mox/webmail/lib.ts

495 lines
22 KiB
TypeScript
Raw Normal View History

add webmail it was far down on the roadmap, but implemented earlier, because it's interesting, and to help prepare for a jmap implementation. for jmap we need to implement more client-like functionality than with just imap. internal data structures need to change. jmap has lots of other requirements, so it's already a big project. by implementing a webmail now, some of the required data structure changes become clear and can be made now, so the later jmap implementation can do things similarly to the webmail code. the webmail frontend and webmail are written together, making their interface/api much smaller and simpler than jmap. one of the internal changes is that we now keep track of per-mailbox total/unread/unseen/deleted message counts and mailbox sizes. keeping this data consistent after any change to the stored messages (through the code base) is tricky, so mox now has a consistency check that verifies the counts are correct, which runs only during tests, each time an internal account reference is closed. we have a few more internal "changes" that are propagated for the webmail frontend (that imap doesn't have a way to propagate on a connection), like changes to the special-use flags on mailboxes, and used keywords in a mailbox. more changes that will be required have revealed themselves while implementing the webmail, and will be implemented next. the webmail user interface is modeled after the mail clients i use or have used: thunderbird, macos mail, mutt; and webmails i normally only use for testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed, but still the goal is to make this webmail client easy to use for everyone. the user interface looks like most other mail clients: a list of mailboxes, a search bar, a message list view, and message details. there is a top/bottom and a left/right layout for the list/message view, default is automatic based on screen size. the panes can be resized by the user. buttons for actions are just text, not icons. clicking a button briefly shows the shortcut for the action in the bottom right, helping with learning to operate quickly. any text that is underdotted has a title attribute that causes more information to be displayed, e.g. what a button does or a field is about. to highlight potential phishing attempts, any text (anywhere in the webclient) that switches unicode "blocks" (a rough approximation to (language) scripts) within a word is underlined orange. multiple messages can be selected with familiar ui interaction: clicking while holding control and/or shift keys. keyboard navigation works with arrows/page up/down and home/end keys, and also with a few basic vi-like keys for list/message navigation. we prefer showing the text instead of html (with inlined images only) version of a message. html messages are shown in an iframe served from an endpoint with CSP headers to prevent dangerous resources (scripts, external images) from being loaded. the html is also sanitized, with javascript removed. a user can choose to load external resources (e.g. images for tracking purposes). the frontend is just (strict) typescript, no external frameworks. all incoming/outgoing data is typechecked, both the api request parameters and response types, and the data coming in over SSE. the types and checking code are generated with sherpats, which uses the api definitions generated by sherpadoc based on the Go code. so types from the backend are automatically propagated to the frontend. since there is no framework to automatically propagate properties and rerender components, changes coming in over the SSE connection are propagated explicitly with regular function calls. the ui is separated into "views", each with a "root" dom element that is added to the visible document. these views have additional functions for getting changes propagated, often resulting in the view updating its (internal) ui state (dom). we keep the frontend compilation simple, it's just a few typescript files that get compiled (combined and types stripped) into a single js file, no additional runtime code needed or complicated build processes used. the webmail is served is served from a compressed, cachable html file that includes style and the javascript, currently just over 225kb uncompressed, under 60kb compressed (not minified, including comments). we include the generated js files in the repository, to keep Go's easily buildable self-contained binaries. authentication is basic http, as with the account and admin pages. most data comes in over one long-term SSE connection to the backend. api requests signal which mailbox/search/messages are requested over the SSE connection. fetching individual messages, and making changes, are done through api calls. the operations are similar to imap, so some code has been moved from package imapserver to package store. the future jmap implementation will benefit from these changes too. more functionality will probably be moved to the store package in the future. the quickstart enables webmail on the internal listener by default (for new installs). users can enable it on the public listener if they want to. mox localserve enables it too. to enable webmail on existing installs, add settings like the following to the listeners in mox.conf, similar to AccountHTTP(S): WebmailHTTP: Enabled: true WebmailHTTPS: Enabled: true special thanks to liesbeth, gerben, andrii for early user feedback. there is plenty still to do, see the list at the top of webmail/webmail.ts. feedback welcome as always.
