . mailbox . Name === 'Inbox' )
if ( inboxv ) {
openMailboxView ( inboxv , true , false ) // note: async function
}
}
const index = mailboxViews . findIndex ( mbv = > mbv . mailbox . ID === mailboxID )
mailboxViews . splice ( index , 1 )
updateMailboxNames ( )
} ,
setMailboxCounts : ( mailboxID : number , total : number , unread : number ) : void = > {
const mbv = mailboxViews . find ( mbv = > mbv . mailbox . ID === mailboxID )
if ( ! mbv ) {
throw new Error ( 'mailbox message/unread count changed: unknown mailbox' )
}
mbv . setCounts ( total , unread )
if ( mbv === mailboxViewActive ) {
updatePageTitle ( )
}
} ,
setMailboxSpecialUse : ( mailboxID : number , specialUse : api.SpecialUse ) : void = > {
const mbv = mailboxViews . find ( mbv = > mbv . mailbox . ID === mailboxID )
if ( ! mbv ) {
throw new Error ( 'special-use flags changed: unknown mailbox' )
}
mbv . setSpecialUse ( specialUse )
updateMailboxNames ( )
} ,
setMailboxKeywords : ( mailboxID : number , keywords : string [ ] ) : void = > {
const mbv = mailboxViews . find ( mbv = > mbv . mailbox . ID === mailboxID )
if ( ! mbv ) {
throw new Error ( 'keywords changed: unknown mailbox' )
}
mbv . setKeywords ( keywords )
} ,
}
return mblv
}
interface SearchView {
root : HTMLElement
submit : ( ) = > Promise < void >
ensureLoaded : ( ) = > void // For loading mailboxes into the select dropdown, after SSE connection sent list of mailboxes.
updateForm : ( ) = > void
}
const newSearchView = ( searchbarElem : HTMLInputElement , mailboxlistView : MailboxlistView , startSearch : ( f : api.Filter , notf : api.NotFilter ) = > Promise < void > , searchViewClose : ( ) = > void ) = > {
interface FlagView {
active : boolean | null
flag : string
root : HTMLElement
update : ( ) = > void
}
let form : HTMLFormElement
let words : HTMLInputElement , mailbox : HTMLSelectElement , mailboxkids : HTMLInputElement , from : HTMLInputElement , to : HTMLInputElement , oldestDate : HTMLInputElement , oldestTime : HTMLInputElement , newestDate : HTMLInputElement , newestTime : HTMLInputElement , subject : HTMLInputElement , flagViews : FlagView [ ] , labels : HTMLInputElement , minsize : HTMLInputElement , maxsize : HTMLInputElement
let attachmentNone : HTMLInputElement , attachmentAny : HTMLInputElement , attachmentImage : HTMLInputElement , attachmentPDF : HTMLInputElement , attachmentArchive : HTMLInputElement , attachmentSpreadsheet : HTMLInputElement , attachmentDocument : HTMLInputElement , attachmentPresentation : HTMLInputElement
const makeDateTime = ( dt : string , tm : string ) : string = > {
if ( ! dt && ! tm ) {
return ''
}
if ( ! dt ) {
const now = new Date ( )
const pad0 = ( v : number ) = > v <= 9 ? '0' + v : '' + v
dt = [ now . getFullYear ( ) , pad0 ( now . getMonth ( ) + 1 ) , pad0 ( now . getDate ( ) ) ] . join ( '-' )
}
if ( dt && tm ) {
return dt + 'T' + tm
}
return dt
}
const packString = ( s : string ) : string = > needsDquote ( s ) ? dquote ( s ) : s
const packNotString = ( s : string ) : string = > '-' + ( needsDquote ( s ) || s . startsWith ( '-' ) ? dquote ( s ) : s )
// Sync the form fields back into the searchbarElem. We process in order of the form,
// so we may rearrange terms. We also canonicalize quoting and space and remove
// empty strings.
const updateSearchbar = ( ) : void = > {
let tokens : Token [ ] = [ ]
if ( mailbox . value && mailbox . value !== '-1' ) {
const v = mailbox . value === '0' ? '' : mailbox . selectedOptions [ 0 ] . text // '0' is "All mailboxes", represented as "mb:".
tokens . push ( [ false , 'mb' , false , v ] )
}
if ( mailboxkids . checked ) {
tokens . push ( [ false , 'submb' , false , '' ] )
}
tokens . push ( . . . parseSearchTokens ( words . value ) )
tokens . push ( . . . parseSearchTokens ( from . value ) . map ( t = > [ t [ 0 ] , 'f' , false , t [ 3 ] ] as Token ) )
tokens . push ( . . . parseSearchTokens ( to . value ) . map ( t = > [ t [ 0 ] , 't' , false , t [ 3 ] ] as Token ) )
const start = makeDateTime ( oldestDate . value , oldestTime . value )
if ( start ) {
tokens . push ( [ false , 'start' , false , start ] )
}
const end = makeDateTime ( newestDate . value , newestTime . value )
if ( end ) {
tokens . push ( [ false , 'end' , false , end ] )
}
tokens . push ( . . . parseSearchTokens ( subject . value ) . map ( t = > [ t [ 0 ] , 's' , false , t [ 3 ] ] as Token ) )
const check = ( elem : HTMLInputElement , tag : string , value : string ) : void = > {
if ( elem . checked ) {
tokens . push ( [ false , tag , false , value ] )
}
}
check ( attachmentNone , 'a' , 'none' )
check ( attachmentAny , 'a' , 'any' )
check ( attachmentImage , 'a' , 'image' )
check ( attachmentPDF , 'a' , 'pdf' )
check ( attachmentArchive , 'a' , 'archive' )
check ( attachmentSpreadsheet , 'a' , 'spreadsheet' )
check ( attachmentDocument , 'a' , 'document' )
check ( attachmentPresentation , 'a' , 'presentation' )
tokens . push ( . . . flagViews . filter ( fv = > fv . active !== null ) . map ( fv = > {
return [ ! fv . active , 'l' , false , fv . flag ] as Token
} ) )
tokens . push ( . . . parseSearchTokens ( labels . value ) . map ( t = > [ t [ 0 ] , 'l' , t [ 2 ] , t [ 3 ] ] as Token ) )
tokens . push ( . . . headerViews . filter ( hv = > hv . key . value ) . map ( hv = > [ false , 'h' , false , hv . key . value + ':' + hv . value . value ] as Token ) )
const minstr = parseSearchSize ( minsize . value ) [ 0 ]
if ( minstr ) {
tokens . push ( [ false , 'minsize' , false , minstr ] )
}
const maxstr = parseSearchSize ( maxsize . value ) [ 0 ]
if ( maxstr ) {
tokens . push ( [ false , 'maxsize' , false , maxstr ] )
}
searchbarElem . value = tokens . map ( packToken ) . join ( ' ' )
}
const setDateTime = ( s : string | null | undefined , dateElem : HTMLInputElement , timeElem : HTMLInputElement ) = > {
if ( ! s ) {
return
}
const t = s . split ( 'T' , 2 )
const dt = t . length === 2 || t [ 0 ] . includes ( '-' ) ? t [ 0 ] : ''
const tm = t . length === 2 ? t [ 1 ] : ( t [ 0 ] . includes ( ':' ) ? t [ 0 ] : '' )
if ( dt ) {
dateElem . value = dt
}
if ( tm ) {
timeElem . value = tm
}
}
// Update form based on searchbarElem. We parse the searchbarElem into a filter. Then reset
// and populate the form.
const updateForm = ( ) : void = > {
const [ f , notf , strs ] = parseSearch ( searchbarElem . value , mailboxlistView )
form . reset ( )
const packTwo = ( l : string [ ] | null | undefined , lnot : string [ ] | null | undefined ) = > ( l || [ ] ) . map ( packString ) . concat ( ( lnot || [ ] ) . map ( packNotString ) ) . join ( ' ' )
if ( f . MailboxName ) {
const o = [ . . . mailbox . options ] . find ( o = > o . text === f . MailboxName ) || mailbox . options [ 0 ]
if ( o ) {
o . selected = true
}
} else if ( f . MailboxID === - 1 ) {
// "All mailboxes except ...".
mailbox . options [ 0 ] . selected = true
} else {
const id = '' + f . MailboxID
const o = [ . . . mailbox . options ] . find ( o = > o . value === id ) || mailbox . options [ 0 ]
o . selected = true
}
mailboxkids . checked = f . MailboxChildrenIncluded
words . value = packTwo ( f . Words , notf . Words )
from . value = packTwo ( f . From , notf . From )
to . value = packTwo ( f . To , notf . To )
setDateTime ( strs . Oldest , oldestDate , oldestTime )
setDateTime ( strs . Newest , newestDate , newestTime )
subject . value = packTwo ( f . Subject , notf . Subject )
const elem = ( < { [ k : string ] : HTMLInputElement } > {
none : attachmentNone ,
any : attachmentAny ,
image : attachmentImage ,
pdf : attachmentPDF ,
archive : attachmentArchive ,
spreadsheet : attachmentSpreadsheet ,
document : attachmentDocument ,
presentation : attachmentPresentation ,
} ) [ f . Attachments ]
if ( elem ) {
attachmentChecks ( elem , true )
}
const otherlabels : string [ ] = [ ]
const othernotlabels : string [ ] = [ ]
flagViews . forEach ( fv = > fv . active = null )
const setLabels = ( flabels : string [ ] | null | undefined , other : string [ ] , not : boolean ) = > {
( flabels || [ ] ) . forEach ( l = > {
l = l . toLowerCase ( )
// Find if this is a well-known flag.
const fv = flagViews . find ( fv = > fv . flag . toLowerCase ( ) === l )
if ( fv ) {
fv . active = ! not
fv . update ( )
} else {
other . push ( l )
}
} )
}
setLabels ( f . Labels , otherlabels , false )
setLabels ( notf . Labels , othernotlabels , true )
labels . value = packTwo ( otherlabels , othernotlabels )
headerViews . slice ( 1 ) . forEach ( hv = > hv . root . remove ( ) )
headerViews = [ headerViews [ 0 ] ]
if ( f . Headers && f . Headers . length > 0 ) {
( f . Headers || [ ] ) . forEach ( ( kv , index ) = > {
const [ k , v ] = kv || [ '' , '' ]
if ( index > 0 ) {
addHeaderView ( )
}
headerViews [ index ] . key . value = k
headerViews [ index ] . value . value = v
} )
}
if ( strs . SizeMin ) {
minsize . value = strs . SizeMin
}
if ( strs . SizeMax ) {
maxsize . value = strs . SizeMax
}
}
const attachmentChecks = ( elem : HTMLInputElement , set ? : boolean ) : void = > {
if ( elem . checked || set ) {
for ( const e of [ attachmentNone , attachmentAny , attachmentImage , attachmentPDF , attachmentArchive , attachmentSpreadsheet , attachmentDocument , attachmentPresentation ] ) {
if ( e !== elem ) {
e . checked = false
} else if ( set ) {
e . checked = true
}
}
}
}
const changeHandlers = [
function change() {
updateSearchbar ( )
} ,
function keyup() {
updateSearchbar ( )
} ,
]
const attachmentHandlers = [
function change ( e : Event ) {
attachmentChecks ( e . target ! as HTMLInputElement )
} ,
function mousedown ( e : MouseEvent ) {
// Radiobuttons cannot be deselected normally. With this handler a user can push
// down on the button, then move pointer out of button and release the button to
// clear the radiobutton.
const target = e . target ! as HTMLInputElement
if ( e . buttons === 1 && target . checked ) {
target . checked = false
e . preventDefault ( )
}
} ,
. . . changeHandlers ,
]
interface HeaderView {
root : HTMLElement ,
key : HTMLInputElement ,
value : HTMLInputElement ,
}
let headersCell : HTMLElement // Where we add headerViews.
