mox/gentestdata.go

406 lines
13 KiB
Go
Raw Normal View History

package main
import (
"context"
"fmt"
"log"
"os"
"path/filepath"
"strings"
"time"
"github.com/mjl-/bstore"
"github.com/mjl-/sconf"
"github.com/mjl-/mox/config"
"github.com/mjl-/mox/dmarcdb"
"github.com/mjl-/mox/dmarcrpt"
"github.com/mjl-/mox/dns"
"github.com/mjl-/mox/mlog"
"github.com/mjl-/mox/mox-"
"github.com/mjl-/mox/moxvar"
"github.com/mjl-/mox/mtasts"
"github.com/mjl-/mox/mtastsdb"
"github.com/mjl-/mox/queue"
"github.com/mjl-/mox/smtp"
"github.com/mjl-/mox/store"
"github.com/mjl-/mox/tlsrpt"
"github.com/mjl-/mox/tlsrptdb"
)
func cmdGentestdata(c *cmd) {
c.unlisted = true
c.params = "dest-dir"
c.help = `Generate a data directory populated, for testing upgrades.`
args := c.Parse()
if len(args) != 1 {
c.Usage()
}
destDataDir, err := filepath.Abs(args[0])
xcheckf(err, "making destination directory an absolute path")
if _, err := os.Stat(destDataDir); err == nil {
log.Fatalf("destination directory already exists, refusing to generate test data")
}
err = os.MkdirAll(destDataDir, 0770)
xcheckf(err, "creating destination data directory")
err = os.MkdirAll(filepath.Join(destDataDir, "tmp"), 0770)
xcheckf(err, "creating tmp directory")
tempfile := func() *os.File {
f, err := os.CreateTemp(filepath.Join(destDataDir, "tmp"), "temp")
xcheckf(err, "creating temp file")
return f
}
ctxbg := context.Background()
mox.Conf.Log[""] = mlog.LevelInfo
mlog.SetConfig(mox.Conf.Log)
const domainsConf = `
Domains:
mox.example: nil
.example: nil
Accounts:
test0:
Domain: mox.example
Destinations:
test0@mox.example: nil
test1:
Domain: mox.example
Destinations:
test1@mox.example: nil
test2:
Domain: .example
Destinations:
@.example: nil
JunkFilter:
Threshold: 0.95
Params:
Twograms: true
MaxPower: 0.1
TopWords: 10
IgnoreWords: 0.1
`
make mox compile on windows, without "mox serve" but with working "mox localserve" getting mox to compile required changing code in only a few places where package "syscall" was used: for accessing file access times and for umask handling. an open problem is how to start a process as an unprivileged user on windows. that's why "mox serve" isn't implemented yet. and just finding a way to implement it now may not be good enough in the near future: we may want to starting using a more complete privilege separation approach, with a process handling sensitive tasks (handling private keys, authentication), where we may want to pass file descriptors between processes. how would that work on windows? anyway, getting mox to compile for windows doesn't mean it works properly on windows. the largest issue: mox would normally open a file, rename or remove it, and finally close it. this happens during message delivery. that doesn't work on windows, the rename/remove would fail because the file is still open. so this commit swaps many "remove" and "close" calls. renames are a longer story: message delivery had two ways to deliver: with "consuming" the (temporary) message file (which would rename it to its final destination), and without consuming (by hardlinking the file, falling back to copying). the last delivery to a recipient of a message (and the only one in the common case of a single recipient) would consume the message, and the earlier recipients would not. during delivery, the already open message file was used, to parse the message. we still want to use that open message file, and the caller now stays responsible for closing it, but we no longer try to rename (consume) the file. we always hardlink (or copy) during delivery (this works on windows), and the caller is responsible for closing and removing (in that order) the original temporary file. this does cost one syscall more. but it makes the delivery code (responsibilities) a bit simpler. there is one more obvious issue: the file system path separator. mox already used the "filepath" package to join paths in many places, but not everywhere. and it still used strings with slashes for local file access. with this commit, the code now uses filepath.FromSlash for path strings with slashes, uses "filepath" in a few more places where it previously didn't. also switches from "filepath" to regular "path" package when handling mailbox names in a few places, because those always use forward slashes, regardless of local file system conventions. windows can handle forward slashes when opening files, so test code that passes path strings with forward slashes straight to go stdlib file i/o functions are left unchanged to reduce code churn. the regular non-test code, or test code that uses path strings in places other than standard i/o functions, does have the paths converted for consistent paths (otherwise we would end up with paths with mixed forward/backward slashes in log messages). windows cannot dup a listening socket. for "mox localserve", it isn't important, and we can work around the issue. the current approach for "mox serve" (forking a process and passing file descriptors of listening sockets on "privileged" ports) won't work on windows. perhaps it isn't needed on windows, and any user can listen on "privileged" ports? that would be welcome. on windows, os.Open cannot open a directory, so we cannot call Sync on it after message delivery. a cursory internet search indicates that directories cannot be synced on windows. the story is probably much more nuanced than that, with long deep technical details/discussions/disagreement/confusion, like on unix. for "mox localserve" we can get away with making syncdir a no-op.
2023-10-14 11:54:07 +03:00
mox.ConfigStaticPath = filepath.FromSlash("/tmp/mox-bogus/mox.conf")
mox.ConfigDynamicPath = filepath.FromSlash("/tmp/mox-bogus/domains.conf")
mox.Conf.DynamicLastCheck = time.Now() // Should prevent warning.
mox.Conf.Static = config.Static{
DataDir: destDataDir,
}
err = sconf.Parse(strings.NewReader(domainsConf), &mox.Conf.Dynamic)
xcheckf(err, "parsing domains config")
const dmarcReport = `<?xml version="1.0" encoding="UTF-8" ?>
<feedback>
<report_metadata>
<org_name>google.com</org_name>
<email>noreply-dmarc-support@google.com</email>
<extra_contact_info>https://support.google.com/a/answer/2466580</extra_contact_info>
<report_id>10051505501689795560</report_id>
<date_range>
<begin>1596412800</begin>
<end>1596499199</end>
</date_range>
</report_metadata>
<policy_published>
<domain>mox.example</domain>
<adkim>r</adkim>
<aspf>r</aspf>
<p>reject</p>
<sp>reject</sp>
<pct>100</pct>
</policy_published>
<record>
<row>
<source_ip>127.0.0.1</source_ip>
<count>1</count>
<policy_evaluated>
<disposition>none</disposition>
<dkim>pass</dkim>
<spf>pass</spf>
</policy_evaluated>
</row>
<identifiers>
<header_from>example.org</header_from>
</identifiers>
<auth_results>
<dkim>
<domain>example.org</domain>
<result>pass</result>
<selector>example</selector>
</dkim>
<spf>
<domain>example.org</domain>
<result>pass</result>
</spf>
</auth_results>
</record>
</feedback>
`
const tlsReport = `{
"organization-name": "Company-X",
"date-range": {
"start-datetime": "2016-04-01T00:00:00Z",
"end-datetime": "2016-04-01T23:59:59Z"
},
"contact-info": "sts-reporting@company-x.example",
"report-id": "5065427c-23d3-47ca-b6e0-946ea0e8c4be",
"policies": [{
"policy": {
"policy-type": "sts",
"policy-string": ["version: STSv1","mode: testing",
"mx: *.mail.company-y.example","max_age: 86400"],
"policy-domain": "mox.example",
"mx-host": ["*.mail.company-y.example"]
},
"summary": {
"total-successful-session-count": 5326,
"total-failure-session-count": 303
},
"failure-details": [{
"result-type": "certificate-expired",
"sending-mta-ip": "2001:db8:abcd:0012::1",
"receiving-mx-hostname": "mx1.mail.company-y.example",
"failed-session-count": 100
}, {
"result-type": "starttls-not-supported",
"sending-mta-ip": "2001:db8:abcd:0013::1",
"receiving-mx-hostname": "mx2.mail.company-y.example",
"receiving-ip": "203.0.113.56",
"failed-session-count": 200,