2023-08-07 22:57:03 +03:00
// Javascript is generated from typescript, do not modify generated javascript because changes will be overwritten.
type ElemArg = string | String | Element | Function | {_class: string[]} | {_attrs: {[k: string]: string}} | {_styles: {[k: string]: string | number}} | {_props: {[k: string]: any}} | {root: HTMLElement} | ElemArg[]
add webmail it was far down on the roadmap, but implemented earlier, because it's interesting, and to help prepare for a jmap implementation. for jmap we need to implement more client-like functionality than with just imap. internal data structures need to change. jmap has lots of other requirements, so it's already a big project. by implementing a webmail now, some of the required data structure changes become clear and can be made now, so the later jmap implementation can do things similarly to the webmail code. the webmail frontend and webmail are written together, making their interface/api much smaller and simpler than jmap. one of the internal changes is that we now keep track of per-mailbox total/unread/unseen/deleted message counts and mailbox sizes. keeping this data consistent after any change to the stored messages (through the code base) is tricky, so mox now has a consistency check that verifies the counts are correct, which runs only during tests, each time an internal account reference is closed. we have a few more internal "changes" that are propagated for the webmail frontend (that imap doesn't have a way to propagate on a connection), like changes to the special-use flags on mailboxes, and used keywords in a mailbox. more changes that will be required have revealed themselves while implementing the webmail, and will be implemented next. the webmail user interface is modeled after the mail clients i use or have used: thunderbird, macos mail, mutt; and webmails i normally only use for testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed, but still the goal is to make this webmail client easy to use for everyone. the user interface looks like most other mail clients: a list of mailboxes, a search bar, a message list view, and message details. there is a top/bottom and a left/right layout for the list/message view, default is automatic based on screen size. the panes can be resized by the user. buttons for actions are just text, not icons. clicking a button briefly shows the shortcut for the action in the bottom right, helping with learning to operate quickly. any text that is underdotted has a title attribute that causes more information to be displayed, e.g. what a button does or a field is about. to highlight potential phishing attempts, any text (anywhere in the webclient) that switches unicode "blocks" (a rough approximation to (language) scripts) within a word is underlined orange. multiple messages can be selected with familiar ui interaction: clicking while holding control and/or shift keys. keyboard navigation works with arrows/page up/down and home/end keys, and also with a few basic vi-like keys for list/message navigation. we prefer showing the text instead of html (with inlined images only) version of a message. html messages are shown in an iframe served from an endpoint with CSP headers to prevent dangerous resources (scripts, external images) from being loaded. the html is also sanitized, with javascript removed. a user can choose to load external resources (e.g. images for tracking purposes). the frontend is just (strict) typescript, no external frameworks. all incoming/outgoing data is typechecked, both the api request parameters and response types, and the data coming in over SSE. the types and checking code are generated with sherpats, which uses the api definitions generated by sherpadoc based on the Go code. so types from the backend are automatically propagated to the frontend. since there is no framework to automatically propagate properties and rerender components, changes coming in over the SSE connection are propagated explicitly with regular function calls. the ui is separated into "views", each with a "root" dom element that is added to the visible document. these views have additional functions for getting changes propagated, often resulting in the view updating its (internal) ui state (dom). we keep the frontend compilation simple, it's just a few typescript files that get compiled (combined and types stripped) into a single js file, no additional runtime code needed or complicated build processes used. the webmail is served is served from a compressed, cachable html file that includes style and the javascript, currently just over 225kb uncompressed, under 60kb compressed (not minified, including comments). we include the generated js files in the repository, to keep Go's easily buildable self-contained binaries. authentication is basic http, as with the account and admin pages. most data comes in over one long-term SSE connection to the backend. api requests signal which mailbox/search/messages are requested over the SSE connection. fetching individual messages, and making changes, are done through api calls. the operations are similar to imap, so some code has been moved from package imapserver to package store. the future jmap implementation will benefit from these changes too. more functionality will probably be moved to the store package in the future. the quickstart enables webmail on the internal listener by default (for new installs). users can enable it on the public listener if they want to. mox localserve enables it too. to enable webmail on existing installs, add settings like the following to the listeners in mox.conf, similar to AccountHTTP(S): WebmailHTTP: Enabled: true WebmailHTTPS: Enabled: true special thanks to liesbeth, gerben, andrii for early user feedback. there is plenty still to do, see the list at the top of webmail/webmail.ts. feedback welcome as always.