let headerViews : HeaderView [ ]
const newHeaderView = ( first : boolean ) = > {
let key : HTMLInputElement , value : HTMLInputElement
const root = dom . div (
style ( { display : 'flex' } ) ,
key = dom . input ( focusPlaceholder ( 'Header name' ) , style ( { width : '40%' } ) , changeHandlers ) ,
dom . div ( style ( { width : '.5em' } ) ) ,
value = dom . input ( focusPlaceholder ( 'Header value' ) , style ( { flexGrow : 1 } ) , changeHandlers ) ,
dom . div (
style ( { width : '2.5em' , paddingLeft : '.25em' } ) ,
dom . clickbutton ( '+' , style ( { padding : '0 .25em' } ) , attr . arialabel ( 'Add row for another header filter.' ) , attr . title ( 'Add row for another header filter.' ) , function click() {
addHeaderView ( )
} ) ,
' ' ,
first ? [ ] : dom . clickbutton ( '-' , style ( { padding : '0 .25em' } ) , attr . arialabel ( 'Remove row.' ) , attr . title ( 'Remove row.' ) , function click() {
root . remove ( )
const index = headerViews . findIndex ( v = > v === hv )
headerViews . splice ( index , 1 )
updateSearchbar ( )
} ) ,
) ,
)
const hv : HeaderView = { root : root , key : key , value : value }
return hv
}
const addHeaderView = ( ) : void = > {
const hv = newHeaderView ( false )
headersCell . appendChild ( hv . root )
headerViews . push ( hv )
}
const setPeriod = ( d : Date ) : void = > {
newestDate . value = ''
newestTime . value = ''
const pad0 = ( v : number ) = > v <= 9 ? '0' + v : '' + v
const dt = [ d . getFullYear ( ) , pad0 ( d . getMonth ( ) + 1 ) , pad0 ( d . getDate ( ) ) ] . join ( '-' )
const tm = '' + pad0 ( d . getHours ( ) ) + ':' + pad0 ( d . getMinutes ( ) )
oldestDate . value = dt
oldestTime . value = tm
updateSearchbar ( )
}
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
const searchTableStyle = css ( 'searchTable' , { width : '100%' } )
ensureCSS ( '.searchTable td' , { padding : '.25em' } )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
const root = dom . div (
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
css ( 'searchOverlay' , { position : 'absolute' , left : 0 , right : 0 , top : 0 , bottom : 0 , backgroundColor : styles.overlayBackgroundColor , zIndex : zindexes.compose } ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
function click ( e : MouseEvent ) {
e . stopPropagation ( )
searchViewClose ( )
} ,
function keyup ( e : KeyboardEvent ) {
if ( e . key === 'Escape' ) {
e . stopPropagation ( )
searchViewClose ( )
}
} ,
dom . search (
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
css ( 'searchContent' , { position : 'absolute' , width : '50em' , padding : '.5ex' , backgroundColor : styles.popupBackgroundColor , boxShadow : styles.boxShadow , border : '1px solid' , borderColor : styles.popupBorderColor , color : styles.popupColor , borderRadius : '.15em' } ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
function click ( e : MouseEvent ) {
e . stopPropagation ( )
} ,
// This is a separate form, inside the form with the overall search field because
// when updating the form based on the parsed searchbar, we first need to reset it.
form = dom . form (
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
dom . table ( searchTableStyle ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
dom . tr (
dom . td ( dom . label ( 'Mailbox' , attr . for ( 'searchMailbox' ) ) , attr . title ( 'Filter by mailbox, including children of the mailbox.' ) ) ,
dom . td (
mailbox = dom . select ( attr . id ( 'searchMailbox' ) , style ( { width : '100%' } ) ,
dom . option ( 'All mailboxes except Trash/Junk/Rejects' , attr . value ( '-1' ) ) ,
dom . option ( 'All mailboxes' , attr . value ( '0' ) ) ,
changeHandlers ,
) ,
dom . div ( style ( { paddingTop : '.5ex' } ) , dom . label ( mailboxkids = dom . input ( attr . type ( 'checkbox' ) , changeHandlers ) , ' Also search in mailboxes below the selected mailbox.' ) ) ,
) ,
) ,
dom . tr (
dom . td ( dom . label ( 'Text' , attr . for ( 'searchWords' ) ) ) ,
dom . td (
words = dom . input ( attr . id ( 'searchWords' ) , attr . title ( 'Filter by text, case-insensitive, substring match, not necessarily whole words.' ) , focusPlaceholder ( 'word "exact match" -notword' ) , style ( { width : '100%' } ) , changeHandlers ) ,
) ,
) ,
dom . tr (
dom . td ( dom . label ( 'From' , attr . for ( 'searchFrom' ) ) ) ,
dom . td (
from = dom . input ( attr . id ( 'searchFrom' ) , style ( { width : '100%' } ) , focusPlaceholder ( 'Address or name' ) , newAddressComplete ( ) , changeHandlers )
) ,
) ,
dom . tr (
dom . td ( dom . label ( 'To' , attr . for ( 'searchTo' ) ) , attr . title ( 'Search on addressee, including Cc and Bcc headers.' ) ) ,
dom . td (
to = dom . input ( attr . id ( 'searchTo' ) , focusPlaceholder ( 'Address or name, also matches Cc and Bcc addresses' ) , style ( { width : '100%' } ) , newAddressComplete ( ) , changeHandlers ) ,
) ,
) ,
dom . tr (
2023-08-15 14:03:02 +03:00
dom . td ( dom . label ( 'Subject' , attr . for ( 'searchSubject' ) ) ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
dom . td (
subject = dom . input ( attr . id ( 'searchSubject' ) , style ( { width : '100%' } ) , focusPlaceholder ( '"exact match"' ) , changeHandlers )
) ,
) ,
dom . tr (
dom . td ( 'Received between' , style ( { whiteSpace : 'nowrap' } ) ) ,
dom . td (
style ( { lineHeight : 2 } ) ,
dom . div (
oldestDate = dom . input ( attr . type ( 'date' ) , focusPlaceholder ( '2023-07-20' ) , changeHandlers ) ,
oldestTime = dom . input ( attr . type ( 'time' ) , focusPlaceholder ( '23:10' ) , changeHandlers ) ,
' ' ,
dom . clickbutton ( 'x' , style ( { padding : '0 .3em' } ) , attr . arialabel ( 'Clear start date.' ) , attr . title ( 'Clear start date.' ) , function click() {
oldestDate . value = ''
oldestTime . value = ''
updateSearchbar ( )
} ) ,
' and ' ,
newestDate = dom . input ( attr . type ( 'date' ) , focusPlaceholder ( '2023-07-20' ) , changeHandlers ) ,
newestTime = dom . input ( attr . type ( 'time' ) , focusPlaceholder ( '23:10' ) , changeHandlers ) ,
' ' ,
dom . clickbutton ( 'x' , style ( { padding : '0 .3em' } ) , attr . arialabel ( 'Clear end date.' ) , attr . title ( 'Clear end date.' ) , function click() {
newestDate . value = ''
newestTime . value = ''
updateSearchbar ( )
} ) ,
) ,
dom . div (
dom . clickbutton ( '1 day' , function click() {
setPeriod ( new Date ( new Date ( ) . getTime ( ) - 24 * 3600 * 1000 ) )
} ) ,
' ' ,
dom . clickbutton ( '1 week' , function click() {
setPeriod ( new Date ( new Date ( ) . getTime ( ) - 7 * 24 * 3600 * 1000 ) )
} ) ,
' ' ,
dom . clickbutton ( '1 month' , function click() {
setPeriod ( new Date ( new Date ( ) . getTime ( ) - 31 * 24 * 3600 * 1000 ) )
} ) ,
' ' ,
dom . clickbutton ( '1 year' , function click() {
setPeriod ( new Date ( new Date ( ) . getTime ( ) - 365 * 24 * 3600 * 1000 ) )
} ) ,
) ,
) ,
) ,
dom . tr (
dom . td ( 'Attachments' ) ,
dom . td (
dom . label ( style ( { whiteSpace : 'nowrap' } ) , attachmentNone = dom . input ( attr . type ( 'radio' ) , attr . name ( 'attachments' ) , attr . value ( 'none' ) , attachmentHandlers ) , ' None' ) , ' ' ,
dom . label ( style ( { whiteSpace : 'nowrap' } ) , attachmentAny = dom . input ( attr . type ( 'radio' ) , attr . name ( 'attachments' ) , attr . value ( 'any' ) , attachmentHandlers ) , ' Any' ) , ' ' ,
dom . label ( style ( { whiteSpace : 'nowrap' } ) , attachmentImage = dom . input ( attr . type ( 'radio' ) , attr . name ( 'attachments' ) , attr . value ( 'image' ) , attachmentHandlers ) , ' Images' ) , ' ' ,
dom . label ( style ( { whiteSpace : 'nowrap' } ) , attachmentPDF = dom . input ( attr . type ( 'radio' ) , attr . name ( 'attachments' ) , attr . value ( 'pdf' ) , attachmentHandlers ) , ' PDFs' ) , ' ' ,
dom . label ( style ( { whiteSpace : 'nowrap' } ) , attachmentArchive = dom . input ( attr . type ( 'radio' ) , attr . name ( 'attachments' ) , attr . value ( 'archive' ) , attachmentHandlers ) , ' Archives' ) , ' ' ,
dom . label ( style ( { whiteSpace : 'nowrap' } ) , attachmentSpreadsheet = dom . input ( attr . type ( 'radio' ) , attr . name ( 'attachments' ) , attr . value ( 'spreadsheet' ) , attachmentHandlers ) , ' Spreadsheets' ) , ' ' ,
dom . label ( style ( { whiteSpace : 'nowrap' } ) , attachmentDocument = dom . input ( attr . type ( 'radio' ) , attr . name ( 'attachments' ) , attr . value ( 'document' ) , attachmentHandlers ) , ' Documents' ) , ' ' ,
dom . label ( style ( { whiteSpace : 'nowrap' } ) , attachmentPresentation = dom . input ( attr . type ( 'radio' ) , attr . name ( 'attachments' ) , attr . value ( 'presentation' ) , attachmentHandlers ) , ' Presentations' ) , ' ' ,
) ,
) ,
dom . tr (
dom . td ( 'Labels' ) ,
dom . td (
style ( { lineHeight : 2 } ) ,
join ( flagViews = Object . entries ( { Read : '\\Seen' , Replied : '\\Answered' , Flagged : '\\Flagged' , Deleted : '\\Deleted' , Draft : '\\Draft' , Forwarded : '$Forwarded' , Junk : '$Junk' , NotJunk : '$NotJunk' , Phishing : '$Phishing' , MDNSent : '$MDNSent' } ) . map ( t = > {
const [ name , flag ] = t
const v : FlagView = {
active : null ,
flag : flag ,
root : dom.clickbutton ( name , function click() {
if ( v . active === null ) {
v . active = true
} else if ( v . active === true ) {
v . active = false
} else {
v . active = null
}
v . update ( )
updateSearchbar ( )
} ) ,
update : ( ) = > {
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
css ( 'searchFlagTrue' , { backgroundColor : styles.buttonTristateOnBackground } , true )
css ( 'searchFlagFalse' , { backgroundColor : styles.buttonTristateOffBackground } , true )
v . root . classList . toggle ( 'searchFlagTrue' , v . active === true )
v . root . classList . toggle ( 'searchFlagFalse' , v . active === false )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
} ,
}
return v
} ) , ( ) = > ' ' ) ,
' ' ,
labels = dom . input ( focusPlaceholder ( 'todo -done "-dashingname"' ) , attr . title ( 'User-defined labels.' ) , changeHandlers ) ,
) ,
) ,
dom . tr (
dom . td ( 'Headers' ) ,
headersCell = dom . td ( headerViews = [ newHeaderView ( true ) ] ) ,
) ,
dom . tr (
dom . td ( 'Size between' ) ,
dom . td (
minsize = dom . input ( style ( { width : '6em' } ) , focusPlaceholder ( '10kb' ) , changeHandlers ) ,
' and ' ,
maxsize = dom . input ( style ( { width : '6em' } ) , focusPlaceholder ( '1mb' ) , changeHandlers ) ,
) ,
) ,
) ,
dom . div (
style ( { padding : '1ex' , textAlign : 'right' } ) ,
dom . submitbutton ( 'Search' ) ,
) ,
async function submit ( e : SubmitEvent ) {
e . preventDefault ( )
await searchView . submit ( )
} ,
) ,
) ,
)
const submit = async ( ) : Promise < void > = > {
const [ f , notf , _ ] = parseSearch ( searchbarElem . value , mailboxlistView )
await startSearch ( f , notf )
}
let loaded = false
const searchView : SearchView = {
root : root ,
submit : submit ,
ensureLoaded : ( ) = > {
if ( loaded || mailboxlistView . mailboxes ( ) . length === 0 ) {
return
}
loaded = true
dom . _kids ( mailbox ,
dom . option ( 'All mailboxes except Trash/Junk/Rejects' , attr . value ( '-1' ) ) ,
dom . option ( 'All mailboxes' , attr . value ( '0' ) ) ,
mailboxlistView . mailboxes ( ) . map ( mb = > dom . option ( mb . Name , attr . value ( '' + mb . ID ) ) ) ,
)
searchView . updateForm ( )
} ,
updateForm : updateForm ,
}
return searchView
}
2024-02-09 13:21:33 +03:00
// parse the "mailto:..." part (already decoded) of a "#compose mailto:..." url hash.
const parseComposeMailto = ( mailto : string ) : ComposeOptions = > {
const u = new URL ( mailto )
const addresses = ( s : string ) = > s . split ( ',' ) . filter ( s = > ! ! s )
const opts : ComposeOptions = { }
opts . to = addresses ( u . pathname ) . map ( s = > decodeURIComponent ( s ) )
for ( const [ xk , v ] of new URLSearchParams ( u . search ) ) {
const k = xk . toLowerCase ( )
if ( k === 'to' ) {
opts . to = [ . . . opts . to , . . . addresses ( v ) ]
} else if ( k === 'cc' ) {
opts . cc = [ . . . ( opts . cc || [ ] ) , . . . addresses ( v ) ]
} else if ( k === 'bcc' ) {
opts . bcc = [ . . . ( opts . bcc || [ ] ) , . . . addresses ( v ) ]
} else if ( k === 'subject' ) {
// q/b-word encoding is allowed, we let the server decode when we start composoing,
// only if needed. ../rfc/6068:267
opts . subject = v
} else if ( k === 'body' ) {
opts . body = v
}
// todo: we ignore other headers for now. we should handle in-reply-to and references at some point. but we don't allow any custom headers at the time of writing.