"additional-information": "https://reports.company-x.example/report_info ? id = 5065427 c - 23 d3# StarttlsNotSupported "
}, {
"result-type": "validation-failure",
"sending-mta-ip": "198.51.100.62",
"receiving-ip": "203.0.113.58",
"receiving-mx-hostname": "mx-backup.mail.company-y.example",
"failed-session-count": 3,
"failure-reason-code": "X509_V_ERR_PROXY_PATH_LENGTH_EXCEEDED"
}]
}]
}`
err = os.WriteFile(filepath.Join(destDataDir, "moxversion"), []byte(moxvar.Version), 0660)
xcheckf(err, "writing moxversion")
implement tls client certificate authentication the imap & smtp servers now allow logging in with tls client authentication and the "external" sasl authentication mechanism. email clients like thunderbird, fairemail, k9, macos mail implement it. this seems to be the most secure among the authentication mechanism commonly implemented by clients. a useful property is that an account can have a separate tls public key for each device/email client. with tls client cert auth, authentication is also bound to the tls connection. a mitm cannot pass the credentials on to another tls connection, similar to scram-*-plus. though part of scram-*-plus is that clients verify that the server knows the client credentials. for tls client auth with imap, we send a "preauth" untagged message by default. that puts the connection in authenticated state. given the imap connection state machine, further authentication commands are not allowed. some clients don't recognize the preauth message, and try to authenticate anyway, which fails. a tls public key has a config option to disable preauth, keeping new connections in unauthenticated state, to work with such email clients. for smtp (submission), we don't require an explicit auth command. both for imap and smtp, we allow a client to authenticate with another mechanism than "external". in that case, credentials are verified, and have to be for the same account as the tls client auth, but the adress can be another one than the login address configured with the tls public key. only the public key is used to identify the account that is authenticating. we ignore the rest of the certificate. expiration dates, names, constraints, etc are not verified. no certificate authorities are involved. users can upload their own (minimal) certificate. the account web interface shows openssl commands you can run to generate a private key, minimal cert, and a p12 file (the format that email clients seem to like...) containing both private key and certificate. the imapclient & smtpclient packages can now also use tls client auth. and so does "mox sendmail", either with a pem file with private key and certificate, or with just an ed25519 private key. there are new subcommands "mox config tlspubkey ..." for adding/removing/listing tls public keys from the cli, by the admin.
2024-12-06 00:41:49 +03:00
// Populate auth.db
err = store.Init(ctxbg)
xcheckf(err, "store init")
err = store.TLSPublicKeyAdd(ctxbg, &store.TLSPublicKey{Name: "testkey", Fingerprint: "...", Type: "ecdsa-p256", CertDER: []byte("..."), Account: "test0", LoginAddress: "test0@mox.example"})
implement tls client certificate authentication the imap & smtp servers now allow logging in with tls client authentication and the "external" sasl authentication mechanism. email clients like thunderbird, fairemail, k9, macos mail implement it. this seems to be the most secure among the authentication mechanism commonly implemented by clients. a useful property is that an account can have a separate tls public key for each device/email client. with tls client cert auth, authentication is also bound to the tls connection. a mitm cannot pass the credentials on to another tls connection, similar to scram-*-plus. though part of scram-*-plus is that clients verify that the server knows the client credentials. for tls client auth with imap, we send a "preauth" untagged message by default. that puts the connection in authenticated state. given the imap connection state machine, further authentication commands are not allowed. some clients don't recognize the preauth message, and try to authenticate anyway, which fails. a tls public key has a config option to disable preauth, keeping new connections in unauthenticated state, to work with such email clients. for smtp (submission), we don't require an explicit auth command. both for imap and smtp, we allow a client to authenticate with another mechanism than "external". in that case, credentials are verified, and have to be for the same account as the tls client auth, but the adress can be another one than the login address configured with the tls public key. only the public key is used to identify the account that is authenticating. we ignore the rest of the certificate. expiration dates, names, constraints, etc are not verified. no certificate authorities are involved. users can upload their own (minimal) certificate. the account web interface shows openssl commands you can run to generate a private key, minimal cert, and a p12 file (the format that email clients seem to like...) containing both private key and certificate. the imapclient & smtpclient packages can now also use tls client auth. and so does "mox sendmail", either with a pem file with private key and certificate, or with just an ed25519 private key. there are new subcommands "mox config tlspubkey ..." for adding/removing/listing tls public keys from the cli, by the admin.
2024-12-06 00:41:49 +03:00
xcheckf(err, "adding tlspubkey")
// Populate dmarc.db.
err = dmarcdb.Init()
xcheckf(err, "dmarcdb init")
report, err := dmarcrpt.ParseReport(strings.NewReader(dmarcReport))
xcheckf(err, "parsing dmarc aggregate report")
err = dmarcdb.AddReport(ctxbg, report, dns.Domain{ASCII: "mox.example"})
xcheckf(err, "adding dmarc aggregate report")
// Populate mtasts.db.
err = mtastsdb.Init(false)
xcheckf(err, "mtastsdb init")
mtastsPolicy := mtasts.Policy{
Version: "STSv1",
Mode: mtasts.ModeTesting,
MX: []mtasts.MX{
{Domain: dns.Domain{ASCII: "mx1.example.com"}},
{Domain: dns.Domain{ASCII: "mx2.example.com"}},
{Domain: dns.Domain{ASCII: "backup-example.com"}, Wildcard: true},
},
MaxAgeSeconds: 1296000,
}
implement outgoing tls reports we were already accepting, processing and displaying incoming tls reports. now we start tracking TLS connection and security-policy-related errors for outgoing message deliveries as well. we send reports once a day, to the reporting addresses specified in TLSRPT records (rua) of a policy domain. these reports are about MTA-STS policies and/or DANE policies, and about STARTTLS-related failures. sending reports is enabled by default, but can be disabled through setting NoOutgoingTLSReports in mox.conf. only at the end of the implementation process came the realization that the TLSRPT policy domain for DANE (MX) hosts are separate from the TLSRPT policy for the recipient domain, and that MTA-STS and DANE TLS/policy results are typically delivered in separate reports. so MX hosts need their own TLSRPT policies. config for the per-host TLSRPT policy should be added to mox.conf for existing installs, in field HostTLSRPT. it is automatically configured by quickstart for new installs. with a HostTLSRPT config, the "dns records" and "dns check" admin pages now suggest the per-host TLSRPT record. by creating that record, you're requesting TLS reports about your MX host. gathering all the TLS/policy results is somewhat tricky. the tentacles go throughout the code. the positive result is that the TLS/policy-related code had to be cleaned up a bit. for example, the smtpclient TLS modes now reflect reality better, with independent settings about whether PKIX and/or DANE verification has to be done, and/or whether verification errors have to be ignored (e.g. for tls-required: no header). also, cached mtasts policies of mode "none" are now cleaned up once the MTA-STS DNS record goes away.
