1
0
Fork 0
mirror of https://github.com/mjl-/mox.git synced 2025-01-15 09:56:27 +03:00
mox/junk/filter_test.go

202 lines
5.4 KiB
Go
Raw Normal View History

2023-01-30 16:27:06 +03:00
package junk
import (
"fmt"
"math"
"os"
"path/filepath"
"testing"
"github.com/mjl-/mox/mlog"
)
func tcheck(t *testing.T, err error, msg string) {
t.Helper()
if err != nil {
t.Fatalf("%s: %s", msg, err)
}
}
func tlistdir(t *testing.T, name string) []string {
t.Helper()
l, err := os.ReadDir(name)
tcheck(t, err, "readdir")
names := make([]string, len(l))
for i, e := range l {
names[i] = e.Name()
}
return names
}
func TestFilter(t *testing.T) {
log := mlog.New("junk")
params := Params{
Onegrams: true,
Twograms: true,
Threegrams: false,
MaxPower: 0.1,
TopWords: 10,
IgnoreWords: 0.1,
RareWords: 1,
}
dbPath := "../testdata/junk/filter.db"
bloomPath := "../testdata/junk/filter.bloom"
os.Remove(dbPath)
os.Remove(bloomPath)
f, err := NewFilter(log, params, dbPath, bloomPath)
tcheck(t, err, "new filter")
err = f.Close()
tcheck(t, err, "close filter")
f, err = OpenFilter(log, params, dbPath, bloomPath, true)
tcheck(t, err, "open filter")
// Ensure these dirs exist. Developers should bring their own ham/spam example
// emails.
os.MkdirAll("../testdata/train/ham", 0770)
os.MkdirAll("../testdata/train/spam", 0770)
hamdir := "../testdata/train/ham"
spamdir := "../testdata/train/spam"
hamfiles := tlistdir(t, hamdir)
if len(hamfiles) > 100 {
hamfiles = hamfiles[:100]
}
spamfiles := tlistdir(t, spamdir)
if len(spamfiles) > 100 {
spamfiles = spamfiles[:100]
}
err = f.TrainDirs(hamdir, "", spamdir, hamfiles, nil, spamfiles)
tcheck(t, err, "train dirs")
if len(hamfiles) == 0 || len(spamfiles) == 0 {
fmt.Println("not training, no ham and/or spam messages, add them to testdata/train/ham and testdata/train/spam")
return
}
prob, _, _, _, err := f.ClassifyMessagePath(filepath.Join(hamdir, hamfiles[0]))
tcheck(t, err, "classify ham message")
if prob > 0.1 {
t.Fatalf("trained ham file has prob %v, expected <= 0.1", prob)
}
prob, _, _, _, err = f.ClassifyMessagePath(filepath.Join(spamdir, spamfiles[0]))
tcheck(t, err, "classify spam message")
if prob < 0.9 {
t.Fatalf("trained spam file has prob %v, expected > 0.9", prob)
}
err = f.Close()
tcheck(t, err, "close filter")
// Start again with empty filter. We'll train a few messages and check they are
// classified as ham/spam. Then we untrain to see they are no longer classified.
os.Remove(dbPath)
os.Remove(bloomPath)
f, err = NewFilter(log, params, dbPath, bloomPath)
tcheck(t, err, "open filter")
hamf, err := os.Open(filepath.Join(hamdir, hamfiles[0]))
tcheck(t, err, "open hamfile")
defer hamf.Close()
hamstat, err := hamf.Stat()
tcheck(t, err, "stat hamfile")
hamsize := hamstat.Size()
spamf, err := os.Open(filepath.Join(spamdir, spamfiles[0]))
tcheck(t, err, "open spamfile")
defer spamf.Close()
spamstat, err := spamf.Stat()
tcheck(t, err, "stat spamfile")
spamsize := spamstat.Size()
// Train each message twice, to prevent single occurrences from being ignored.
err = f.TrainMessage(hamf, hamsize, true)
tcheck(t, err, "train ham message")
_, err = hamf.Seek(0, 0)
tcheck(t, err, "seek ham message")
err = f.TrainMessage(hamf, hamsize, true)
tcheck(t, err, "train ham message")
err = f.TrainMessage(spamf, spamsize, false)
tcheck(t, err, "train spam message")
_, err = spamf.Seek(0, 0)
tcheck(t, err, "seek spam message")
err = f.TrainMessage(spamf, spamsize, true)
tcheck(t, err, "train spam message")
if !f.modified {
t.Fatalf("filter not modified after training")
}
if !f.bloom.Modified() {
t.Fatalf("bloom filter not modified after training")
}
err = f.Save()
tcheck(t, err, "save filter")
if f.modified || f.bloom.Modified() {
t.Fatalf("filter or bloom filter still modified after save")
}
// Classify and verify.
_, err = hamf.Seek(0, 0)
tcheck(t, err, "seek ham message")
prob, _, _, _, err = f.ClassifyMessageReader(hamf, hamsize)
tcheck(t, err, "classify ham")
if prob > 0.1 {
t.Fatalf("got prob %v, expected <= 0.1", prob)
}
_, err = spamf.Seek(0, 0)
tcheck(t, err, "seek spam message")
prob, _, _, _, err = f.ClassifyMessageReader(spamf, spamsize)
tcheck(t, err, "classify spam")
if prob < 0.9 {
t.Fatalf("got prob %v, expected >= 0.9", prob)
}
// Untrain ham & spam.
_, err = hamf.Seek(0, 0)
tcheck(t, err, "seek ham message")
err = f.UntrainMessage(hamf, hamsize, true)
tcheck(t, err, "untrain ham message")
_, err = hamf.Seek(0, 0)
tcheck(t, err, "seek ham message")
err = f.UntrainMessage(hamf, spamsize, true)
tcheck(t, err, "untrain ham message")
_, err = spamf.Seek(0, 0)
tcheck(t, err, "seek spam message")
err = f.UntrainMessage(spamf, spamsize, true)
tcheck(t, err, "untrain spam message")
_, err = spamf.Seek(0, 0)
tcheck(t, err, "seek spam message")
err = f.UntrainMessage(spamf, spamsize, true)
tcheck(t, err, "untrain spam message")
if !f.modified {
t.Fatalf("filter not modified after untraining")
}
// Classify again, should be unknown.
_, err = hamf.Seek(0, 0)
tcheck(t, err, "seek ham message")
prob, _, _, _, err = f.ClassifyMessageReader(hamf, hamsize)
tcheck(t, err, "classify ham")
if math.Abs(prob-0.5) > 0.1 {
t.Fatalf("got prob %v, expected 0.5 +-0.1", prob)
}
_, err = spamf.Seek(0, 0)
tcheck(t, err, "seek spam message")
prob, _, _, _, err = f.ClassifyMessageReader(spamf, spamsize)
tcheck(t, err, "classify spam")
if math.Abs(prob-0.5) > 0.1 {
t.Fatalf("got prob %v, expected 0.5 +-0.1", prob)
}
err = f.Close()
tcheck(t, err, "close filter")
}