}
return opts
}
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
// Functions we pass to various views, to access functionality encompassing all views.
type requestNewView = ( clearMsgID : boolean , filterOpt? : api.Filter , notFilterOpt? : api.NotFilter ) = > Promise < void >
type updatePageTitle = ( ) = > void
type setLocationHash = ( ) = > void
type unloadSearch = ( ) = > void
type otherMailbox = ( mailboxID : number ) = > api . Mailbox | null
type possibleLabels = ( ) = > string [ ]
type listMailboxes = ( ) = > api . Mailbox [ ]
const init = async ( ) = > {
let connectionElem : HTMLElement // SSE connection status/error. Empty when connected.
let layoutElem : HTMLSelectElement // Select dropdown for layout.
2024-04-19 18:44:31 +03:00
let accountElem : HTMLElement
replace http basic auth for web interfaces with session cookie & csrf-based auth
the http basic auth we had was very simple to reason about, and to implement.
but it has a major downside:
there is no way to logout, browsers keep sending credentials. ideally, browsers
themselves would show a button to stop sending credentials.
a related downside: the http auth mechanism doesn't indicate for which server
paths the credentials are.
another downside: the original password is sent to the server with each
request. though sending original passwords to web servers seems to be
considered normal.
our new approach uses session cookies, along with csrf values when we can. the
sessions are server-side managed, automatically extended on each use. this
makes it easy to invalidate sessions and keeps the frontend simpler (than with
long- vs short-term sessions and refreshing). the cookies are httponly,
samesite=strict, scoped to the path of the web interface. cookies are set
"secure" when set over https. the cookie is set by a successful call to Login.
a call to Logout invalidates a session. changing a password invalidates all
sessions for a user, but keeps the session with which the password was changed
alive. the csrf value is also random, and associated with the session cookie.
the csrf must be sent as header for api calls, or as parameter for direct form
posts (where we cannot set a custom header). rest-like calls made directly by
the browser, e.g. for images, don't have a csrf protection. the csrf value is
returned by the Login api call and stored in localstorage.
api calls without credentials return code "user:noAuth", and with bad
credentials return "user:badAuth". the api client recognizes this and triggers
a login. after a login, all auth-failed api calls are automatically retried.
only for "user:badAuth" is an error message displayed in the login form (e.g.
session expired).
in an ideal world, browsers would take care of most session management. a
server would indicate authentication is needed (like http basic auth), and the
browsers uses trusted ui to request credentials for the server & path. the
browser could use safer mechanism than sending original passwords to the
server, such as scram, along with a standard way to create sessions. for now,
web developers have to do authentication themselves: from showing the login
prompt, ensuring the right session/csrf cookies/localstorage/headers/etc are
sent with each request.
webauthn is a newer way to do authentication, perhaps we'll implement it in the
future. though hardware tokens aren't an attractive option for many users, and
it may be overkill as long as we still do old-fashioned authentication in smtp
& imap where passwords can be sent to the server.
for issue #58
2024-01-04 15:10:48 +03:00
let loginAddressElem : HTMLElement
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
let msglistscrollElem : HTMLElement
let queryactivityElem : HTMLElement // We show ... when a query is active and data is forthcoming.
// Shown at the bottom of msglistscrollElem, immediately below the msglistView, when appropriate.
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
const listendElem = dom . div ( css ( 'msgListEnd' , { borderTop : '1px solid' , borderColor : styles.borderColor , color : styles.colorMilder , margin : '1ex' } ) )
const listloadingElem = dom . div ( css ( 'msgListLoading' , { textAlign : 'center' , padding : '.15em 0' , color : styles.colorMild , border : '1px solid' , borderColor : styles.borderColor , margin : '1ex' , backgroundColor : styles.backgroundColorMild } ) , 'loading...' )
const listerrElem = dom . div ( css ( 'msgListErr' , { textAlign : 'center' , padding : '.15em 0' , color : styles.colorMild , border : '1px solid' , borderColor : styles.borderColor , margin : '1ex' , backgroundColor : styles.backgroundColorMild } ) )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
let sseID = 0 // Sent by server in initial SSE response. We use it in API calls to make the SSE endpoint return new data we need.
let viewSequence = 0 // Counter for assigning viewID.
let viewID = 0 // Updated when a new view is started, e.g. when opening another mailbox or starting a search.
let search = {
active : false , // Whether a search is active.
query : '' , // The query, as shown in the searchbar. Used in location hash.
}
let requestSequence = 0 // Counter for assigning requestID.
let requestID = 0 // Current request, server will mirror it in SSE data. If we get data for a different id, we ignore it.
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
let requestAnchorMessageID = 0 // For pagination.
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
let requestViewEnd = false // If true, there is no more data to fetch, no more page needed for this view.
let requestFilter = newFilter ( )
let requestNotFilter = newNotFilter ( )
let requestMsgID = 0 // If > 0, we are still expecting a parsed message for the view, coming from the query. Either we get it and set msgitemViewActive and clear this, or we get to the end of the data and clear it.
const updatePageTitle = ( ) = > {
const mb = mailboxlistView && mailboxlistView . activeMailbox ( )
2024-02-08 20:03:48 +03:00
const addr = loginAddress ? loginAddress . User + '@' + formatDomain ( loginAddress . Domain ) : ''
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
if ( ! mb ) {
document . title = [ addr , 'Mox Webmail' ] . join ( ' - ' )
} else {
document . title = [ '(' + mb . Unread + ') ' + mb . Name , addr , 'Mox Webmail' ] . join ( ' - ' )
}
}
const setLocationHash = ( ) = > {
const msgid = requestMsgID || msglistView . activeMessageID ( )
const msgidstr = msgid ? ',' + msgid : ''
let hash
const mb = mailboxlistView && mailboxlistView . activeMailbox ( )
if ( mb ) {
hash = '#' + mb . Name + msgidstr
} else if ( search . active ) {
hash = '#search ' + search . query + msgidstr
} else {
hash = '#'
}
// We need to set the full URL or we would get errors about insecure operations for
// plain http with firefox.
const l = window . location
const url = l . protocol + '//' + l . host + l . pathname + l . search + hash
window . history . replaceState ( undefined , '' , url )
}
const loadSearch = ( q : string ) = > {
search = { active : true , query : q }
searchbarElem . value = q
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
searchbarElem . classList . toggle ( 'searchbarActive' , true ) // Cleared when another view is loaded.
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
searchbarElemBox . style . flexGrow = '4'
}
const unloadSearch = ( ) = > {
searchbarElem . value = ''
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
searchbarElem . classList . toggle ( 'searchbarActive' , false )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
searchbarElem . style . zIndex = ''
searchbarElemBox . style . flexGrow = '' // Make search bar smaller again.
search = { active : false , query : '' }
searchView . root . remove ( )
}
const clearList = ( ) = > {
msglistView . clear ( )
listendElem . remove ( )
listloadingElem . remove ( )
listerrElem . remove ( )
}
const requestNewView = async ( clearMsgID : boolean , filterOpt? : api.Filter , notFilterOpt? : api.NotFilter ) = > {
if ( ! sseID ) {
throw new Error ( 'not connected' )
}
if ( clearMsgID ) {
requestMsgID = 0
}
msglistView . root . classList . toggle ( 'loading' , true )
clearList ( )
viewSequence ++
viewID = viewSequence
if ( filterOpt ) {
requestFilter = filterOpt
requestNotFilter = notFilterOpt || newNotFilter ( )
}
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
requestAnchorMessageID = 0
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
requestViewEnd = false
const bounds = msglistscrollElem . getBoundingClientRect ( )
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
await requestMessages ( bounds , requestMsgID )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
}
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
const requestMessages = async ( scrollBounds : DOMRect , destMessageID : number ) = > {
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
const fetchCount = Math . max ( 50 , 3 * Math . ceil ( scrollBounds . height / msglistView . itemHeight ( ) ) )
const page = {
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
AnchorMessageID : requestAnchorMessageID ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
Count : fetchCount ,
DestMessageID : destMessageID ,
}
requestSequence ++
requestID = requestSequence
const [ f , notf ] = refineFilters ( requestFilter , requestNotFilter )
const query = {
OrderAsc : settings.orderAsc ,
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
Threading : settings.threading ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
Filter : f ,
NotFilter : notf ,
}
const request = {
ID : requestID ,
SSEID : sseID ,
ViewID : viewID ,
Cancel : false ,
Query : query ,
Page : page ,
}
dom . _kids ( queryactivityElem , 'loading...' )
msglistscrollElem . appendChild ( listloadingElem )
await client . Request ( request )
}
// msgElem can show a message, show actions on multiple messages, or be empty.
let msgElem = dom . div (
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
css ( 'msgElem' , { position : 'absolute' , right : 0 , left : 0 , top : 0 , bottom : 0 , backgroundColor : styles.backgroundColorMild } ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
)
// Returns possible labels based, either from active mailbox (possibly from search), or all mailboxes.
const possibleLabels = ( ) : string [ ] = > {
if ( requestFilter . MailboxID > 0 ) {
const mb = mailboxlistView . findMailboxByID ( requestFilter . MailboxID )
if ( mb ) {
return mb . Keywords || [ ]
}
}
const all : { [ key : string ] : undefined } = { }
mailboxlistView . mailboxes ( ) . forEach ( mb = > {
for ( const k of ( mb . Keywords || [ ] ) ) {
all [ k ] = undefined
}
} )
const l = Object . keys ( all )
l . sort ( )
return l
}
const refineKeyword = async ( kw : string ) = > {
settingsPut ( { . . . settings , refine : 'label:' + kw } )
refineToggleActive ( refineLabelBtn as HTMLButtonElement )
dom . _kids ( refineLabelBtn , 'Label: ' + kw )
await withStatus ( 'Requesting messages' , requestNewView ( false ) )
}
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
const viewportEnsureMessages = async ( ) = > {
// We know how many entries we have, and how many screenfulls. So we know when we
// only have 2 screen fulls left. That's when we request the next data.
const bounds = msglistscrollElem . getBoundingClientRect ( )
if ( msglistscrollElem . scrollTop < msglistscrollElem . scrollHeight - 3 * bounds . height ) {
return
}
// log('new request for scroll')
await withStatus ( 'Requesting more messages' , requestMessages ( bounds , 0 ) )
}
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
const otherMailbox = ( mailboxID : number ) : api . Mailbox | null = > requestFilter . MailboxID !== mailboxID ? ( mailboxlistView . findMailboxByID ( mailboxID ) || null ) : null
const listMailboxes = ( ) = > mailboxlistView . mailboxes ( )
webmail: during "send and archive", don't fail with error message when message that is being responded to is already in archive folder
before this change, when archiving, we would move all messages from the thread
that are in the same mailbox as that of the response message to the archive
mailbox. so if the message that was being responsed to was already in the
archive mailbox, the message would be moved from archive mailbox to archive
mailbox, resulting in an error.
with this change, when archiving, we move the thread messages that are in the
same mailbox as is currently open (independent of the mailbox the message lives
in, a common situation in the threading view). if there is no open mailbox
(search results), we still use the mailbox of the message being responded to as
reference.
with this new approach, we won't get errors moving a message to an archive
mailbox when it's already there. well, you can still get that error, but then
you've got the archive mailbox open, or you're in a search result and
responding to an archived message. the error should at least help understand
that nothing is happening.
we are only moving the messages from one active/reference mailbox because we
don't want to move messages from the thread that are in the Sent mailbox, and
we also don't want to move duplicate messages (cross-posts to mailing lists)
that are in other mailboxes. moving only the messages from the current active
mailbox seems safe, and should do what is what users would expect most of the
time.
for issue #233 by mattfbacon, thanks for reporting!