2023-11-09 19:40:46 +03:00
err = mtastsdb.Upsert(ctxbg, dns.Domain{ASCII: "mox.example"}, "123", &mtastsPolicy, mtastsPolicy.String())
xcheckf(err, "adding mtastsdb report")
// Populate tlsrpt.db.
err = tlsrptdb.Init()
xcheckf(err, "tlsrptdb init")
tlsreportJSON, err := tlsrpt.Parse(strings.NewReader(tlsReport))
xcheckf(err, "parsing tls report")
tlsr := tlsreportJSON.Convert()
err = tlsrptdb.AddReport(ctxbg, c.log, dns.Domain{ASCII: "mox.example"}, "tlsrpt@mox.example", false, &tlsr)
xcheckf(err, "adding tls report")
// Populate queue, with a message.
err = queue.Init()
xcheckf(err, "queue init")
mailfrom := smtp.Path{Localpart: "other", IPDomain: dns.IPDomain{Domain: dns.Domain{ASCII: "other.example"}}}
rcptto := smtp.Path{Localpart: "test0", IPDomain: dns.IPDomain{Domain: dns.Domain{ASCII: "mox.example"}}}
prefix := []byte{}
mf := tempfile()
xcheckf(err, "temp file for queue message")
make mox compile on windows, without "mox serve" but with working "mox localserve" getting mox to compile required changing code in only a few places where package "syscall" was used: for accessing file access times and for umask handling. an open problem is how to start a process as an unprivileged user on windows. that's why "mox serve" isn't implemented yet. and just finding a way to implement it now may not be good enough in the near future: we may want to starting using a more complete privilege separation approach, with a process handling sensitive tasks (handling private keys, authentication), where we may want to pass file descriptors between processes. how would that work on windows? anyway, getting mox to compile for windows doesn't mean it works properly on windows. the largest issue: mox would normally open a file, rename or remove it, and finally close it. this happens during message delivery. that doesn't work on windows, the rename/remove would fail because the file is still open. so this commit swaps many "remove" and "close" calls. renames are a longer story: message delivery had two ways to deliver: with "consuming" the (temporary) message file (which would rename it to its final destination), and without consuming (by hardlinking the file, falling back to copying). the last delivery to a recipient of a message (and the only one in the common case of a single recipient) would consume the message, and the earlier recipients would not. during delivery, the already open message file was used, to parse the message. we still want to use that open message file, and the caller now stays responsible for closing it, but we no longer try to rename (consume) the file. we always hardlink (or copy) during delivery (this works on windows), and the caller is responsible for closing and removing (in that order) the original temporary file. this does cost one syscall more. but it makes the delivery code (responsibilities) a bit simpler. there is one more obvious issue: the file system path separator. mox already used the "filepath" package to join paths in many places, but not everywhere. and it still used strings with slashes for local file access. with this commit, the code now uses filepath.FromSlash for path strings with slashes, uses "filepath" in a few more places where it previously didn't. also switches from "filepath" to regular "path" package when handling mailbox names in a few places, because those always use forward slashes, regardless of local file system conventions. windows can handle forward slashes when opening files, so test code that passes path strings with forward slashes straight to go stdlib file i/o functions are left unchanged to reduce code churn. the regular non-test code, or test code that uses path strings in places other than standard i/o functions, does have the paths converted for consistent paths (otherwise we would end up with paths with mixed forward/backward slashes in log messages). windows cannot dup a listening socket. for "mox localserve", it isn't important, and we can work around the issue. the current approach for "mox serve" (forking a process and passing file descriptors of listening sockets on "privileged" ports) won't work on windows. perhaps it isn't needed on windows, and any user can listen on "privileged" ports? that would be welcome. on windows, os.Open cannot open a directory, so we cannot call Sync on it after message delivery. a cursory internet search indicates that directories cannot be synced on windows. the story is probably much more nuanced than that, with long deep technical details/discussions/disagreement/confusion, like on unix. for "mox localserve" we can get away with making syncdir a no-op.
2023-10-14 11:54:07 +03:00
defer os.Remove(mf.Name())
defer mf.Close()
const qmsg = "From: <test0@mox.example>\r\nTo: <other@remote.example>\r\nSubject: test\r\n\r\nthe message...\r\n"
_, err = fmt.Fprint(mf, qmsg)
xcheckf(err, "writing message")
add a webapi and webhooks for a simple http/json-based api for applications to compose/send messages, receive delivery feedback, and maintain suppression lists. this is an alternative to applications using a library to compose messages, submitting those messages using smtp, and monitoring a mailbox with imap for DSNs, which can be processed into the equivalent of suppression lists. but you need to know about all these standards/protocols and find libraries. by using the webapi & webhooks, you just need a http & json library. unfortunately, there is no standard for these kinds of api, so mox has made up yet another one... matching incoming DSNs about deliveries to original outgoing messages requires keeping history of "retired" messages (delivered from the queue, either successfully or failed). this can be enabled per account. history is also useful for debugging deliveries. we now also keep history of each delivery attempt, accessible while still in the queue, and kept when a message is retired. the queue webadmin pages now also have pagination, to show potentially large history. a queue of webhook calls is now managed too. failures are retried similar to message deliveries. webhooks can also be saved to the retired list after completing. also configurable per account. messages can be sent with a "unique smtp mail from" address. this can only be used if the domain is configured with a localpart catchall separator such as "+". when enabled, a queued message gets assigned a random "fromid", which is added after the separator when sending. when DSNs are returned, they can be related to previously sent messages based on this fromid. in the future, we can implement matching on the "envid" used in the smtp dsn extension, or on the "message-id" of the message. using a fromid can be triggered by authenticating with a login email address that is configured as enabling fromid. suppression lists are automatically managed per account. if a delivery attempt results in certain smtp errors, the destination address is added to the suppression list. future messages queued for that recipient will immediately fail without a delivery attempt. suppression lists protect your mail server reputation. submitted messages can carry "extra" data through the queue and webhooks for outgoing deliveries. through webapi as a json object, through smtp submission as message headers of the form "x-mox-extra-<key>: value". to make it easy to test webapi/webhooks locally, the "localserve" mode actually puts messages in the queue. when it's time to deliver, it still won't do a full delivery attempt, but just delivers to the sender account. unless the recipient address has a special form, simulating a failure to deliver. admins now have more control over the queue. "hold rules" can be added to mark newly queued messages as "on hold", pausing delivery. rules can be about certain sender or recipient domains/addresses, or apply to all messages pausing the entire queue. also useful for (local) testing. new config options have been introduced. they are editable through the admin and/or account web interfaces. the webapi http endpoints are enabled for newly generated configs with the quickstart, and in localserve. existing configurations must explicitly enable the webapi in mox.conf. gopherwatch.org was created to dogfood this code. it initially used just the compose/smtpclient/imapclient mox packages to send messages and process delivery feedback. it will get a config option to use the mox webapi/webhooks instead. the gopherwatch code to use webapi/webhook is smaller and simpler, and developing that shaped development of the mox webapi/webhooks. for issue #31 by cuu508
2024-04-15 22:49:02 +03:00
qm := queue.MakeMsg(mailfrom, rcptto, false, false, int64(len(qmsg)), "<test@localhost>", prefix, nil, time.Now(), "test")
err = queue.Add(ctxbg, c.log, "test0", mf, qm)
xcheckf(err, "enqueue message")
// Create three accounts.
// First account without messages.
accTest0, err := store.OpenAccount(c.log, "test0")
xcheckf(err, "open account test0")
err = accTest0.ThreadingWait(c.log)
implement message threading in backend and webmail we match messages to their parents based on the "references" and "in-reply-to" headers (requiring the same base subject), and in absense of those headers we also by only base subject (against messages received max 4 weeks ago). we store a threadid with messages. all messages in a thread have the same threadid. messages also have a "thread parent ids", which holds all id's of parent messages up to the thread root. then there is "thread missing link", which is set when a referenced immediate parent wasn't found (but possibly earlier ancestors can still be found and will be in thread parent ids". threads can be muted: newly delivered messages are automatically marked as read/seen. threads can be marked as collapsed: if set, the webmail collapses the thread to a single item in the basic threading view (default is to expand threads). the muted and collapsed fields are copied from their parent on message delivery. the threading is implemented in the webmail. the non-threading mode still works as before. the new default threading mode "unread" automatically expands only the threads with at least one unread (not seen) meessage. the basic threading mode "on" expands all threads except when explicitly collapsed (as saved in the thread collapsed field). new shortcuts for navigation/interaction threads have been added, e.g. go to previous/next thread root, toggle collapse/expand of thread (or double click), toggle mute of thread. some previous shortcuts have changed, see the help for details. the message threading are added with an explicit account upgrade step, automatically started when an account is opened. the upgrade is done in the background because it will take too long for large mailboxes to block account operations. the upgrade takes two steps: 1. updating all message records in the database to add a normalized message-id and thread base subject (with "re:", "fwd:" and several other schemes stripped). 2. going through all messages in the database again, reading the "references" and "in-reply-to" headers from disk, and matching against their parents. this second step is also done at the end of each import of mbox/maildir mailboxes. new deliveries are matched immediately against other existing messages, currently no attempt is made to rematch previously delivered messages (which could be useful for related messages being delivered out of order). the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
xcheckf(err, "wait for threading to finish")
err = accTest0.Close()
xcheckf(err, "close account")
// Second account with one message.