2023-08-07 22:57:03 +03:00
const [dom, style, attr, prop] = (function() {
// Start of unicode block (rough approximation of script), from https://www.unicode.org/Public/UNIDATA/Blocks.txt
const scriptblocks = [0x0000, 0x0080, 0x0100, 0x0180, 0x0250, 0x02B0, 0x0300, 0x0370, 0x0400, 0x0500, 0x0530, 0x0590, 0x0600, 0x0700, 0x0750, 0x0780, 0x07C0, 0x0800, 0x0840, 0x0860, 0x0870, 0x08A0, 0x0900, 0x0980, 0x0A00, 0x0A80, 0x0B00, 0x0B80, 0x0C00, 0x0C80, 0x0D00, 0x0D80, 0x0E00, 0x0E80, 0x0F00, 0x1000, 0x10A0, 0x1100, 0x1200, 0x1380, 0x13A0, 0x1400, 0x1680, 0x16A0, 0x1700, 0x1720, 0x1740, 0x1760, 0x1780, 0x1800, 0x18B0, 0x1900, 0x1950, 0x1980, 0x19E0, 0x1A00, 0x1A20, 0x1AB0, 0x1B00, 0x1B80, 0x1BC0, 0x1C00, 0x1C50, 0x1C80, 0x1C90, 0x1CC0, 0x1CD0, 0x1D00, 0x1D80, 0x1DC0, 0x1E00, 0x1F00, 0x2000, 0x2070, 0x20A0, 0x20D0, 0x2100, 0x2150, 0x2190, 0x2200, 0x2300, 0x2400, 0x2440, 0x2460, 0x2500, 0x2580, 0x25A0, 0x2600, 0x2700, 0x27C0, 0x27F0, 0x2800, 0x2900, 0x2980, 0x2A00, 0x2B00, 0x2C00, 0x2C60, 0x2C80, 0x2D00, 0x2D30, 0x2D80, 0x2DE0, 0x2E00, 0x2E80, 0x2F00, 0x2FF0, 0x3000, 0x3040, 0x30A0, 0x3100, 0x3130, 0x3190, 0x31A0, 0x31C0, 0x31F0, 0x3200, 0x3300, 0x3400, 0x4DC0, 0x4E00, 0xA000, 0xA490, 0xA4D0, 0xA500, 0xA640, 0xA6A0, 0xA700, 0xA720, 0xA800, 0xA830, 0xA840, 0xA880, 0xA8E0, 0xA900, 0xA930, 0xA960, 0xA980, 0xA9E0, 0xAA00, 0xAA60, 0xAA80, 0xAAE0, 0xAB00, 0xAB30, 0xAB70, 0xABC0, 0xAC00, 0xD7B0, 0xD800, 0xDB80, 0xDC00, 0xE000, 0xF900, 0xFB00, 0xFB50, 0xFE00, 0xFE10, 0xFE20, 0xFE30, 0xFE50, 0xFE70, 0xFF00, 0xFFF0, 0x10000, 0x10080, 0x10100, 0x10140, 0x10190, 0x101D0, 0x10280, 0x102A0, 0x102E0, 0x10300, 0x10330, 0x10350, 0x10380, 0x103A0, 0x10400, 0x10450, 0x10480, 0x104B0, 0x10500, 0x10530, 0x10570, 0x10600, 0x10780, 0x10800, 0x10840, 0x10860, 0x10880, 0x108E0, 0x10900, 0x10920, 0x10980, 0x109A0, 0x10A00, 0x10A60, 0x10A80, 0x10AC0, 0x10B00, 0x10B40, 0x10B60, 0x10B80, 0x10C00, 0x10C80, 0x10D00, 0x10E60, 0x10E80, 0x10EC0, 0x10F00, 0x10F30, 0x10F70, 0x10FB0, 0x10FE0, 0x11000, 0x11080, 0x110D0, 0x11100, 0x11150, 0x11180, 0x111E0, 0x11200, 0x11280, 0x112B0, 0x11300, 0x11400, 0x11480, 0x11580, 0x11600, 0x11660, 0x11680, 0x11700, 0x11800, 0x118A0, 0x11900, 0x119A0, 0x11A00, 0x11A50, 0x11AB0, 0x11AC0, 0x11B00, 0x11C00, 0x11C70, 0x11D00, 0x11D60, 0x11EE0, 0x11F00, 0x11FB0, 0x11FC0, 0x12000, 0x12400, 0x12480, 0x12F90, 0x13000, 0x13430, 0x14400, 0x16800, 0x16A40, 0x16A70, 0x16AD0, 0x16B00, 0x16E40, 0x16F00, 0x16FE0, 0x17000, 0x18800, 0x18B00, 0x18D00, 0x1AFF0, 0x1B000, 0x1B100, 0x1B130, 0x1B170, 0x1BC00, 0x1BCA0, 0x1CF00, 0x1D000, 0x1D100, 0x1D200, 0x1D2C0, 0x1D2E0, 0x1D300, 0x1D360, 0x1D400, 0x1D800, 0x1DF00, 0x1E000, 0x1E030, 0x1E100, 0x1E290, 0x1E2C0, 0x1E4D0, 0x1E7E0, 0x1E800, 0x1E900, 0x1EC70, 0x1ED00, 0x1EE00, 0x1F000, 0x1F030, 0x1F0A0, 0x1F100, 0x1F200, 0x1F300, 0x1F600, 0x1F650, 0x1F680, 0x1F700, 0x1F780, 0x1F800, 0x1F900, 0x1FA00, 0x1FA70, 0x1FB00, 0x20000, 0x2A700, 0x2B740, 0x2B820, 0x2CEB0, 0x2F800, 0x30000, 0x31350, 0xE0000, 0xE0100, 0xF0000, 0x100000]