2024-10-31 18:20:11 +03:00
const activeMailbox = ( ) = > mailboxlistView . activeMailbox ( )
const msglistView = newMsglistView ( msgElem , activeMailbox , listMailboxes , setLocationHash , otherMailbox , possibleLabels , ( ) = > msglistscrollElem ? msglistscrollElem . getBoundingClientRect ( ) . height : 0 , refineKeyword , viewportEnsureMessages )
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
const mailboxlistView = newMailboxlistView ( msglistView , requestNewView , updatePageTitle , setLocationHash , unloadSearch , otherMailbox )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
let refineUnreadBtn : HTMLButtonElement , refineReadBtn : HTMLButtonElement , refineAttachmentsBtn : HTMLButtonElement , refineLabelBtn : HTMLButtonElement
const refineToggleActive = ( btn : HTMLButtonElement | null ) : void = > {
for ( const e of [ refineUnreadBtn , refineReadBtn , refineAttachmentsBtn , refineLabelBtn ] ) {
e . classList . toggle ( 'active' , e === btn )
}
if ( btn !== null && btn !== refineLabelBtn ) {
dom . _kids ( refineLabelBtn , 'Label' )
}
}
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
let threadMode : HTMLSelectElement
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
const msgColumnDraggerStyle = css ( 'msgColumnDragger' , { position : 'absolute' , top : 0 , bottom : 0 , width : '1px' , backgroundColor : styles.popupBorderColor , left : '2.5px' } )
let msglistElem = dom . div ( css ( 'msgList' , { backgroundColor : styles.msglistBackgroundColor , position : 'absolute' , left : '0' , right : 0 , top : 0 , bottom : 0 , display : 'flex' , flexDirection : 'column' } ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
dom . div (
attr . role ( 'region' ) , attr . arialabel ( 'Filter and sorting buttons for message list' ) ,
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
css ( 'msgListFilterSorting' , { display : 'flex' , justifyContent : 'space-between' , backgroundColor : styles.backgroundColorMild , borderBottom : '1px solid' , borderBottomColor : styles.borderColor , padding : '.25em .5em' } ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
dom . div (
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
dom . h1 ( 'Refine:' , css ( 'refineTitle' , { fontWeight : 'normal' , fontSize : 'inherit' , display : 'inline' , margin : 0 } ) , attr . title ( 'Refine message listing with quick filters. These refinement filters are in addition to any search criteria, but the refine attachment filter overrides a search attachment criteria.' ) ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
' ' ,
dom . span ( dom . _class ( 'btngroup' ) ,
refineUnreadBtn = dom . clickbutton ( settings . refine === 'unread' ? dom . _class ( 'active' ) : [ ] ,
'Unread' ,
attr . title ( 'Only show messages marked as unread.' ) ,
async function click ( e : MouseEvent ) {
settingsPut ( { . . . settings , refine : 'unread' } )
refineToggleActive ( e . target ! as HTMLButtonElement )
await withStatus ( 'Requesting messages' , requestNewView ( false ) )
} ,
) ,
refineReadBtn = dom . clickbutton ( settings . refine === 'read' ? dom . _class ( 'active' ) : [ ] ,
'Read' ,
attr . title ( 'Only show messages marked as read.' ) ,
async function click ( e : MouseEvent ) {
settingsPut ( { . . . settings , refine : 'read' } )
refineToggleActive ( e . target ! as HTMLButtonElement )
await withStatus ( 'Requesting messages' , requestNewView ( false ) )
} ,
) ,
refineAttachmentsBtn = dom . clickbutton ( settings . refine === 'attachments' ? dom . _class ( 'active' ) : [ ] ,
'Attachments' ,
attr . title ( 'Only show messages with attachments.' ) ,
async function click ( e : MouseEvent ) {
settingsPut ( { . . . settings , refine : 'attachments' } )
refineToggleActive ( e . target ! as HTMLButtonElement )
await withStatus ( 'Requesting messages' , requestNewView ( false ) )
} ,
) ,
refineLabelBtn = dom . clickbutton ( settings . refine . startsWith ( 'label:' ) ? [ dom . _class ( 'active' ) , 'Label: ' + settings . refine . substring ( 'label:' . length ) ] : 'Label' ,
attr . title ( 'Only show messages with the selected label.' ) ,
async function click ( e : MouseEvent ) {
const labels = possibleLabels ( )
const remove = popover ( e . target ! as HTMLElement , { } ,
dom . div (
style ( { display : 'flex' , flexDirection : 'column' , gap : '1ex' } ) ,
labels . map ( l = > {
const selectLabel = async ( ) = > {
settingsPut ( { . . . settings , refine : 'label:' + l } )
refineToggleActive ( e . target ! as HTMLButtonElement )
dom . _kids ( refineLabelBtn , 'Label: ' + l )
await withStatus ( 'Requesting messages' , requestNewView ( false ) )
remove ( )
}
return dom . div (
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
dom . clickbutton ( styleClasses . keyword , keywordButtonStyle , l , async function click() {
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
await selectLabel ( )
} ) ,
)
} ) ,
labels . length === 0 ? dom . div ( 'No labels yet, set one on a message first.' ) : [ ] ,
)
)
} ,
) ,
) ,
' ' ,
dom . clickbutton (
'x' ,
style ( { padding : '0 .25em' } ) ,
2023-08-10 11:42:54 +03:00
attr . arialabel ( 'Clear refinement filters.' ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
attr . title ( 'Clear refinement filters.' ) ,
async function click ( e : MouseEvent ) {
settingsPut ( { . . . settings , refine : '' } )
refineToggleActive ( e . target ! as HTMLButtonElement )
await withStatus ( 'Requesting messages' , requestNewView ( false ) )
} ,
) ,
) ,
dom . div (
queryactivityElem = dom . span ( ) ,
' ' ,
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
threadMode = dom . select (
attr . arialabel ( 'Thread modes.' ) ,
attr . title ( 'Off: Threading disabled, messages are shown individually.\nOn: Group messages in threads, expanded by default except when (previously) manually collapsed.\nUnread: Only expand thread with unread messages, ignoring and not saving whether they were manually collapsed.' ) ,
dom . option ( 'Threads: Off' , attr . value ( api . ThreadMode . ThreadOff ) , settings . threading === api . ThreadMode . ThreadOff ? attr . selected ( '' ) : [ ] ) ,
dom . option ( 'Threads: On' , attr . value ( api . ThreadMode . ThreadOn ) , settings . threading === api . ThreadMode . ThreadOn ? attr . selected ( '' ) : [ ] ) ,
dom . option ( 'Threads: Unread' , attr . value ( api . ThreadMode . ThreadUnread ) , settings . threading === api . ThreadMode . ThreadUnread ? attr . selected ( '' ) : [ ] ) ,
async function change() {
let reset = settings . threading === api . ThreadMode . ThreadOff
settingsPut ( { . . . settings , threading : threadMode.value as api . ThreadMode } )
reset = reset || settings . threading === api . ThreadMode . ThreadOff
if ( reset ) {
await withStatus ( 'Requesting messages' , requestNewView ( false ) )
} else {
msglistView . threadToggle ( )
}
} ,
) ,
' ' ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
dom . clickbutton ( '↑↓' , attr . title ( 'Toggle sorting by date received.' ) , settings . orderAsc ? dom . _class ( 'invert' ) : [ ] , async function click ( e : MouseEvent ) {
settingsPut ( { . . . settings , orderAsc : ! settings . orderAsc } )
; ( e . target ! as HTMLButtonElement ) . classList . toggle ( 'invert' , settings . orderAsc )
// We don't want to include the currently selected message because it could cause a
// huge amount of messages to be fetched. e.g. when first message in large mailbox
// was selected, it would now be the last message.
await withStatus ( 'Requesting messages' , requestNewView ( true ) )
} ) ,
) ,
) ,
dom . div (
style ( { height : '1ex' , position : 'relative' } ) ,
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
dom . div ( dom . _class ( 'msgItemFlags' ) ) ,
dom . div ( dom . _class ( 'msgItemFlagsOffset' ) , css ( 'msgItemFlagsGrab' , { position : 'absolute' , width : '6px' , top : 0 , bottom : 0 , marginLeft : '-3px' , cursor : 'ew-resize' } ) ,
dom . div ( msgColumnDraggerStyle ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
function mousedown ( e : MouseEvent ) {
startDrag ( e , ( e ) = > {
const bounds = msglistscrollElem . getBoundingClientRect ( )
const width = Math . round ( e . clientX - bounds . x )
settingsPut ( { . . . settings , msglistflagsWidth : width } )
updateMsglistWidths ( )
} )
}
) ,
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
dom . div ( dom . _class ( 'msgItemFrom' ) ) ,
dom . div ( dom . _class ( 'msgItemFromOffset' ) , css ( 'msgItemFlagsGrab' , { position : 'absolute' , width : '6px' , top : 0 , bottom : 0 , marginLeft : '-3px' , cursor : 'ew-resize' } ) ,
dom . div ( msgColumnDraggerStyle ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
function mousedown ( e : MouseEvent ) {
startDrag ( e , ( e ) = > {
const bounds = msglistscrollElem . getBoundingClientRect ( )
const x = Math . round ( e . clientX - bounds . x - lastflagswidth )
const width = bounds . width - lastflagswidth - lastagewidth
const pct = 100 * x / width
settingsPut ( { . . . settings , msglistfromPct : pct } )
updateMsglistWidths ( )
} )
}
) ,
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
dom . div ( dom . _class ( 'msgItemSubject' ) ) ,
dom . div ( dom . _class ( 'msgItemSubjectOffset' ) , css ( 'msgItemFlagsGrab' , { position : 'absolute' , width : '6px' , top : 0 , bottom : 0 , marginLeft : '-3px' , cursor : 'ew-resize' } ) ,
dom . div ( msgColumnDraggerStyle ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
function mousedown ( e : MouseEvent ) {
startDrag ( e , ( e ) = > {
const bounds = msglistscrollElem . getBoundingClientRect ( )
const width = Math . round ( bounds . x + bounds . width - e . clientX )
settingsPut ( { . . . settings , msglistageWidth : width } )
updateMsglistWidths ( )
} )
}
) ,
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
dom . div ( dom . _class ( 'msgItemAge' ) ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
) ,
dom . div (
style ( { flexGrow : '1' , position : 'relative' } ) ,
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
msglistscrollElem = dom . div ( yscrollStyle ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
attr . role ( 'region' ) , attr . arialabel ( 'Message list' ) ,
async function scroll() {
if ( ! sseID || requestViewEnd || requestID ) {
return
}
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
await viewportEnsureMessages ( )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
} ,
dom . div (
style ( { width : '100%' , borderSpacing : '0' } ) ,
msglistView ,
) ,
) ,
) ,
)
let searchbarElem : HTMLInputElement // Input field for search
// Called by searchView when user executes the search.
const startSearch = async ( f : api.Filter , notf : api.NotFilter ) : Promise < void > = > {
if ( ! sseID ) {
window . alert ( 'Error: not connect' )
return
}
// If search has an attachment filter, clear it from the quick filter or we will
// confuse the user with no matches. The refinement would override the selection.
if ( f . Attachments !== '' && settings . refine === 'attachments' ) {
settingsPut ( { . . . settings , refine : '' } )
refineToggleActive ( null )
}
search = { active : true , query : searchbarElem.value }
mailboxlistView . closeMailbox ( )
setLocationHash ( )
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
searchbarElem . classList . toggle ( 'searchbarActive' , true ) // Cleared when another view is loaded.