accTest1, err := store.OpenAccount(c.log, "test1")
xcheckf(err, "open account test1")
err = accTest1.ThreadingWait(c.log)
implement message threading in backend and webmail we match messages to their parents based on the "references" and "in-reply-to" headers (requiring the same base subject), and in absense of those headers we also by only base subject (against messages received max 4 weeks ago). we store a threadid with messages. all messages in a thread have the same threadid. messages also have a "thread parent ids", which holds all id's of parent messages up to the thread root. then there is "thread missing link", which is set when a referenced immediate parent wasn't found (but possibly earlier ancestors can still be found and will be in thread parent ids". threads can be muted: newly delivered messages are automatically marked as read/seen. threads can be marked as collapsed: if set, the webmail collapses the thread to a single item in the basic threading view (default is to expand threads). the muted and collapsed fields are copied from their parent on message delivery. the threading is implemented in the webmail. the non-threading mode still works as before. the new default threading mode "unread" automatically expands only the threads with at least one unread (not seen) meessage. the basic threading mode "on" expands all threads except when explicitly collapsed (as saved in the thread collapsed field). new shortcuts for navigation/interaction threads have been added, e.g. go to previous/next thread root, toggle collapse/expand of thread (or double click), toggle mute of thread. some previous shortcuts have changed, see the help for details. the message threading are added with an explicit account upgrade step, automatically started when an account is opened. the upgrade is done in the background because it will take too long for large mailboxes to block account operations. the upgrade takes two steps: 1. updating all message records in the database to add a normalized message-id and thread base subject (with "re:", "fwd:" and several other schemes stripped). 2. going through all messages in the database again, reading the "references" and "in-reply-to" headers from disk, and matching against their parents. this second step is also done at the end of each import of mbox/maildir mailboxes. new deliveries are matched immediately against other existing messages, currently no attempt is made to rematch previously delivered messages (which could be useful for related messages being delivered out of order). the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
xcheckf(err, "wait for threading to finish")
err = accTest1.DB.Write(ctxbg, func(tx *bstore.Tx) error {
inbox, err := bstore.QueryTx[store.Mailbox](tx).FilterNonzero(store.Mailbox{Name: "Inbox"}).Get()
xcheckf(err, "looking up inbox")
const msg = "From: <other@remote.example>\r\nTo: <test1@mox.example>\r\nSubject: test\r\n\r\nthe message...\r\n"
m := store.Message{
MailboxID: inbox.ID,
MailboxOrigID: inbox.ID,
MailboxDestinedID: inbox.ID,
RemoteIP: "1.2.3.4",
RemoteIPMasked1: "1.2.3.4",
RemoteIPMasked2: "1.2.3.0",
RemoteIPMasked3: "1.2.0.0",
EHLODomain: "other.example",
MailFrom: "other@remote.example",
MailFromLocalpart: smtp.Localpart("other"),
MailFromDomain: "remote.example",
RcptToLocalpart: "test1",
RcptToDomain: "mox.example",
MsgFromLocalpart: "other",
MsgFromDomain: "remote.example",
MsgFromOrgDomain: "remote.example",
EHLOValidated: true,
MailFromValidated: true,
MsgFromValidated: true,
EHLOValidation: store.ValidationStrict,
MailFromValidation: store.ValidationPass,
MsgFromValidation: store.ValidationStrict,
DKIMDomains: []string{"other.example"},
Size: int64(len(msg)),
}
mf := tempfile()
xcheckf(err, "creating temp file for delivery")
_, err = fmt.Fprint(mf, msg)
xcheckf(err, "writing deliver message to file")
err = accTest1.DeliverMessage(c.log, tx, &m, mf, false, true, false, true)
make mox compile on windows, without "mox serve" but with working "mox localserve" getting mox to compile required changing code in only a few places where package "syscall" was used: for accessing file access times and for umask handling. an open problem is how to start a process as an unprivileged user on windows. that's why "mox serve" isn't implemented yet. and just finding a way to implement it now may not be good enough in the near future: we may want to starting using a more complete privilege separation approach, with a process handling sensitive tasks (handling private keys, authentication), where we may want to pass file descriptors between processes. how would that work on windows? anyway, getting mox to compile for windows doesn't mean it works properly on windows. the largest issue: mox would normally open a file, rename or remove it, and finally close it. this happens during message delivery. that doesn't work on windows, the rename/remove would fail because the file is still open. so this commit swaps many "remove" and "close" calls. renames are a longer story: message delivery had two ways to deliver: with "consuming" the (temporary) message file (which would rename it to its final destination), and without consuming (by hardlinking the file, falling back to copying). the last delivery to a recipient of a message (and the only one in the common case of a single recipient) would consume the message, and the earlier recipients would not. during delivery, the already open message file was used, to parse the message. we still want to use that open message file, and the caller now stays responsible for closing it, but we no longer try to rename (consume) the file. we always hardlink (or copy) during delivery (this works on windows), and the caller is responsible for closing and removing (in that order) the original temporary file. this does cost one syscall more. but it makes the delivery code (responsibilities) a bit simpler. there is one more obvious issue: the file system path separator. mox already used the "filepath" package to join paths in many places, but not everywhere. and it still used strings with slashes for local file access. with this commit, the code now uses filepath.FromSlash for path strings with slashes, uses "filepath" in a few more places where it previously didn't. also switches from "filepath" to regular "path" package when handling mailbox names in a few places, because those always use forward slashes, regardless of local file system conventions. windows can handle forward slashes when opening files, so test code that passes path strings with forward slashes straight to go stdlib file i/o functions are left unchanged to reduce code churn. the regular non-test code, or test code that uses path strings in places other than standard i/o functions, does have the paths converted for consistent paths (otherwise we would end up with paths with mixed forward/backward slashes in log messages). windows cannot dup a listening socket. for "mox localserve", it isn't important, and we can work around the issue. the current approach for "mox serve" (forking a process and passing file descriptors of listening sockets on "privileged" ports) won't work on windows. perhaps it isn't needed on windows, and any user can listen on "privileged" ports? that would be welcome. on windows, os.Open cannot open a directory, so we cannot call Sync on it after message delivery. a cursory internet search indicates that directories cannot be synced on windows. the story is probably much more nuanced than that, with long deep technical details/discussions/disagreement/confusion, like on unix. for "mox localserve" we can get away with making syncdir a no-op.