// Find block code belongs in.
const findBlock = (code: number): number => {
let s = 0
let e = scriptblocks.length
while (s < e-1) {
let i = Math.floor((s+e)/2)
if (code < scriptblocks[i]) {
e = i
} else {
s = i
}
}
return s
}
// formatText adds s to element e, in a way that makes switching unicode scripts
// clear, with alternating DOM TextNode and span elements with a "switchscript"
// class. Useful for highlighting look alikes, e.g. a (ascii 0x61) and а (cyrillic
// 0x430).
//
// This is only called one string at a time, so the UI can still display strings
// without highlighting switching scripts, by calling formatText on the parts.
const formatText = (e: HTMLElement, s: string): void => {
// Handle some common cases quickly.
if (!s) {
return
}
let ascii = true
for (const c of s) {
const cp = c.codePointAt(0) // For typescript, to check for undefined.
if (cp !== undefined && cp >= 0x0080) {
ascii = false
break
}
}
if (ascii) {
e.appendChild(document.createTextNode(s))
return
}
// todo: handle grapheme clusters? wait for Intl.Segmenter?
let n = 0 // Number of text/span parts added.
let str = '' // Collected so far.
let block = -1 // Previous block/script.
let mod = 1
const put = (nextblock: number) => {
if (n === 0 && nextblock === 0) {
// Start was non-ascii, second block is ascii, we'll start marked as switched.
mod = 0
}
if (n % 2 === mod) {
const x = document.createElement('span')
x.classList.add('scriptswitch')
x.appendChild(document.createTextNode(str))
e.appendChild(x)
} else {
e.appendChild(document.createTextNode(str))
}
n++
str = ''
}
for (const c of s) {
// Basic whitespace does not switch blocks. Will probably need to extend with more
// punctuation in the future. Possibly for digits too. But perhaps not in all
// scripts.
if (c === ' ' || c === '\t' || c === '\r' || c === '\n') {
str += c
continue
}
const code: number = c.codePointAt(0) as number
if (block < 0 || !(code >= scriptblocks[block] && (code < scriptblocks[block+1] || block === scriptblocks.length-1))) {
const nextblock = code < 0x0080 ? 0 : findBlock(code)
if (block >= 0) {
put(nextblock)
}
block = nextblock
}
str += c
}
put(-1)
}
const _domKids = <T extends HTMLElement>(e: T, l: ElemArg[]): T => {
l.forEach((c) => {
const xc = c as {[k: string]: any}
if (typeof c === 'string') {
formatText(e, c)
} else if (c instanceof String) {
// String is an escape-hatch for text that should not be formatted with
// unicode-block-change-highlighting, e.g. for textarea values.