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
searchView . root . remove ( )
searchbarElem . blur ( )
document . body . focus ( )
await withStatus ( 'Requesting messages' , requestNewView ( true , f , notf ) )
}
// Called by searchView when it is closed, due to escape key or click on background.
const searchViewClose = ( ) = > {
if ( ! search . active ) {
unloadSearch ( )
} else {
searchbarElem . value = search . query
searchView . root . remove ( )
}
}
// For dragging.
let mailboxesElem : HTMLElement , topcomposeboxElem : HTMLElement , mailboxessplitElem : HTMLElement
let splitElem : HTMLElement
let searchbarElemBox : HTMLElement // Detailed search form, opened when searchbarElem gets focused.
const searchbarInitial = ( ) = > {
const mailboxActive = mailboxlistView . activeMailbox ( )
if ( mailboxActive && mailboxActive . Name !== 'Inbox' ) {
return packToken ( [ false , 'mb' , false , mailboxActive . Name ] ) + ' '
}
return ''
}
const ensureSearchView = ( ) = > {
if ( searchView . root . parentElement ) {
// Already open.
return
}
searchView . ensureLoaded ( )
const pos = searchbarElem . getBoundingClientRect ( )
const child = searchView . root . firstChild ! as HTMLElement
child . style . left = '' + pos . x + 'px'
child . style . top = '' + ( pos . y + pos . height + 2 ) + 'px'
// Append to just after search input so next tabindex is at form.
searchbarElem . parentElement ! . appendChild ( searchView . root )
// Make search bar as wide as possible. Made smaller when searchView is hidden again.
searchbarElemBox . style . flexGrow = '4'
searchbarElem . style . zIndex = zindexes . searchbar
}
const cmdSearch = async ( ) = > {
searchbarElem . focus ( )
if ( ! searchbarElem . value ) {
searchbarElem . value = searchbarInitial ( )
}
ensureSearchView ( )
searchView . updateForm ( )
}
2024-04-19 18:24:54 +03:00
const cmdCompose = async ( ) = > {
let body = ''
let sig = accountSettings ? . Signature || ''
if ( sig ) {
body += '\n\n' + sig
}
2024-04-19 22:03:18 +03:00
compose ( { body : body , editOffset : 0 } , listMailboxes )
2024-04-19 18:24:54 +03:00
}
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
const cmdOpenInbox = async ( ) = > {
const mb = mailboxlistView . findMailboxByName ( 'Inbox' )
if ( mb ) {
await mailboxlistView . openMailboxID ( mb . ID , true )
const f = newFilter ( )
f . MailboxID = mb . ID
await withStatus ( 'Requesting messages' , requestNewView ( true , f , newNotFilter ( ) ) )
}
}
const cmdFocusMsg = async ( ) = > {
const btn = msgElem . querySelector ( 'button' )
if ( btn && btn instanceof HTMLElement ) {
btn . focus ( )
}
}
const shortcuts : { [ key : string ] : command } = {
i : cmdOpenInbox ,
'/' : cmdSearch ,
'?' : cmdHelp ,
'ctrl ?' : cmdTooltip ,
c : cmdCompose ,
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
'ctrl m' : cmdFocusMsg ,
2024-04-19 18:24:54 +03:00
'ctrl !' : cmdSettings ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
}
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
const topMailboxesStyle = css ( 'topMailboxes' , { backgroundColor : styles.mailboxesTopBackgroundColor } )
css ( 'searchbarActive' , { background : styles.mailboxActiveBackground } ) // class set on searchbarElem when active.
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
const webmailroot = dom . div (
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
css ( 'webmailRoot' , { display : 'flex' , flexDirection : 'column' , alignContent : 'stretch' , height : '100dvh' } ) ,
dom . div ( topMailboxesStyle ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
style ( { display : 'flex' } ) ,
attr . role ( 'region' ) , attr . arialabel ( 'Top bar' ) ,
topcomposeboxElem = dom . div ( dom . _class ( 'pad' ) ,
style ( { width : settings.mailboxesWidth + 'px' , textAlign : 'center' } ) ,
dom . clickbutton ( 'Compose' , attr . title ( 'Compose new email message.' ) , function click() {
shortcutCmd ( cmdCompose , shortcuts )
} ) ,
) ,
dom . div ( dom . _class ( 'pad' ) ,
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
css ( 'searchbarBox' , { paddingLeft : 0 , display : 'flex' , flexGrow : 1 } ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
searchbarElemBox = dom . search (
style ( { display : 'flex' , marginRight : '.5em' } ) ,
dom . form (
style ( { display : 'flex' , flexGrow : 1 } ) ,
searchbarElem = dom . input (
attr . placeholder ( 'Search...' ) ,
style ( { position : 'relative' , width : '100%' } ) ,
attr . title ( 'Search messages based on criteria like matching free-form text, in a mailbox, labels, addressees.' ) ,
focusPlaceholder ( 'word "with space" -notword mb:Inbox f:from@x.example t:rcpt@x.example start:2023-7-1 end:2023-7-8 s:"subject" a:images l:$Forwarded h:Reply-To:other@x.example minsize:500kb' ) ,
function click() {
cmdSearch ( )
showShortcut ( '/' )
} ,
function focus() {
// Make search bar as wide as possible. Made smaller when searchView is hidden again.
searchbarElemBox . style . flexGrow = '4'
if ( ! searchbarElem . value ) {
searchbarElem . value = searchbarInitial ( )
}
} ,
function blur() {
if ( searchbarElem . value === searchbarInitial ( ) ) {
searchbarElem . value = ''
}
if ( ! search . active ) {
searchbarElemBox . style . flexGrow = ''
}
} ,
function change() {
searchView . updateForm ( )
} ,
function keyup ( e : KeyboardEvent ) {
if ( e . key === 'Escape' ) {
e . stopPropagation ( )
searchViewClose ( )
return
}
if ( searchbarElem . value && searchbarElem . value !== searchbarInitial ( ) ) {
ensureSearchView ( )
}
searchView . updateForm ( )
} ,
) ,
2023-08-10 11:42:54 +03:00
dom . clickbutton ( 'x' ,
attr . arialabel ( 'Cancel and clear search and open Inbox.' ) ,
attr . title ( 'Cancel and clear search and open Inbox.' ) ,
style ( { marginLeft : '.25em' , padding : '0 .3em' } ) ,
async function click() {
searchbarElem . value = ''
if ( ! search . active ) {
return
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
}
2023-08-10 11:42:54 +03:00
const mb = mailboxlistView . findMailboxByName ( 'Inbox' )
if ( ! mb ) {
window . alert ( 'Cannot find inbox.' )
return
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
}
2023-08-10 11:42:54 +03:00
await mailboxlistView . openMailboxID ( mb . ID , true )
const f = newFilter ( )
f . MailboxID = mb . ID
await withStatus ( 'Requesting messages' , requestNewView ( true , f , newNotFilter ( ) ) )
} ,
) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
async function submit ( e : SubmitEvent ) {
e . preventDefault ( )
await searchView . submit ( )
} ,
) ,
) ,
connectionElem = dom . div ( ) ,
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
statusElem = dom . div ( css ( 'status' , { marginLeft : '.5em' , flexGrow : '1' } ) , attr . role ( 'status' ) ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
dom . div (
style ( { paddingLeft : '1em' } ) ,
layoutElem = dom . select (
attr . title ( 'Layout of message list and message panes. Top/bottom has message list above message view. Left/Right has message list left, message view right. Auto selects based on window width and automatically switches on resize. Wide screens get left/right, smaller screens get top/bottom.' ) ,
dom . option ( 'Auto layout' , attr . value ( 'auto' ) , settings . layout === 'auto' ? attr . selected ( '' ) : [ ] ) ,
dom . option ( 'Top/bottom' , attr . value ( 'topbottom' ) , settings . layout === 'topbottom' ? attr . selected ( '' ) : [ ] ) ,
dom . option ( 'Left/right' , attr . value ( 'leftright' ) , settings . layout === 'leftright' ? attr . selected ( '' ) : [ ] ) ,
function change() {
settingsPut ( { . . . settings , layout : layoutElem.value } )
if ( layoutElem . value === 'auto' ) {
autoselectLayout ( )
} else {
selectLayout ( layoutElem . value )
}
} ,
) , ' ' ,
dom . clickbutton ( 'Tooltip' , attr . title ( 'Show tooltips, based on the title attributes (underdotted text) for the focused element and all user interface elements below it. Use the keyboard shortcut "ctrl ?" instead of clicking on the tooltip button, which changes focus to the tooltip button.' ) , clickCmd ( cmdTooltip , shortcuts ) ) ,
' ' ,
dom . clickbutton ( 'Help' , attr . title ( 'Show popup with basic usage information and a keyboard shortcuts.' ) , clickCmd ( cmdHelp , shortcuts ) ) ,
' ' ,
2024-04-19 18:24:54 +03:00
dom . clickbutton ( 'Settings' , attr . title ( 'Change settings for composing messages.' ) , clickCmd ( cmdSettings , shortcuts ) ) ,
' ' ,
2024-04-19 18:44:31 +03:00
accountElem = dom . span ( ) ,
' ' ,
replace http basic auth for web interfaces with session cookie & csrf-based auth
the http basic auth we had was very simple to reason about, and to implement.
but it has a major downside:
there is no way to logout, browsers keep sending credentials. ideally, browsers
themselves would show a button to stop sending credentials.
a related downside: the http auth mechanism doesn't indicate for which server
paths the credentials are.
another downside: the original password is sent to the server with each
request. though sending original passwords to web servers seems to be
considered normal.
our new approach uses session cookies, along with csrf values when we can. the
sessions are server-side managed, automatically extended on each use. this
makes it easy to invalidate sessions and keeps the frontend simpler (than with
long- vs short-term sessions and refreshing). the cookies are httponly,
samesite=strict, scoped to the path of the web interface. cookies are set
"secure" when set over https. the cookie is set by a successful call to Login.
a call to Logout invalidates a session. changing a password invalidates all
sessions for a user, but keeps the session with which the password was changed
alive. the csrf value is also random, and associated with the session cookie.
the csrf must be sent as header for api calls, or as parameter for direct form
posts (where we cannot set a custom header). rest-like calls made directly by
the browser, e.g. for images, don't have a csrf protection. the csrf value is
returned by the Login api call and stored in localstorage.
api calls without credentials return code "user:noAuth", and with bad
credentials return "user:badAuth". the api client recognizes this and triggers
a login. after a login, all auth-failed api calls are automatically retried.
only for "user:badAuth" is an error message displayed in the login form (e.g.
session expired).
in an ideal world, browsers would take care of most session management. a
server would indicate authentication is needed (like http basic auth), and the
browsers uses trusted ui to request credentials for the server & path. the
browser could use safer mechanism than sending original passwords to the
server, such as scram, along with a standard way to create sessions. for now,
web developers have to do authentication themselves: from showing the login
prompt, ensuring the right session/csrf cookies/localstorage/headers/etc are
sent with each request.
webauthn is a newer way to do authentication, perhaps we'll implement it in the
future. though hardware tokens aren't an attractive option for many users, and
it may be overkill as long as we still do old-fashioned authentication in smtp
& imap where passwords can be sent to the server.
for issue #58
2024-01-04 15:10:48 +03:00
loginAddressElem = dom . span ( ) ,
' ' ,
dom . clickbutton ( 'Logout' , attr . title ( 'Logout, invalidating this session.' ) , async function click ( e : MouseEvent ) {
await withStatus ( 'Logging out' , client . Logout ( ) , e . target ! as HTMLButtonElement )
localStorageRemove ( 'webmailcsrftoken' )
if ( eventSource ) {
eventSource . close ( )
eventSource = null
}
// Reload so all state is cleared from memory.