2023-10-14 11:54:07 +03:00
mfname := mf.Name()
xcheckf(err, "add message to account test1")
err = mf.Close()
xcheckf(err, "closing file")
make mox compile on windows, without "mox serve" but with working "mox localserve" getting mox to compile required changing code in only a few places where package "syscall" was used: for accessing file access times and for umask handling. an open problem is how to start a process as an unprivileged user on windows. that's why "mox serve" isn't implemented yet. and just finding a way to implement it now may not be good enough in the near future: we may want to starting using a more complete privilege separation approach, with a process handling sensitive tasks (handling private keys, authentication), where we may want to pass file descriptors between processes. how would that work on windows? anyway, getting mox to compile for windows doesn't mean it works properly on windows. the largest issue: mox would normally open a file, rename or remove it, and finally close it. this happens during message delivery. that doesn't work on windows, the rename/remove would fail because the file is still open. so this commit swaps many "remove" and "close" calls. renames are a longer story: message delivery had two ways to deliver: with "consuming" the (temporary) message file (which would rename it to its final destination), and without consuming (by hardlinking the file, falling back to copying). the last delivery to a recipient of a message (and the only one in the common case of a single recipient) would consume the message, and the earlier recipients would not. during delivery, the already open message file was used, to parse the message. we still want to use that open message file, and the caller now stays responsible for closing it, but we no longer try to rename (consume) the file. we always hardlink (or copy) during delivery (this works on windows), and the caller is responsible for closing and removing (in that order) the original temporary file. this does cost one syscall more. but it makes the delivery code (responsibilities) a bit simpler. there is one more obvious issue: the file system path separator. mox already used the "filepath" package to join paths in many places, but not everywhere. and it still used strings with slashes for local file access. with this commit, the code now uses filepath.FromSlash for path strings with slashes, uses "filepath" in a few more places where it previously didn't. also switches from "filepath" to regular "path" package when handling mailbox names in a few places, because those always use forward slashes, regardless of local file system conventions. windows can handle forward slashes when opening files, so test code that passes path strings with forward slashes straight to go stdlib file i/o functions are left unchanged to reduce code churn. the regular non-test code, or test code that uses path strings in places other than standard i/o functions, does have the paths converted for consistent paths (otherwise we would end up with paths with mixed forward/backward slashes in log messages). windows cannot dup a listening socket. for "mox localserve", it isn't important, and we can work around the issue. the current approach for "mox serve" (forking a process and passing file descriptors of listening sockets on "privileged" ports) won't work on windows. perhaps it isn't needed on windows, and any user can listen on "privileged" ports? that would be welcome. on windows, os.Open cannot open a directory, so we cannot call Sync on it after message delivery. a cursory internet search indicates that directories cannot be synced on windows. the story is probably much more nuanced than that, with long deep technical details/discussions/disagreement/confusion, like on unix. for "mox localserve" we can get away with making syncdir a no-op.
2023-10-14 11:54:07 +03:00
err = os.Remove(mfname)
xcheckf(err, "removing temp message file")
add webmail it was far down on the roadmap, but implemented earlier, because it's interesting, and to help prepare for a jmap implementation. for jmap we need to implement more client-like functionality than with just imap. internal data structures need to change. jmap has lots of other requirements, so it's already a big project. by implementing a webmail now, some of the required data structure changes become clear and can be made now, so the later jmap implementation can do things similarly to the webmail code. the webmail frontend and webmail are written together, making their interface/api much smaller and simpler than jmap. one of the internal changes is that we now keep track of per-mailbox total/unread/unseen/deleted message counts and mailbox sizes. keeping this data consistent after any change to the stored messages (through the code base) is tricky, so mox now has a consistency check that verifies the counts are correct, which runs only during tests, each time an internal account reference is closed. we have a few more internal "changes" that are propagated for the webmail frontend (that imap doesn't have a way to propagate on a connection), like changes to the special-use flags on mailboxes, and used keywords in a mailbox. more changes that will be required have revealed themselves while implementing the webmail, and will be implemented next. the webmail user interface is modeled after the mail clients i use or have used: thunderbird, macos mail, mutt; and webmails i normally only use for testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed, but still the goal is to make this webmail client easy to use for everyone. the user interface looks like most other mail clients: a list of mailboxes, a search bar, a message list view, and message details. there is a top/bottom and a left/right layout for the list/message view, default is automatic based on screen size. the panes can be resized by the user. buttons for actions are just text, not icons. clicking a button briefly shows the shortcut for the action in the bottom right, helping with learning to operate quickly. any text that is underdotted has a title attribute that causes more information to be displayed, e.g. what a button does or a field is about. to highlight potential phishing attempts, any text (anywhere in the webclient) that switches unicode "blocks" (a rough approximation to (language) scripts) within a word is underlined orange. multiple messages can be selected with familiar ui interaction: clicking while holding control and/or shift keys. keyboard navigation works with arrows/page up/down and home/end keys, and also with a few basic vi-like keys for list/message navigation. we prefer showing the text instead of html (with inlined images only) version of a message. html messages are shown in an iframe served from an endpoint with CSP headers to prevent dangerous resources (scripts, external images) from being loaded. the html is also sanitized, with javascript removed. a user can choose to load external resources (e.g. images for tracking purposes). the frontend is just (strict) typescript, no external frameworks. all incoming/outgoing data is typechecked, both the api request parameters and response types, and the data coming in over SSE. the types and checking code are generated with sherpats, which uses the api definitions generated by sherpadoc based on the Go code. so types from the backend are automatically propagated to the frontend. since there is no framework to automatically propagate properties and rerender components, changes coming in over the SSE connection are propagated explicitly with regular function calls. the ui is separated into "views", each with a "root" dom element that is added to the visible document. these views have additional functions for getting changes propagated, often resulting in the view updating its (internal) ui state (dom). we keep the frontend compilation simple, it's just a few typescript files that get compiled (combined and types stripped) into a single js file, no additional runtime code needed or complicated build processes used. the webmail is served is served from a compressed, cachable html file that includes style and the javascript, currently just over 225kb uncompressed, under 60kb compressed (not minified, including comments). we include the generated js files in the repository, to keep Go's easily buildable self-contained binaries. authentication is basic http, as with the account and admin pages. most data comes in over one long-term SSE connection to the backend. api requests signal which mailbox/search/messages are requested over the SSE connection. fetching individual messages, and making changes, are done through api calls. the operations are similar to imap, so some code has been moved from package imapserver to package store. the future jmap implementation will benefit from these changes too. more functionality will probably be moved to the store package in the future. the quickstart enables webmail on the internal listener by default (for new installs). users can enable it on the public listener if they want to. mox localserve enables it too. to enable webmail on existing installs, add settings like the following to the listeners in mox.conf, similar to AccountHTTP(S): WebmailHTTP: Enabled: true WebmailHTTPS: Enabled: true special thanks to liesbeth, gerben, andrii for early user feedback. there is plenty still to do, see the list at the top of webmail/webmail.ts. feedback welcome as always.
2023-08-07 22:57:03 +03:00
err = tx.Get(&inbox)
xcheckf(err, "get inbox")
inbox.Add(m.MailboxCounts())
err = tx.Update(&inbox)
xcheckf(err, "update inbox")
return nil
})
xcheckf(err, "write transaction with new message")
err = accTest1.Close()
xcheckf(err, "close account")
// Third account with two messages and junkfilter.