e.appendChild(document.createTextNode(''+c))
add webmail it was far down on the roadmap, but implemented earlier, because it's interesting, and to help prepare for a jmap implementation. for jmap we need to implement more client-like functionality than with just imap. internal data structures need to change. jmap has lots of other requirements, so it's already a big project. by implementing a webmail now, some of the required data structure changes become clear and can be made now, so the later jmap implementation can do things similarly to the webmail code. the webmail frontend and webmail are written together, making their interface/api much smaller and simpler than jmap. one of the internal changes is that we now keep track of per-mailbox total/unread/unseen/deleted message counts and mailbox sizes. keeping this data consistent after any change to the stored messages (through the code base) is tricky, so mox now has a consistency check that verifies the counts are correct, which runs only during tests, each time an internal account reference is closed. we have a few more internal "changes" that are propagated for the webmail frontend (that imap doesn't have a way to propagate on a connection), like changes to the special-use flags on mailboxes, and used keywords in a mailbox. more changes that will be required have revealed themselves while implementing the webmail, and will be implemented next. the webmail user interface is modeled after the mail clients i use or have used: thunderbird, macos mail, mutt; and webmails i normally only use for testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed, but still the goal is to make this webmail client easy to use for everyone. the user interface looks like most other mail clients: a list of mailboxes, a search bar, a message list view, and message details. there is a top/bottom and a left/right layout for the list/message view, default is automatic based on screen size. the panes can be resized by the user. buttons for actions are just text, not icons. clicking a button briefly shows the shortcut for the action in the bottom right, helping with learning to operate quickly. any text that is underdotted has a title attribute that causes more information to be displayed, e.g. what a button does or a field is about. to highlight potential phishing attempts, any text (anywhere in the webclient) that switches unicode "blocks" (a rough approximation to (language) scripts) within a word is underlined orange. multiple messages can be selected with familiar ui interaction: clicking while holding control and/or shift keys. keyboard navigation works with arrows/page up/down and home/end keys, and also with a few basic vi-like keys for list/message navigation. we prefer showing the text instead of html (with inlined images only) version of a message. html messages are shown in an iframe served from an endpoint with CSP headers to prevent dangerous resources (scripts, external images) from being loaded. the html is also sanitized, with javascript removed. a user can choose to load external resources (e.g. images for tracking purposes). the frontend is just (strict) typescript, no external frameworks. all incoming/outgoing data is typechecked, both the api request parameters and response types, and the data coming in over SSE. the types and checking code are generated with sherpats, which uses the api definitions generated by sherpadoc based on the Go code. so types from the backend are automatically propagated to the frontend. since there is no framework to automatically propagate properties and rerender components, changes coming in over the SSE connection are propagated explicitly with regular function calls. the ui is separated into "views", each with a "root" dom element that is added to the visible document. these views have additional functions for getting changes propagated, often resulting in the view updating its (internal) ui state (dom). we keep the frontend compilation simple, it's just a few typescript files that get compiled (combined and types stripped) into a single js file, no additional runtime code needed or complicated build processes used. the webmail is served is served from a compressed, cachable html file that includes style and the javascript, currently just over 225kb uncompressed, under 60kb compressed (not minified, including comments). we include the generated js files in the repository, to keep Go's easily buildable self-contained binaries. authentication is basic http, as with the account and admin pages. most data comes in over one long-term SSE connection to the backend. api requests signal which mailbox/search/messages are requested over the SSE connection. fetching individual messages, and making changes, are done through api calls. the operations are similar to imap, so some code has been moved from package imapserver to package store. the future jmap implementation will benefit from these changes too. more functionality will probably be moved to the store package in the future. the quickstart enables webmail on the internal listener by default (for new installs). users can enable it on the public listener if they want to. mox localserve enables it too. to enable webmail on existing installs, add settings like the following to the listeners in mox.conf, similar to AccountHTTP(S): WebmailHTTP: Enabled: true WebmailHTTPS: Enabled: true special thanks to liesbeth, gerben, andrii for early user feedback. there is plenty still to do, see the list at the top of webmail/webmail.ts. feedback welcome as always.