window . location . reload ( )
} ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
) ,
) ,
) ,
dom . div (
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
css ( 'mailboxesListMsgBox' , { flexGrow : '1' , position : 'relative' } ) ,
mailboxesElem = dom . div ( topMailboxesStyle ,
style ( { width : settings.mailboxesWidth + 'px' } ) ,
css ( 'mailboxesBox' , { display : 'flex' , flexDirection : 'column' , alignContent : 'stretch' , position : 'absolute' , left : 0 , top : 0 , bottom : 0 } ) ,
dom . div ( dom . _class ( 'pad' ) , yscrollAutoStyle ,
style ( { flexGrow : '1' , position : 'relative' } ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
mailboxlistView . root ,
) ,
) ,
mailboxessplitElem = dom . div (
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
css ( 'mailboxesListGrab' , { position : 'absolute' , width : '5px' , top : 0 , bottom : 0 , cursor : 'ew-resize' , zIndex : zindexes.splitter } ) ,
style ( { left : 'calc(' + settings . mailboxesWidth + 'px - 2px)' } ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
dom . div (
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
css ( 'mailboxesListLine' , { position : 'absolute' , width : '1px' , top : 0 , bottom : 0 , left : '2px' , right : '2px' , backgroundColor : styles.popupBorderColor } ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
) ,
function mousedown ( e : MouseEvent ) {
startDrag ( e , ( e ) = > {
mailboxesElem . style . width = Math . round ( e . clientX ) + 'px'
topcomposeboxElem . style . width = Math . round ( e . clientX ) + 'px'
mailboxessplitElem . style . left = 'calc(' + e . clientX + 'px - 2px)'
splitElem . style . left = 'calc(' + e . clientX + 'px + 1px)'
settingsPut ( { . . . settings , mailboxesWidth : Math.round ( e . clientX ) } )
} )
}
) ,
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
splitElem = dom . div ( css ( 'listMsgBox' , { position : 'absolute' , left : 'calc(' + settings . mailboxesWidth + 'px + 1px)' , right : 0 , top : 0 , bottom : 0 , borderTop : '1px solid' , borderTopColor : styles.borderColor } ) ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
) ,
)
// searchView is shown when search gets focus.
const searchView = newSearchView ( searchbarElem , mailboxlistView , startSearch , searchViewClose )
document . body . addEventListener ( 'keydown' , async ( e : KeyboardEvent ) = > {
// Don't do anything for just the press of the modifiers.
switch ( e . key ) {
case 'OS' :
case 'Control' :
case 'Shift' :
case 'Alt' :
return
}
// Popup have their own handlers, e.g. for scrolling.
if ( popupOpen ) {
return
}
// Prevent many regular key presses from being processed, some possibly unintended.
if ( ( e . target instanceof window . HTMLInputElement || e . target instanceof window . HTMLTextAreaElement || e . target instanceof window . HTMLSelectElement ) && ! e . ctrlKey && ! e . altKey && ! e . metaKey ) {
return
}
let l = [ ]
if ( e . ctrlKey ) {
l . push ( 'ctrl' )
}
if ( e . altKey ) {
l . push ( 'alt' )
}
if ( e . metaKey ) {
l . push ( 'meta' )
}
2024-04-19 22:03:18 +03:00
// Assume regular keys generate a 1 character e.key, and others are special for
// which we may want to treat shift specially too.
if ( e . key . length > 1 && e . shiftKey ) {
l . push ( 'shift' )
}
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
l . push ( e . key )
const k = l . join ( ' ' )
2023-08-10 12:02:13 +03:00
if ( attachmentView ) {
attachmentView . key ( k , e )
return
}
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
if ( composeView ) {
await composeView . key ( k , e )
return
}
const cmdfn = shortcuts [ k ]
if ( cmdfn ) {
e . preventDefault ( )
e . stopPropagation ( )
await cmdfn ( )
return
}
msglistView . key ( k , e )
} )
let currentLayout : string = ''
const selectLayout = ( want : string ) = > {
if ( want === currentLayout ) {
return
}
if ( want === 'leftright' ) {
let left : HTMLElement , split : HTMLElement , right : HTMLElement
dom . _kids ( splitElem ,
left = dom . div (
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
css ( 'layoutLeft' , { position : 'absolute' , left : 0 , top : 0 , bottom : 0 } ) ,
style ( { width : 'calc(' + settings . leftWidthPct + '% - 1px)' } ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
msglistElem ,
) ,
split = dom . div (
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
css ( 'listMsgLeftRightGrab' , { position : 'absolute' , width : '5px' , top : 0 , bottom : 0 , cursor : 'ew-resize' , zIndex : zindexes.splitter } ) ,
style ( { left : 'calc(' + settings . leftWidthPct + '% - 2px)' } ) ,
dom . div ( css ( 'listMsgLeftRightLine' , { position : 'absolute' , backgroundColor : styles.popupBorderColor , top : 0 , bottom : 0 , width : '1px' , left : '2px' , right : '2px' } ) ) ,
2024-08-03 15:49:38 +03:00
async function mousedown ( e : MouseEvent ) {
// Disable pointer events on the message view. If it has an iframe with a message,
// mouse events while dragging would be consumed by the iframe, breaking our
// resize.
right . style . pointerEvents = 'none'
await startDrag ( e , ( e ) = > {
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
const bounds = left . getBoundingClientRect ( )
const x = Math . round ( e . clientX - bounds . x )
left . style . width = 'calc(' + x + 'px - 1px)'
split . style . left = 'calc(' + x + 'px - 2px)'
right . style . left = 'calc(' + x + 'px + 1px)'
settingsPut ( { . . . settings , leftWidthPct : Math.round ( 100 * bounds . width / splitElem . getBoundingClientRect ( ) . width ) } )
updateMsglistWidths ( )
} )
2024-08-03 15:49:38 +03:00
right . style . pointerEvents = ''
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
}
) ,
right = dom . div (
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
css ( 'layoutRight' , { position : 'absolute' , right : 0 , top : 0 , bottom : 0 } ) ,
style ( { left : 'calc(' + settings . leftWidthPct + '% + 1px)' } ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
msgElem ,
) ,
)
} else {
let top : HTMLElement , split : HTMLElement , bottom : HTMLElement
dom . _kids ( splitElem ,
top = dom . div (
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
css ( 'layoutTop' , { position : 'absolute' , top : 0 , left : 0 , right : 0 } ) ,
style ( { height : 'calc(' + settings . topHeightPct + '% - 1px)' } ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
msglistElem ,
) ,
split = dom . div (
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
css ( 'listMsgTopBottomGrab' , { position : 'absolute' , height : '5px' , left : '0' , right : '0' , cursor : 'ns-resize' , zIndex : zindexes.splitter } ) ,
style ( { top : 'calc(' + settings . topHeightPct + '% - 2px)' } ) ,
dom . div ( css ( 'listmsgTopBottomLine' , { position : 'absolute' , backgroundColor : styles.popupBorderColor , left : 0 , right : 0 , height : '1px' , top : '2px' , bottom : '2px' } ) ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
function mousedown ( e : MouseEvent ) {
startDrag ( e , ( e ) = > {
const bounds = top . getBoundingClientRect ( )
const y = Math . round ( e . clientY - bounds . y )
top . style . height = 'calc(' + y + 'px - 1px)'
split . style . top = 'calc(' + y + 'px - 2px)'
bottom . style . top = 'calc(' + y + 'px + 1px)'
settingsPut ( { . . . settings , topHeightPct : Math.round ( 100 * bounds . height / splitElem . getBoundingClientRect ( ) . height ) } )
} )
}
) ,
bottom = dom . div (
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
css ( 'layoutBottom' , { position : 'absolute' , bottom : 0 , left : 0 , right : 0 } ) ,
style ( { top : 'calc(' + settings . topHeightPct + '% + 1px)' } ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
msgElem ,
) ,
)
}
currentLayout = want
checkMsglistWidth ( )
}
const autoselectLayout = ( ) = > {
const want = window . innerWidth <= 2 * 2560 / 3 ? 'topbottom' : 'leftright'
selectLayout ( want )
}
// When the window size or layout changes, we recalculate the desired widths for
// the msglist "table". It is a list of divs, each with flex layout with 4 elements
// of fixed size.
// Cannot use the CSSStyleSheet constructor with its replaceSync method because
// safari only started implementing it in 2023q1. So we do it the old-fashioned
// way, inserting a style element and updating its style.
const styleElem = dom . style ( attr . type ( 'text/css' ) )
document . head . appendChild ( styleElem )
const stylesheet = styleElem . sheet !
let lastmsglistwidth = - 1
const checkMsglistWidth = ( ) = > {
const width = msglistscrollElem . getBoundingClientRect ( ) . width
if ( lastmsglistwidth === width || width <= 0 ) {
return
}
updateMsglistWidths ( )
}
let lastflagswidth : number , lastagewidth : number
let rulesInserted = false
const updateMsglistWidths = ( ) = > {
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
const width = msglistscrollElem . clientWidth - 2 // Borders.
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
lastmsglistwidth = width
let flagswidth = settings . msglistflagsWidth
let agewidth = settings . msglistageWidth
let frompct = settings . msglistfromPct // Of remaining space.
if ( flagswidth + agewidth > width ) {
flagswidth = Math . floor ( width / 2 )
agewidth = width - flagswidth
}
const remain = width - ( flagswidth + agewidth )
const fromwidth = Math . floor ( frompct * remain / 100 )
const subjectwidth = Math . floor ( remain - fromwidth )
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
const cssRules : [ string , { [ style : string ] : number | string } ] [ ] = [
[ '.msgItemFlags' , { width : flagswidth } ] ,
[ '.msgItemFrom' , { width : fromwidth , position : 'relative' } ] ,
[ '.msgItemSubject' , { width : subjectwidth } ] ,
[ '.msgItemAge' , { width : agewidth , 'text-align' : 'right' } ] ,
[ '.msgItemFlagsOffset' , { left : flagswidth } ] ,
[ '.msgItemFromOffset' , { left : flagswidth + fromwidth } ] ,
[ '.msgItemSubjectOffset' , { left : flagswidth + fromwidth + subjectwidth } ] ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
]
if ( ! rulesInserted ) {
cssRules . forEach ( ( rule , i ) = > { stylesheet . insertRule ( rule [ 0 ] + '{}' , i ) } )
rulesInserted = true
}
cssRules . forEach ( ( rule , i ) = > {
const r = stylesheet . cssRules [ i ] as CSSStyleRule
for ( const k in rule [ 1 ] ) {
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
let v = rule [ 1 ] [ k ]
if ( typeof v !== 'string' ) {
v = '' + v + 'px'
}
r . style . setProperty ( k , v )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
}
} )
lastflagswidth = flagswidth
lastagewidth = agewidth
}
// Select initial layout.
if ( layoutElem . value === 'auto' ) {
autoselectLayout ( )
} else {
selectLayout ( layoutElem . value )
}
add ability to include custom css & js in web interface (webmail, webaccount, webadmin), and use css variables in webmail for easier customization
if files {webmail,webaccount,webadmin}.{css,js} exist in the configdir (where
the mox.conf file lives), their contents are included in the web apps.
the webmail now uses css variables, mostly for colors. so you can write a
custom webmail.css that changes the variables, e.g.:
:root {
--color: blue
}
you can also look at css class names and override their styles.
in the future, we may want to make some css variables configurable in the
per-user settings in the webmail. should reduce the number of variables first.
any custom javascript is loaded first. if it defines a global function
"moxBeforeDisplay", that is called each time a page loads (after
authentication) with the DOM element of the page content as parameter. the
webmail is a single persistent page. this can be used to make some changes to
the DOM, e.g. inserting some elements. we'll have to see how well this works in
practice. perhaps some patterns emerge (e.g. adding a logo), and we can make
those use-cases easier to achieve.
helps partially with issue #114, and based on questions from laura-lilly on
matrix.
2024-11-29 12:17:07 +03:00
if ( ( window as any ) . moxBeforeDisplay ) {
moxBeforeDisplay ( webmailroot )
}
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
dom . _kids ( page , webmailroot )
checkMsglistWidth ( )
window . addEventListener ( 'resize' , function ( ) {
if ( layoutElem . value === 'auto' ) {
autoselectLayout ( )
}
checkMsglistWidth ( )
} )
2024-02-09 13:21:33 +03:00
window . addEventListener ( 'hashchange' , async ( e : HashChangeEvent ) = > {
const hash = decodeURIComponent ( window . location . hash )
if ( hash . startsWith ( '#compose ' ) ) {
try {
const opts = parseComposeMailto ( hash . substring ( '#compose ' . length ) )
// Restore previous hash.
if ( e . oldURL ) {
const ou = new URL ( e . oldURL )
window . location . hash = ou . hash
} else {
window . location . hash = ''
}
( async ( ) = > {
// Resolve Q/B-word mime encoding for subject. ../rfc/6068:267 ../rfc/2047:180
if ( opts . subject && opts . subject . includes ( '=?' ) ) {
opts . subject = await withStatus ( 'Decoding MIME words for subject' , client . DecodeMIMEWords ( opts . subject ) )
}
2024-04-19 22:03:18 +03:00
compose ( opts , listMailboxes )
2024-02-09 13:21:33 +03:00
} ) ( )
} catch ( err ) {
window . alert ( 'Error parsing compose mailto URL: ' + errmsg ( err ) )
window . location . hash = ''
}
return
}
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
const [ search , msgid , f , notf ] = parseLocationHash ( mailboxlistView )
requestMsgID = msgid
if ( search ) {
mailboxlistView . closeMailbox ( )
loadSearch ( search )
} else {
unloadSearch ( )
await mailboxlistView . openMailboxID ( f . MailboxID , false )
}
await withStatus ( 'Requesting messages' , requestNewView ( false , f , notf ) )
} )
let eventSource : EventSource | null = null // If set, we have a connection.
let connecting = false // Check before reconnecting.
let noreconnect = false // Set after one reconnect attempt fails.
let noreconnectTimer = 0 // Timer ID for resetting noreconnect.