accTest2, err := store.OpenAccount(c.log, "test2")
xcheckf(err, "open account test2")
err = accTest2.ThreadingWait(c.log)
implement message threading in backend and webmail we match messages to their parents based on the "references" and "in-reply-to" headers (requiring the same base subject), and in absense of those headers we also by only base subject (against messages received max 4 weeks ago). we store a threadid with messages. all messages in a thread have the same threadid. messages also have a "thread parent ids", which holds all id's of parent messages up to the thread root. then there is "thread missing link", which is set when a referenced immediate parent wasn't found (but possibly earlier ancestors can still be found and will be in thread parent ids". threads can be muted: newly delivered messages are automatically marked as read/seen. threads can be marked as collapsed: if set, the webmail collapses the thread to a single item in the basic threading view (default is to expand threads). the muted and collapsed fields are copied from their parent on message delivery. the threading is implemented in the webmail. the non-threading mode still works as before. the new default threading mode "unread" automatically expands only the threads with at least one unread (not seen) meessage. the basic threading mode "on" expands all threads except when explicitly collapsed (as saved in the thread collapsed field). new shortcuts for navigation/interaction threads have been added, e.g. go to previous/next thread root, toggle collapse/expand of thread (or double click), toggle mute of thread. some previous shortcuts have changed, see the help for details. the message threading are added with an explicit account upgrade step, automatically started when an account is opened. the upgrade is done in the background because it will take too long for large mailboxes to block account operations. the upgrade takes two steps: 1. updating all message records in the database to add a normalized message-id and thread base subject (with "re:", "fwd:" and several other schemes stripped). 2. going through all messages in the database again, reading the "references" and "in-reply-to" headers from disk, and matching against their parents. this second step is also done at the end of each import of mbox/maildir mailboxes. new deliveries are matched immediately against other existing messages, currently no attempt is made to rematch previously delivered messages (which could be useful for related messages being delivered out of order). the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
xcheckf(err, "wait for threading to finish")
err = accTest2.DB.Write(ctxbg, func(tx *bstore.Tx) error {
inbox, err := bstore.QueryTx[store.Mailbox](tx).FilterNonzero(store.Mailbox{Name: "Inbox"}).Get()
xcheckf(err, "looking up inbox")
const msg0 = "From: <other@remote.example>\r\nTo: <☹@xn--74h.example>\r\nSubject: test\r\n\r\nthe message...\r\n"
m0 := store.Message{
MailboxID: inbox.ID,
MailboxOrigID: inbox.ID,
MailboxDestinedID: inbox.ID,
RemoteIP: "::1",
RemoteIPMasked1: "::",
RemoteIPMasked2: "::",
RemoteIPMasked3: "::",
EHLODomain: "other.example",
MailFrom: "other@remote.example",
MailFromLocalpart: smtp.Localpart("other"),
MailFromDomain: "remote.example",
RcptToLocalpart: "☹",
RcptToDomain: "☺.example",
MsgFromLocalpart: "other",
MsgFromDomain: "remote.example",
MsgFromOrgDomain: "remote.example",
EHLOValidated: true,
MailFromValidated: true,
MsgFromValidated: true,
EHLOValidation: store.ValidationStrict,
MailFromValidation: store.ValidationPass,
MsgFromValidation: store.ValidationStrict,
DKIMDomains: []string{"other.example"},
Size: int64(len(msg0)),
}
mf0 := tempfile()
xcheckf(err, "creating temp file for delivery")
_, err = fmt.Fprint(mf0, msg0)
xcheckf(err, "writing deliver message to file")
err = accTest2.DeliverMessage(c.log, tx, &m0, mf0, false, false, false, true)
xcheckf(err, "add message to account test2")
make mox compile on windows, without "mox serve" but with working "mox localserve" getting mox to compile required changing code in only a few places where package "syscall" was used: for accessing file access times and for umask handling. an open problem is how to start a process as an unprivileged user on windows. that's why "mox serve" isn't implemented yet. and just finding a way to implement it now may not be good enough in the near future: we may want to starting using a more complete privilege separation approach, with a process handling sensitive tasks (handling private keys, authentication), where we may want to pass file descriptors between processes. how would that work on windows? anyway, getting mox to compile for windows doesn't mean it works properly on windows. the largest issue: mox would normally open a file, rename or remove it, and finally close it. this happens during message delivery. that doesn't work on windows, the rename/remove would fail because the file is still open. so this commit swaps many "remove" and "close" calls. renames are a longer story: message delivery had two ways to deliver: with "consuming" the (temporary) message file (which would rename it to its final destination), and without consuming (by hardlinking the file, falling back to copying). the last delivery to a recipient of a message (and the only one in the common case of a single recipient) would consume the message, and the earlier recipients would not. during delivery, the already open message file was used, to parse the message. we still want to use that open message file, and the caller now stays responsible for closing it, but we no longer try to rename (consume) the file. we always hardlink (or copy) during delivery (this works on windows), and the caller is responsible for closing and removing (in that order) the original temporary file. this does cost one syscall more. but it makes the delivery code (responsibilities) a bit simpler. there is one more obvious issue: the file system path separator. mox already used the "filepath" package to join paths in many places, but not everywhere. and it still used strings with slashes for local file access. with this commit, the code now uses filepath.FromSlash for path strings with slashes, uses "filepath" in a few more places where it previously didn't. also switches from "filepath" to regular "path" package when handling mailbox names in a few places, because those always use forward slashes, regardless of local file system conventions. windows can handle forward slashes when opening files, so test code that passes path strings with forward slashes straight to go stdlib file i/o functions are left unchanged to reduce code churn. the regular non-test code, or test code that uses path strings in places other than standard i/o functions, does have the paths converted for consistent paths (otherwise we would end up with paths with mixed forward/backward slashes in log messages). windows cannot dup a listening socket. for "mox localserve", it isn't important, and we can work around the issue. the current approach for "mox serve" (forking a process and passing file descriptors of listening sockets on "privileged" ports) won't work on windows. perhaps it isn't needed on windows, and any user can listen on "privileged" ports? that would be welcome. on windows, os.Open cannot open a directory, so we cannot call Sync on it after message delivery. a cursory internet search indicates that directories cannot be synced on windows. the story is probably much more nuanced than that, with long deep technical details/discussions/disagreement/confusion, like on unix. for "mox localserve" we can get away with making syncdir a no-op.
2023-10-14 11:54:07 +03:00
mf0name := mf0.Name()
err = mf0.Close()
xcheckf(err, "closing file")
make mox compile on windows, without "mox serve" but with working "mox localserve" getting mox to compile required changing code in only a few places where package "syscall" was used: for accessing file access times and for umask handling. an open problem is how to start a process as an unprivileged user on windows. that's why "mox serve" isn't implemented yet. and just finding a way to implement it now may not be good enough in the near future: we may want to starting using a more complete privilege separation approach, with a process handling sensitive tasks (handling private keys, authentication), where we may want to pass file descriptors between processes. how would that work on windows? anyway, getting mox to compile for windows doesn't mean it works properly on windows. the largest issue: mox would normally open a file, rename or remove it, and finally close it. this happens during message delivery. that doesn't work on windows, the rename/remove would fail because the file is still open. so this commit swaps many "remove" and "close" calls. renames are a longer story: message delivery had two ways to deliver: with "consuming" the (temporary) message file (which would rename it to its final destination), and without consuming (by hardlinking the file, falling back to copying). the last delivery to a recipient of a message (and the only one in the common case of a single recipient) would consume the message, and the earlier recipients would not. during delivery, the already open message file was used, to parse the message. we still want to use that open message file, and the caller now stays responsible for closing it, but we no longer try to rename (consume) the file. we always hardlink (or copy) during delivery (this works on windows), and the caller is responsible for closing and removing (in that order) the original temporary file. this does cost one syscall more. but it makes the delivery code (responsibilities) a bit simpler. there is one more obvious issue: the file system path separator. mox already used the "filepath" package to join paths in many places, but not everywhere. and it still used strings with slashes for local file access. with this commit, the code now uses filepath.FromSlash for path strings with slashes, uses "filepath" in a few more places where it previously didn't. also switches from "filepath" to regular "path" package when handling mailbox names in a few places, because those always use forward slashes, regardless of local file system conventions. windows can handle forward slashes when opening files, so test code that passes path strings with forward slashes straight to go stdlib file i/o functions are left unchanged to reduce code churn. the regular non-test code, or test code that uses path strings in places other than standard i/o functions, does have the paths converted for consistent paths (otherwise we would end up with paths with mixed forward/backward slashes in log messages). windows cannot dup a listening socket. for "mox localserve", it isn't important, and we can work around the issue. the current approach for "mox serve" (forking a process and passing file descriptors of listening sockets on "privileged" ports) won't work on windows. perhaps it isn't needed on windows, and any user can listen on "privileged" ports? that would be welcome. on windows, os.Open cannot open a directory, so we cannot call Sync on it after message delivery. a cursory internet search indicates that directories cannot be synced on windows. the story is probably much more nuanced than that, with long deep technical details/discussions/disagreement/confusion, like on unix. for "mox localserve" we can get away with making syncdir a no-op.