2023-08-07 22:57:03 +03:00
} else if (c instanceof Element) {
e.appendChild(c)
} else if (c instanceof Function) {
if (!c.name) {
throw new Error('function without name')
}
e.addEventListener(c.name as string, c as EventListener)
} else if (Array.isArray(xc)) {
_domKids(e, c as ElemArg[])
} else if (xc._class) {
for (const s of xc._class) {
e.classList.toggle(s, true)
}
} else if (xc._attrs) {
for (const k in xc._attrs) {
e.setAttribute(k, xc._attrs[k])
}
} else if (xc._styles) {
for (const k in xc._styles) {
const estyle: {[k: string]: any} = e.style
estyle[k as string] = xc._styles[k]
}
} else if (xc._props) {
for (const k in xc._props) {
const eprops: {[k: string]: any} = e
eprops[k] = xc._props[k]
}
} else if (xc.root) {
e.appendChild(xc.root)
} else {
console.log('bad kid', c)
throw new Error('bad kid')
}
})
return e
}
const dom = {
_kids: function(e: HTMLElement, ...kl: ElemArg[]) {
while(e.firstChild) {
e.removeChild(e.firstChild)
}
_domKids(e, kl)
},
_attrs: (x: {[k: string]: string}) => { return {_attrs: x}},
_class: (...x: string[]) => { return {_class: x}},
// The createElement calls are spelled out so typescript can derive function
// signatures with a specific HTML*Element return type.
div: (...l: ElemArg[]) => _domKids(document.createElement('div'), l),
span: (...l: ElemArg[]) => _domKids(document.createElement('span'), l),
a: (...l: ElemArg[]) => _domKids(document.createElement('a'), l),
input: (...l: ElemArg[]) => _domKids(document.createElement('input'), l),
textarea: (...l: ElemArg[]) => _domKids(document.createElement('textarea'), l),
select: (...l: ElemArg[]) => _domKids(document.createElement('select'), l),
option: (...l: ElemArg[]) => _domKids(document.createElement('option'), l),
clickbutton: (...l: ElemArg[]) => _domKids(document.createElement('button'), [attr.type('button'), ...l]),
submitbutton: (...l: ElemArg[]) => _domKids(document.createElement('button'), [attr.type('submit'), ...l]),
form: (...l: ElemArg[]) => _domKids(document.createElement('form'), l),
fieldset: (...l: ElemArg[]) => _domKids(document.createElement('fieldset'), l),
table: (...l: ElemArg[]) => _domKids(document.createElement('table'), l),
thead: (...l: ElemArg[]) => _domKids(document.createElement('thead'), l),
tbody: (...l: ElemArg[]) => _domKids(document.createElement('tbody'), l),
tr: (...l: ElemArg[]) => _domKids(document.createElement('tr'), l),
td: (...l: ElemArg[]) => _domKids(document.createElement('td'), l),
th: (...l: ElemArg[]) => _domKids(document.createElement('th'), l),
datalist: (...l: ElemArg[]) => _domKids(document.createElement('datalist'), l),
h1: (...l: ElemArg[]) => _domKids(document.createElement('h1'), l),
h2: (...l: ElemArg[]) => _domKids(document.createElement('h2'), l),
br: (...l: ElemArg[]) => _domKids(document.createElement('br'), l),
hr: (...l: ElemArg[]) => _domKids(document.createElement('hr'), l),
pre: (...l: ElemArg[]) => _domKids(document.createElement('pre'), l),
label: (...l: ElemArg[]) => _domKids(document.createElement('label'), l),
ul: (...l: ElemArg[]) => _domKids(document.createElement('ul'), l),
li: (...l: ElemArg[]) => _domKids(document.createElement('li'), l),
iframe: (...l: ElemArg[]) => _domKids(document.createElement('iframe'), l),
b: (...l: ElemArg[]) => _domKids(document.createElement('b'), l),
img: (...l: ElemArg[]) => _domKids(document.createElement('img'), l),
style: (...l: ElemArg[]) => _domKids(document.createElement('style'), l),
search: (...l: ElemArg[]) => _domKids(document.createElement('search'), l),
}
const _attr = (k: string, v: string) => { const o: {[key: string]: string} = {}; o[k] = v; return {_attrs: o} }
const attr = {
title: (s: string) => _attr('title', s),
value: (s: string) => _attr('value', s),
type: (s: string) => _attr('type', s),
tabindex: (s: string) => _attr('tabindex', s),
src: (s: string) => _attr('src', s),
placeholder: (s: string) => _attr('placeholder', s),
href: (s: string) => _attr('href', s),
checked: (s: string) => _attr('checked', s),
selected: (s: string) => _attr('selected', s),