// Don't show disconnection just before user navigates away.
let leaving = false
2024-04-20 18:38:25 +03:00
window . addEventListener ( 'beforeunload' , ( e : BeforeUnloadEvent ) = > {
if ( composeView && composeView . unsavedChanges ( ) ) {
e . preventDefault ( )
} else {
leaving = true
if ( eventSource ) {
eventSource . close ( )
eventSource = null
sseID = 0
}
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
}
} )
// On chromium, we may get restored when user hits the back button ("bfcache"). We
// have left, closed the connection, so we should restore it.
window . addEventListener ( 'pageshow' , async ( e : PageTransitionEvent ) = > {
if ( e . persisted && ! eventSource && ! connecting ) {
noreconnect = false
connect ( false )
}
} )
// If user comes back to tab/window, and we are disconnected, try another reconnect.
window . addEventListener ( 'focus' , ( ) = > {
if ( ! eventSource && ! connecting ) {
noreconnect = false
connect ( true )
}
} )
const showNotConnected = ( ) = > {
dom . _kids ( connectionElem ,
attr . role ( 'status' ) ,
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
dom . span ( css ( 'connectionStatus' , { backgroundColor : styles.warningBackgroundColor , padding : '0 .15em' , borderRadius : '.15em' } ) , 'Not connected' , attr . title ( 'Not receiving real-time updates, including of new deliveries.' ) ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
' ' ,
dom . clickbutton ( 'Reconnect' , function click() {
if ( ! eventSource && ! connecting ) {
noreconnect = false
connect ( true )
}
} ) ,
)
}
2023-09-21 10:07:49 +03:00
const capitalizeFirst = ( s : string ) = > s . charAt ( 0 ) . toUpperCase ( ) + s . slice ( 1 )
2024-02-09 13:21:33 +03:00
// Set to compose options when we were opened with a mailto URL. We open the
// compose window after we received the "start" message with our addresses.
let openComposeOptions : ComposeOptions | undefined
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
const connect = async ( isreconnect : boolean ) = > {
connectionElem . classList . toggle ( 'loading' , true )
dom . _kids ( connectionElem )
connectionElem . classList . toggle ( 'loading' , false )
// We'll clear noreconnect when we've held a connection for 10 mins.
noreconnect = isreconnect
connecting = true
let token : string
try {
token = await withStatus ( 'Fetching token for connection with real-time updates' , client . Token ( ) , undefined , true )
} catch ( err ) {
connecting = false
noreconnect = true
2023-09-21 10:07:49 +03:00
dom . _kids ( statusElem , ( capitalizeFirst ( ( err as any ) . message || 'Error fetching connection token' ) ) + ', not automatically retrying. ' )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
showNotConnected ( )
return
}
2024-02-09 13:21:33 +03:00
const h = decodeURIComponent ( window . location . hash )
if ( h . startsWith ( '#compose ' ) ) {
try {
// The compose window is opened when we get the "start" event, which gives us our
// configuration.
openComposeOptions = parseComposeMailto ( h . substring ( '#compose ' . length ) )
} catch ( err ) {
window . alert ( 'Error parsing mailto URL: ' + errmsg ( err ) )
}
window . location . hash = ''
}
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
let [ searchQuery , msgid , f , notf ] = parseLocationHash ( mailboxlistView )
requestMsgID = msgid
requestFilter = f
requestNotFilter = notf
if ( searchQuery ) {
loadSearch ( searchQuery )
}
[ f , notf ] = refineFilters ( requestFilter , requestNotFilter )
const fetchCount = Math . max ( 50 , 3 * Math . ceil ( msglistscrollElem . getBoundingClientRect ( ) . height / msglistView . itemHeight ( ) ) )
const query = {
OrderAsc : settings.orderAsc ,
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
Threading : settings.threading ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
Filter : f ,
NotFilter : notf ,
}
const page = {
AnchorMessageID : 0 ,
Count : fetchCount ,
DestMessageID : msgid ,
}
viewSequence ++
viewID = viewSequence
// We get an implicit query for the automatically selected mailbox or query.
requestSequence ++
requestID = requestSequence
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
requestAnchorMessageID = 0
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
requestViewEnd = false
clearList ( )
const request = {
ID : requestID ,
// A new SSEID is created by the server, sent in the initial response message.
ViewID : viewID ,
Query : query ,
Page : page ,
}
let slow = ''
try {
const debug = JSON . parse ( localStorage . getItem ( 'sherpats-debug' ) || 'null' )
if ( debug && debug . waitMinMsec && debug . waitMaxMsec ) {
slow = '&waitMinMsec=' + debug . waitMinMsec + '&waitMaxMsec=' + debug . waitMaxMsec
}
} catch ( err ) { }
2024-08-23 16:08:27 +03:00
eventSource = new window . EventSource ( 'events?singleUseToken=' + encodeURIComponent ( token ) + '&request=' + encodeURIComponent ( JSON . stringify ( request ) ) + slow )
2023-09-21 10:07:49 +03:00
let eventID = window . setTimeout ( ( ) = > dom . _kids ( statusElem , 'Connecting... ' ) , 1000 )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
eventSource . addEventListener ( 'open' , ( e : Event ) = > {
log ( 'eventsource open' , { e } )
if ( eventID ) {
window . clearTimeout ( eventID )
eventID = 0
}
dom . _kids ( statusElem )
dom . _kids ( connectionElem )
} )
const sseError = ( errmsg : string ) = > {
sseID = 0
eventSource ! . close ( )
eventSource = null
connecting = false
if ( noreconnectTimer ) {
clearTimeout ( noreconnectTimer )
noreconnectTimer = 0
}
if ( leaving ) {
return
}
if ( eventID ) {
window . clearTimeout ( eventID )
eventID = 0
}
2024-02-08 20:03:48 +03:00
document . title = [ '(not connected)' , loginAddress ? ( loginAddress . User + '@' + formatDomain ( loginAddress . Domain ) ) : '' , 'Mox Webmail' ] . filter ( s = > s ) . join ( ' - ' )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
dom . _kids ( connectionElem )
if ( noreconnect ) {
2023-09-21 10:07:49 +03:00
dom . _kids ( statusElem , capitalizeFirst ( errmsg ) + ', not automatically retrying. ' )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
showNotConnected ( )
listloadingElem . remove ( )
listendElem . remove ( )
} else {
connect ( true )
}
}
// EventSource-connection error. No details.
eventSource . addEventListener ( 'error' , ( e : Event ) = > {
log ( 'eventsource error' , { e } , JSON . stringify ( e ) )
sseError ( 'Connection failed' )
} )
// Fatal error on the server side, error message propagated, but connection needs to be closed.
eventSource . addEventListener ( 'fatalErr' , ( e : MessageEvent ) = > {
const errmsg = JSON . parse ( e . data ) as string || '(no error message)'
sseError ( 'Server error: "' + errmsg + '"' )
} )
const checkParse = < T > ( fn : ( ) = > T ) : T = > {
try {
return fn ( )
} catch ( err ) {
window . alert ( 'invalid event from server: ' + ( ( err as any ) . message || '(no message)' ) )
throw err
}
}
eventSource . addEventListener ( 'start' , ( e : MessageEvent ) = > {
2023-11-27 10:02:01 +03:00
const data = JSON . parse ( e . data )
2024-01-01 16:51:17 +03:00
if ( lastServerVersion && data . Version !== lastServerVersion ) {
2023-11-27 10:02:01 +03:00
if ( window . confirm ( 'Server has been updated to a new version. Reload?' ) ) {
window . location . reload ( )
return
}
}
2024-01-01 16:51:17 +03:00
lastServerVersion = data . Version
2023-11-27 10:02:01 +03:00
const start = checkParse ( ( ) = > api . parser . EventStart ( data ) )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
log ( 'event start' , start )
2024-04-19 18:24:54 +03:00
accountSettings = start . Settings
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
connecting = false
sseID = start . SSEID
loginAddress = start . LoginAddress
2024-04-19 18:44:31 +03:00
dom . _kids ( accountElem , start . AccountPath ? dom . a ( attr . href ( start . AccountPath ) , 'Account' ) : [ ] )
2024-02-08 20:03:48 +03:00
const loginAddr = formatEmail ( loginAddress )
2024-04-19 18:44:31 +03:00
dom . _kids ( loginAddressElem , loginAddr )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
accountAddresses = start . Addresses || [ ]
accountAddresses . sort ( ( a , b ) = > {
2024-02-08 20:03:48 +03:00
if ( formatEmail ( a ) === loginAddr ) {
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
return - 1
}
2024-02-08 20:03:48 +03:00
if ( formatEmail ( b ) === loginAddr ) {
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
return 1
}
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
if ( a . Domain . ASCII !== b . Domain . ASCII ) {
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
return a . Domain . ASCII < b . Domain . ASCII ? - 1 : 1
}
return a . User < b . User ? - 1 : 1
} )
domainAddressConfigs = start . DomainAddressConfigs || { }
2023-11-27 09:34:18 +03:00
rejectsMailbox = start . RejectsMailbox
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
clearList ( )
2024-02-09 13:21:33 +03:00
// If we were opened through a mailto: link, it's time to open the compose window.
if ( openComposeOptions ) {
( async ( ) = > {
// Resolve Q/B-word mime encoding for subject. ../rfc/6068:267 ../rfc/2047:180
if ( openComposeOptions . subject && openComposeOptions . subject . includes ( '=?' ) ) {
openComposeOptions . subject = await withStatus ( 'Decoding MIME words for subject' , client . DecodeMIMEWords ( openComposeOptions . subject ) )
}
2024-04-19 22:03:18 +03:00
compose ( openComposeOptions , listMailboxes )
2024-02-09 13:21:33 +03:00
openComposeOptions = undefined
} ) ( )
}
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
let mailboxName = start . MailboxName
let mb = ( start . Mailboxes || [ ] ) . find ( mb = > mb . Name === start . MailboxName )
if ( mb ) {
requestFilter . MailboxID = mb . ID // For check to display mailboxname in msgitemView.