2023-10-14 11:54:07 +03:00
err = os.Remove(mf0name)
xcheckf(err, "removing temp message file")
add webmail it was far down on the roadmap, but implemented earlier, because it's interesting, and to help prepare for a jmap implementation. for jmap we need to implement more client-like functionality than with just imap. internal data structures need to change. jmap has lots of other requirements, so it's already a big project. by implementing a webmail now, some of the required data structure changes become clear and can be made now, so the later jmap implementation can do things similarly to the webmail code. the webmail frontend and webmail are written together, making their interface/api much smaller and simpler than jmap. one of the internal changes is that we now keep track of per-mailbox total/unread/unseen/deleted message counts and mailbox sizes. keeping this data consistent after any change to the stored messages (through the code base) is tricky, so mox now has a consistency check that verifies the counts are correct, which runs only during tests, each time an internal account reference is closed. we have a few more internal "changes" that are propagated for the webmail frontend (that imap doesn't have a way to propagate on a connection), like changes to the special-use flags on mailboxes, and used keywords in a mailbox. more changes that will be required have revealed themselves while implementing the webmail, and will be implemented next. the webmail user interface is modeled after the mail clients i use or have used: thunderbird, macos mail, mutt; and webmails i normally only use for testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed, but still the goal is to make this webmail client easy to use for everyone. the user interface looks like most other mail clients: a list of mailboxes, a search bar, a message list view, and message details. there is a top/bottom and a left/right layout for the list/message view, default is automatic based on screen size. the panes can be resized by the user. buttons for actions are just text, not icons. clicking a button briefly shows the shortcut for the action in the bottom right, helping with learning to operate quickly. any text that is underdotted has a title attribute that causes more information to be displayed, e.g. what a button does or a field is about. to highlight potential phishing attempts, any text (anywhere in the webclient) that switches unicode "blocks" (a rough approximation to (language) scripts) within a word is underlined orange. multiple messages can be selected with familiar ui interaction: clicking while holding control and/or shift keys. keyboard navigation works with arrows/page up/down and home/end keys, and also with a few basic vi-like keys for list/message navigation. we prefer showing the text instead of html (with inlined images only) version of a message. html messages are shown in an iframe served from an endpoint with CSP headers to prevent dangerous resources (scripts, external images) from being loaded. the html is also sanitized, with javascript removed. a user can choose to load external resources (e.g. images for tracking purposes). the frontend is just (strict) typescript, no external frameworks. all incoming/outgoing data is typechecked, both the api request parameters and response types, and the data coming in over SSE. the types and checking code are generated with sherpats, which uses the api definitions generated by sherpadoc based on the Go code. so types from the backend are automatically propagated to the frontend. since there is no framework to automatically propagate properties and rerender components, changes coming in over the SSE connection are propagated explicitly with regular function calls. the ui is separated into "views", each with a "root" dom element that is added to the visible document. these views have additional functions for getting changes propagated, often resulting in the view updating its (internal) ui state (dom). we keep the frontend compilation simple, it's just a few typescript files that get compiled (combined and types stripped) into a single js file, no additional runtime code needed or complicated build processes used. the webmail is served is served from a compressed, cachable html file that includes style and the javascript, currently just over 225kb uncompressed, under 60kb compressed (not minified, including comments). we include the generated js files in the repository, to keep Go's easily buildable self-contained binaries. authentication is basic http, as with the account and admin pages. most data comes in over one long-term SSE connection to the backend. api requests signal which mailbox/search/messages are requested over the SSE connection. fetching individual messages, and making changes, are done through api calls. the operations are similar to imap, so some code has been moved from package imapserver to package store. the future jmap implementation will benefit from these changes too. more functionality will probably be moved to the store package in the future. the quickstart enables webmail on the internal listener by default (for new installs). users can enable it on the public listener if they want to. mox localserve enables it too. to enable webmail on existing installs, add settings like the following to the listeners in mox.conf, similar to AccountHTTP(S): WebmailHTTP: Enabled: true WebmailHTTPS: Enabled: true special thanks to liesbeth, gerben, andrii for early user feedback. there is plenty still to do, see the list at the top of webmail/webmail.ts. feedback welcome as always.
2023-08-07 22:57:03 +03:00
err = tx.Get(&inbox)
xcheckf(err, "get inbox")
inbox.Add(m0.MailboxCounts())
err = tx.Update(&inbox)
xcheckf(err, "update inbox")
sent, err := bstore.QueryTx[store.Mailbox](tx).FilterNonzero(store.Mailbox{Name: "Sent"}).Get()
xcheckf(err, "looking up inbox")
const prefix1 = "Extra: test\r\n"
const msg1 = "From: <other@remote.example>\r\nTo: <☹@xn--74h.example>\r\nSubject: test\r\n\r\nthe message...\r\n"
m1 := store.Message{
MailboxID: sent.ID,
MailboxOrigID: sent.ID,
MailboxDestinedID: sent.ID,
Flags: store.Flags{Seen: true, Junk: true},
Size: int64(len(prefix1) + len(msg1)),
MsgPrefix: []byte(prefix1),
}
mf1 := tempfile()
xcheckf(err, "creating temp file for delivery")
_, err = fmt.Fprint(mf1, msg1)
xcheckf(err, "writing deliver message to file")
err = accTest2.DeliverMessage(c.log, tx, &m1, mf1, false, false, false, true)
xcheckf(err, "add message to account test2")
make mox compile on windows, without "mox serve" but with working "mox localserve" getting mox to compile required changing code in only a few places where package "syscall" was used: for accessing file access times and for umask handling. an open problem is how to start a process as an unprivileged user on windows. that's why "mox serve" isn't implemented yet. and just finding a way to implement it now may not be good enough in the near future: we may want to starting using a more complete privilege separation approach, with a process handling sensitive tasks (handling private keys, authentication), where we may want to pass file descriptors between processes. how would that work on windows? anyway, getting mox to compile for windows doesn't mean it works properly on windows. the largest issue: mox would normally open a file, rename or remove it, and finally close it. this happens during message delivery. that doesn't work on windows, the rename/remove would fail because the file is still open. so this commit swaps many "remove" and "close" calls. renames are a longer story: message delivery had two ways to deliver: with "consuming" the (temporary) message file (which would rename it to its final destination), and without consuming (by hardlinking the file, falling back to copying). the last delivery to a recipient of a message (and the only one in the common case of a single recipient) would consume the message, and the earlier recipients would not. during delivery, the already open message file was used, to parse the message. we still want to use that open message file, and the caller now stays responsible for closing it, but we no longer try to rename (consume) the file. we always hardlink (or copy) during delivery (this works on windows), and the caller is responsible for closing and removing (in that order) the original temporary file. this does cost one syscall more. but it makes the delivery code (responsibilities) a bit simpler. there is one more obvious issue: the file system path separator. mox already used the "filepath" package to join paths in many places, but not everywhere. and it still used strings with slashes for local file access. with this commit, the code now uses filepath.FromSlash for path strings with slashes, uses "filepath" in a few more places where it previously didn't. also switches from "filepath" to regular "path" package when handling mailbox names in a few places, because those always use forward slashes, regardless of local file system conventions. windows can handle forward slashes when opening files, so test code that passes path strings with forward slashes straight to go stdlib file i/o functions are left unchanged to reduce code churn. the regular non-test code, or test code that uses path strings in places other than standard i/o functions, does have the paths converted for consistent paths (otherwise we would end up with paths with mixed forward/backward slashes in log messages). windows cannot dup a listening socket. for "mox localserve", it isn't important, and we can work around the issue. the current approach for "mox serve" (forking a process and passing file descriptors of listening sockets on "privileged" ports) won't work on windows. perhaps it isn't needed on windows, and any user can listen on "privileged" ports? that would be welcome. on windows, os.Open cannot open a directory, so we cannot call Sync on it after message delivery. a cursory internet search indicates that directories cannot be synced on windows. the story is probably much more nuanced than that, with long deep technical details/discussions/disagreement/confusion, like on unix. for "mox localserve" we can get away with making syncdir a no-op.