}
if ( mailboxName === '' ) {
mailboxName = ( start . Mailboxes || [ ] ) . find ( mb = > mb . ID === requestFilter . MailboxID ) ? . Name || ''
}
mailboxlistView . loadMailboxes ( start . Mailboxes || [ ] , search . active ? undefined : mailboxName )
if ( searchView . root . parentElement ) {
searchView . ensureLoaded ( )
}
if ( ! mb ) {
updatePageTitle ( )
}
dom . _kids ( queryactivityElem , 'loading...' )
msglistscrollElem . appendChild ( listloadingElem )
noreconnectTimer = setTimeout ( ( ) = > {
noreconnect = false
noreconnectTimer = 0
} , 10 * 60 * 1000 )
} )
eventSource . addEventListener ( 'viewErr' , async ( e : MessageEvent ) = > {
const viewErr = checkParse ( ( ) = > api . parser . EventViewErr ( JSON . parse ( e . data ) ) )
log ( 'event viewErr' , viewErr )
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
if ( viewErr . ViewID !== viewID || viewErr . RequestID !== requestID ) {
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
log ( 'received viewErr for other viewID or requestID' , { expected : { viewID , requestID } , got : { viewID : viewErr.ViewID , requestID : viewErr.RequestID } } )
return
}
viewID = 0
requestID = 0
dom . _kids ( queryactivityElem )
listloadingElem . remove ( )
listerrElem . remove ( )
dom . _kids ( listerrElem , 'Error from server during request for messages: ' + viewErr . Err )
msglistscrollElem . appendChild ( listerrElem )
window . alert ( 'Error from server during request for messages: ' + viewErr . Err )
} )
eventSource . addEventListener ( 'viewReset' , async ( e : MessageEvent ) = > {
const viewReset = checkParse ( ( ) = > api . parser . EventViewReset ( JSON . parse ( e . data ) ) )
log ( 'event viewReset' , viewReset )
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
if ( viewReset . ViewID !== viewID || viewReset . RequestID !== requestID ) {
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
log ( 'received viewReset for other viewID or requestID' , { expected : { viewID , requestID } , got : { viewID : viewReset.ViewID , requestID : viewReset.RequestID } } )
return
}
clearList ( )
dom . _kids ( queryactivityElem , 'loading...' )
msglistscrollElem . appendChild ( listloadingElem )
window . alert ( 'Could not find message to continue scrolling, resetting the view.' )
} )
eventSource . addEventListener ( 'viewMsgs' , async ( e : MessageEvent ) = > {
const viewMsgs = checkParse ( ( ) = > api . parser . EventViewMsgs ( JSON . parse ( e . data ) ) )
log ( 'event viewMsgs' , viewMsgs )
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
if ( viewMsgs . ViewID !== viewID || viewMsgs . RequestID !== requestID ) {
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
log ( 'received viewMsgs for other viewID or requestID' , { expected : { viewID , requestID } , got : { viewID : viewMsgs.ViewID , requestID : viewMsgs.RequestID } } )
return
}
msglistView . root . classList . toggle ( 'loading' , false )
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
if ( viewMsgs . MessageItems ) {
msglistView . addMessageItems ( viewMsgs . MessageItems || [ ] , false , requestMsgID )
}
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
if ( viewMsgs . ParsedMessage ) {
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
const ok = msglistView . openMessage ( viewMsgs . ParsedMessage )
if ( ! ok ) {
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
// Should not happen, server would be sending a parsedmessage while not including the message itself.
requestMsgID = 0
setLocationHash ( )
}
}
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
if ( viewMsgs . MessageItems && viewMsgs . MessageItems . length > 0 ) {
requestAnchorMessageID = viewMsgs . MessageItems [ viewMsgs . MessageItems . length - 1 ] ! [ 0 ] ! . Message . ID
}
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
requestViewEnd = viewMsgs . ViewEnd
if ( requestViewEnd ) {
msglistscrollElem . appendChild ( listendElem )
}
if ( ( viewMsgs . MessageItems || [ ] ) . length === 0 || requestViewEnd ) {
dom . _kids ( queryactivityElem )
listloadingElem . remove ( )
requestID = 0
if ( requestMsgID ) {
requestMsgID = 0
setLocationHash ( )
}
}
} )
eventSource . addEventListener ( 'viewChanges' , async ( e : MessageEvent ) = > {
const viewChanges = checkParse ( ( ) = > api . parser . EventViewChanges ( JSON . parse ( e . data ) ) )
log ( 'event viewChanges' , viewChanges )
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
if ( viewChanges . ViewID !== viewID ) {
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
log ( 'received viewChanges for other viewID' , { expected : viewID , got : viewChanges.ViewID } )
return
}
try {
( viewChanges . Changes || [ ] ) . forEach ( tc = > {
if ( ! tc ) {
return
}
const [ tag , x ] = tc
if ( tag === 'ChangeMailboxCounts' ) {
const c = api . parser . ChangeMailboxCounts ( x )
mailboxlistView . setMailboxCounts ( c . MailboxID , c . Total , c . Unread )
} else if ( tag === 'ChangeMailboxSpecialUse' ) {
const c = api . parser . ChangeMailboxSpecialUse ( x )
mailboxlistView . setMailboxSpecialUse ( c . MailboxID , c . SpecialUse )
} else if ( tag === 'ChangeMailboxKeywords' ) {
const c = api . parser . ChangeMailboxKeywords ( x )
mailboxlistView . setMailboxKeywords ( c . MailboxID , c . Keywords || [ ] )
} else if ( tag === 'ChangeMsgAdd' ) {
const c = api . parser . ChangeMsgAdd ( x )
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
msglistView . addMessageItems ( [ c . MessageItems || [ ] ] , true , 0 )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
} else if ( tag === 'ChangeMsgRemove' ) {
const c = api . parser . ChangeMsgRemove ( x )
msglistView . removeUIDs ( c . MailboxID , c . UIDs || [ ] )
} else if ( tag === 'ChangeMsgFlags' ) {
const c = api . parser . ChangeMsgFlags ( x )
2023-08-10 11:56:04 +03:00
msglistView . updateFlags ( c . MailboxID , c . UID , c . ModSeq , c . Mask , c . Flags , c . Keywords || [ ] )
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
} else if ( tag === 'ChangeMsgThread' ) {
const c = api . parser . ChangeMsgThread ( x )
if ( c . MessageIDs ) {
msglistView . updateMessageThreadFields ( c . MessageIDs , c . Muted , c . Collapsed )
}
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
} else if ( tag === 'ChangeMailboxRemove' ) {
const c = api . parser . ChangeMailboxRemove ( x )
mailboxlistView . removeMailbox ( c . MailboxID )
} else if ( tag === 'ChangeMailboxAdd' ) {
const c = api . parser . ChangeMailboxAdd ( x )
mailboxlistView . addMailbox ( c . Mailbox )
} else if ( tag === 'ChangeMailboxRename' ) {
const c = api . parser . ChangeMailboxRename ( x )
mailboxlistView . renameMailbox ( c . MailboxID , c . NewName )
} else {
throw new Error ( 'unknown change tag ' + tag )
}
} )
} catch ( err ) {
window . alert ( 'Error processing changes (reloading advised): ' + errmsg ( err ) )
}
} )
}
connect ( false )
}
window . addEventListener ( 'load' , async ( ) = > {
try {
await init ( )
} catch ( err ) {
window . alert ( 'Error: ' + errmsg ( err ) )
}
} )
2023-09-21 12:31:07 +03:00
// Keep original URL of page load, so we can remove it from stack trace if we need to.
const origLocation = {
href : window.location.href ,
protocol : window.location.protocol ,
host : window.location.host ,
pathname : window.location.pathname ,
search : window.location.search ,
}
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
// If a JS error happens, show a box in the lower left corner, with a button to
// show details, in a popup. The popup shows the error message and a link to github
// to create an issue. We want to lower the barrier to give feedback.
const showUnhandledError = ( err : Error , lineno : number , colno : number ) = > {
console . log ( 'unhandled error' , err )
if ( settings . ignoreErrorsUntil > new Date ( ) . getTime ( ) / 1000 ) {
return
}
let stack = err . stack || ''
if ( stack ) {
2023-09-21 12:31:07 +03:00
log ( { stack } )
// At the time of writing, Firefox has stacks with full location.href of original
// page load including hash. Chromium has location.href without hash.
const loc = origLocation
stack = '\n' + stack . replaceAll ( loc . href , 'webmail.html' ) . replaceAll ( loc . protocol + '//' + loc . host + loc . pathname + loc . search , 'webmail.html' )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
} else {
stack = ' (not available)'
}
const xerrmsg = err . toString ( )
const box = dom . div (
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
css ( 'unhandledErrorBox' , { position : 'absolute' , bottom : '1ex' , left : '1ex' , backgroundColor : 'rgba(255, 110, 110, .9)' , maxWidth : '14em' , padding : '.25em .5em' , borderRadius : '.25em' , fontSize : '.8em' , wordBreak : 'break-all' , zIndex : zindexes.shortcut } ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
dom . div ( style ( { marginBottom : '.5ex' } ) , '' + xerrmsg ) ,
dom . clickbutton ( 'Details' , function click() {
box . remove ( )
let msg = ` Mox version: ${ moxversion }
Browser : $ { window . navigator . userAgent }
File : webmail.html
Lineno : $ { lineno || '-' }
Colno : $ { colno || '-' }
Message : $ { xerrmsg }
Stack trace : $ { stack }
`
const body = ` [Hi! Please replace this text with an explanation of what you did to trigger this errors. It will help us reproduce the problem. The more details, the more likely it is we can find and fix the problem. If you don't know how or why it happened, that's ok, it is still useful to report the problem. If no stack trace was found and included below, and you are a developer, you can probably find more details about the error in the browser developer console. Thanks!]
Details of the error and browser :
` +' ` ` ` \ n '+msg+' ` ` ` \ n'
const remove = popup (
style ( { maxWidth : '60em' } ) ,
dom . h1 ( 'A JavaScript error occurred' ) ,
dom . pre ( dom . _class ( 'mono' ) ,
webmail: change many inline styles to using css classes, and add dark mode
this started with looking into the dark mode of PR #163 by mattfbacon. it's a
very good solution, especially for the amount of code. while looking into dark
mode, some common problems with inverting colors are:
- box-shadow start "glowing" which isn't great. likewise, semitransparent
layers would become brighter, not darker.
- while popups/overlays in light mode just stay the same white, in dark mode
they should become lighter than the regular content because box shadows don't
give enough contrast in dark mode.
while looking at adding explicit styles for dark mode, it turns out that's
easier when we work more with css rules/classes instead of inline styles (so we
can use the @media rule).
so we now also create css rules instead of working with inline styles a lot.
benefits:
- creating css rules is useful for items that repeat. they'll have a single css
class. changing a style on a css class is now reflected in all elements of that
kind (with that class)
- css class names are helpful when inspecting the DOM while developing: they
typically describe the function of the element.
most css classes are defined near where they are used, often while making the
element using the class (the css rule is created on first use).
this changes moves colors used for styling to a single place in webmail/lib.ts.
each property can get two values: one for regular/light mode, one for dark mode.
that should prevent forgetting one of them and makes it easy to configure both.
this change sets colors for the dark mode. i think the popups look better than
in PR #163, but in other ways it may be worse. this is a start, we can tweak
the styling.
if we can reduce the number of needed colors some more, we could make them
configurable in the webmail settings in the future. so this is also a step
towards making the ui looks configurable as discussed in issue #107.
2024-05-06 10:13:50 +03:00
css ( 'unhandledErrorMsg' , { backgroundColor : styles.backgroundColorMild , padding : '1ex' , borderRadius : '.15em' , border : '1px solid' , borderColor : styles.borderColor , whiteSpace : 'pre-wrap' } ) ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
msg ,
) ,
dom . br ( ) ,
dom . div ( 'There is a good chance this is a bug in Mox Webmail.' ) ,
dom . div ( 'Consider filing a bug report ("issue") at ' , link ( 'https://github.com/mjl-/mox/issues/new?title=' + encodeURIComponent ( 'mox webmail js error: "' + xerrmsg + '"' ) + '&body=' + encodeURIComponent ( body ) , 'https://github.com/mjl-/mox/issues/new' ) , '. The link includes the error details.' ) ,
dom . div ( 'Before reporting you could check previous ' , link ( 'https://github.com/mjl-/mox/issues?q=is%3Aissue+"mox+webmail+js+error%3A"' , 'webmail bug reports' ) , '.' ) ,
dom . br ( ) ,
dom . div ( 'Your feedback will help improve mox, thanks!' ) ,
dom . br ( ) ,
dom . div (
style ( { textAlign : 'right' } ) ,
dom . clickbutton ( 'Close and silence errors for 1 week' , function click() {
remove ( )
settingsPut ( { . . . settings , ignoreErrorsUntil : Math.round ( new Date ( ) . getTime ( ) / 1000 + 7 * 24 * 3600 ) } )
} ) ,
' ' ,
dom . clickbutton ( 'Close' , function click() {
remove ( )
} ) ,
) ,
)
} ) , ' ' ,
dom . clickbutton ( 'Ignore' , function click() {
box . remove ( )
} ) ,
)
document . body . appendChild ( box )
}
// We don't catch all errors, we use throws to not continue executing javascript.
// But for JavaScript-level errors, we want to show a warning to helpfully get the
// user to submit a bug report.
window . addEventListener ( 'unhandledrejection' , ( e : PromiseRejectionEvent ) = > {
if ( ! e . reason ) {
return
}
const err = e . reason
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
if ( err instanceof EvalError || err instanceof RangeError || err instanceof ReferenceError || err instanceof SyntaxError || err instanceof TypeError || err instanceof URIError || err instanceof ConsistencyError ) {
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
showUnhandledError ( err , 0 , 0 )
} else {
console . log ( 'unhandled promiserejection' , err , e . promise )
}
} )
// Window-level errors aren't that likely, since all code is in the init promise,
// but doesn't hurt to register an handler.
window . addEventListener ( 'error' , e = > {
showUnhandledError ( e . error , e . lineno , e . colno )
} )