2023-10-14 11:54:07 +03:00
mf1name := mf1.Name()
err = mf1.Close()
xcheckf(err, "closing file")
make mox compile on windows, without "mox serve" but with working "mox localserve" getting mox to compile required changing code in only a few places where package "syscall" was used: for accessing file access times and for umask handling. an open problem is how to start a process as an unprivileged user on windows. that's why "mox serve" isn't implemented yet. and just finding a way to implement it now may not be good enough in the near future: we may want to starting using a more complete privilege separation approach, with a process handling sensitive tasks (handling private keys, authentication), where we may want to pass file descriptors between processes. how would that work on windows? anyway, getting mox to compile for windows doesn't mean it works properly on windows. the largest issue: mox would normally open a file, rename or remove it, and finally close it. this happens during message delivery. that doesn't work on windows, the rename/remove would fail because the file is still open. so this commit swaps many "remove" and "close" calls. renames are a longer story: message delivery had two ways to deliver: with "consuming" the (temporary) message file (which would rename it to its final destination), and without consuming (by hardlinking the file, falling back to copying). the last delivery to a recipient of a message (and the only one in the common case of a single recipient) would consume the message, and the earlier recipients would not. during delivery, the already open message file was used, to parse the message. we still want to use that open message file, and the caller now stays responsible for closing it, but we no longer try to rename (consume) the file. we always hardlink (or copy) during delivery (this works on windows), and the caller is responsible for closing and removing (in that order) the original temporary file. this does cost one syscall more. but it makes the delivery code (responsibilities) a bit simpler. there is one more obvious issue: the file system path separator. mox already used the "filepath" package to join paths in many places, but not everywhere. and it still used strings with slashes for local file access. with this commit, the code now uses filepath.FromSlash for path strings with slashes, uses "filepath" in a few more places where it previously didn't. also switches from "filepath" to regular "path" package when handling mailbox names in a few places, because those always use forward slashes, regardless of local file system conventions. windows can handle forward slashes when opening files, so test code that passes path strings with forward slashes straight to go stdlib file i/o functions are left unchanged to reduce code churn. the regular non-test code, or test code that uses path strings in places other than standard i/o functions, does have the paths converted for consistent paths (otherwise we would end up with paths with mixed forward/backward slashes in log messages). windows cannot dup a listening socket. for "mox localserve", it isn't important, and we can work around the issue. the current approach for "mox serve" (forking a process and passing file descriptors of listening sockets on "privileged" ports) won't work on windows. perhaps it isn't needed on windows, and any user can listen on "privileged" ports? that would be welcome. on windows, os.Open cannot open a directory, so we cannot call Sync on it after message delivery. a cursory internet search indicates that directories cannot be synced on windows. the story is probably much more nuanced than that, with long deep technical details/discussions/disagreement/confusion, like on unix. for "mox localserve" we can get away with making syncdir a no-op.
2023-10-14 11:54:07 +03:00
err = os.Remove(mf1name)
xcheckf(err, "removing temp message file")
add webmail it was far down on the roadmap, but implemented earlier, because it's interesting, and to help prepare for a jmap implementation. for jmap we need to implement more client-like functionality than with just imap. internal data structures need to change. jmap has lots of other requirements, so it's already a big project. by implementing a webmail now, some of the required data structure changes become clear and can be made now, so the later jmap implementation can do things similarly to the webmail code. the webmail frontend and webmail are written together, making their interface/api much smaller and simpler than jmap. one of the internal changes is that we now keep track of per-mailbox total/unread/unseen/deleted message counts and mailbox sizes. keeping this data consistent after any change to the stored messages (through the code base) is tricky, so mox now has a consistency check that verifies the counts are correct, which runs only during tests, each time an internal account reference is closed. we have a few more internal "changes" that are propagated for the webmail frontend (that imap doesn't have a way to propagate on a connection), like changes to the special-use flags on mailboxes, and used keywords in a mailbox. more changes that will be required have revealed themselves while implementing the webmail, and will be implemented next. the webmail user interface is modeled after the mail clients i use or have used: thunderbird, macos mail, mutt; and webmails i normally only use for testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed, but still the goal is to make this webmail client easy to use for everyone. the user interface looks like most other mail clients: a list of mailboxes, a search bar, a message list view, and message details. there is a top/bottom and a left/right layout for the list/message view, default is automatic based on screen size. the panes can be resized by the user. buttons for actions are just text, not icons. clicking a button briefly shows the shortcut for the action in the bottom right, helping with learning to operate quickly. any text that is underdotted has a title attribute that causes more information to be displayed, e.g. what a button does or a field is about. to highlight potential phishing attempts, any text (anywhere in the webclient) that switches unicode "blocks" (a rough approximation to (language) scripts) within a word is underlined orange. multiple messages can be selected with familiar ui interaction: clicking while holding control and/or shift keys. keyboard navigation works with arrows/page up/down and home/end keys, and also with a few basic vi-like keys for list/message navigation. we prefer showing the text instead of html (with inlined images only) version of a message. html messages are shown in an iframe served from an endpoint with CSP headers to prevent dangerous resources (scripts, external images) from being loaded. the html is also sanitized, with javascript removed. a user can choose to load external resources (e.g. images for tracking purposes). the frontend is just (strict) typescript, no external frameworks. all incoming/outgoing data is typechecked, both the api request parameters and response types, and the data coming in over SSE. the types and checking code are generated with sherpats, which uses the api definitions generated by sherpadoc based on the Go code. so types from the backend are automatically propagated to the frontend. since there is no framework to automatically propagate properties and rerender components, changes coming in over the SSE connection are propagated explicitly with regular function calls. the ui is separated into "views", each with a "root" dom element that is added to the visible document. these views have additional functions for getting changes propagated, often resulting in the view updating its (internal) ui state (dom). we keep the frontend compilation simple, it's just a few typescript files that get compiled (combined and types stripped) into a single js file, no additional runtime code needed or complicated build processes used. the webmail is served is served from a compressed, cachable html file that includes style and the javascript, currently just over 225kb uncompressed, under 60kb compressed (not minified, including comments). we include the generated js files in the repository, to keep Go's easily buildable self-contained binaries. authentication is basic http, as with the account and admin pages. most data comes in over one long-term SSE connection to the backend. api requests signal which mailbox/search/messages are requested over the SSE connection. fetching individual messages, and making changes, are done through api calls. the operations are similar to imap, so some code has been moved from package imapserver to package store. the future jmap implementation will benefit from these changes too. more functionality will probably be moved to the store package in the future. the quickstart enables webmail on the internal listener by default (for new installs). users can enable it on the public listener if they want to. mox localserve enables it too. to enable webmail on existing installs, add settings like the following to the listeners in mox.conf, similar to AccountHTTP(S): WebmailHTTP: Enabled: true WebmailHTTPS: Enabled: true special thanks to liesbeth, gerben, andrii for early user feedback. there is plenty still to do, see the list at the top of webmail/webmail.ts. feedback welcome as always.
2023-08-07 22:57:03 +03:00
err = tx.Get(&sent)
xcheckf(err, "get sent")
sent.Add(m1.MailboxCounts())
err = tx.Update(&sent)
xcheckf(err, "update sent")
return nil
})
xcheckf(err, "write transaction with new message")
err = accTest2.Close()
xcheckf(err, "close account")
}