id: (s: string) => _attr('id', s),
datalist: (s: string) => _attr('datalist', s),
rows: (s: string) => _attr('rows', s),
target: (s: string) => _attr('target', s),
rel: (s: string) => _attr('rel', s),
required: (s: string) => _attr('required', s),
multiple: (s: string) => _attr('multiple', s),
download: (s: string) => _attr('download', s),
disabled: (s: string) => _attr('disabled', s),
draggable: (s: string) => _attr('draggable', s),
rowspan: (s: string) => _attr('rowspan', s),
colspan: (s: string) => _attr('colspan', s),
for: (s: string) => _attr('for', s),
role: (s: string) => _attr('role', s),
arialabel: (s: string) => _attr('aria-label', s),
arialive: (s: string) => _attr('aria-live', s),
name: (s: string) => _attr('name', s)
}
const style = (x: {[k: string]: string | number}) => { return {_styles: x}}
const prop = (x: {[k: string]: any}) => { return {_props: x}}
return [dom, style, attr, prop]
})()
// For authentication/security results.
const underlineGreen = '#50c40f'
const underlineRed = '#e15d1c'
const underlineBlue = '#09f'
const underlineGrey = '#aaa'
const underlineYellow = 'yellow'
add webmail it was far down on the roadmap, but implemented earlier, because it's interesting, and to help prepare for a jmap implementation. for jmap we need to implement more client-like functionality than with just imap. internal data structures need to change. jmap has lots of other requirements, so it's already a big project. by implementing a webmail now, some of the required data structure changes become clear and can be made now, so the later jmap implementation can do things similarly to the webmail code. the webmail frontend and webmail are written together, making their interface/api much smaller and simpler than jmap. one of the internal changes is that we now keep track of per-mailbox total/unread/unseen/deleted message counts and mailbox sizes. keeping this data consistent after any change to the stored messages (through the code base) is tricky, so mox now has a consistency check that verifies the counts are correct, which runs only during tests, each time an internal account reference is closed. we have a few more internal "changes" that are propagated for the webmail frontend (that imap doesn't have a way to propagate on a connection), like changes to the special-use flags on mailboxes, and used keywords in a mailbox. more changes that will be required have revealed themselves while implementing the webmail, and will be implemented next. the webmail user interface is modeled after the mail clients i use or have used: thunderbird, macos mail, mutt; and webmails i normally only use for testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed, but still the goal is to make this webmail client easy to use for everyone. the user interface looks like most other mail clients: a list of mailboxes, a search bar, a message list view, and message details. there is a top/bottom and a left/right layout for the list/message view, default is automatic based on screen size. the panes can be resized by the user. buttons for actions are just text, not icons. clicking a button briefly shows the shortcut for the action in the bottom right, helping with learning to operate quickly. any text that is underdotted has a title attribute that causes more information to be displayed, e.g. what a button does or a field is about. to highlight potential phishing attempts, any text (anywhere in the webclient) that switches unicode "blocks" (a rough approximation to (language) scripts) within a word is underlined orange. multiple messages can be selected with familiar ui interaction: clicking while holding control and/or shift keys. keyboard navigation works with arrows/page up/down and home/end keys, and also with a few basic vi-like keys for list/message navigation. we prefer showing the text instead of html (with inlined images only) version of a message. html messages are shown in an iframe served from an endpoint with CSP headers to prevent dangerous resources (scripts, external images) from being loaded. the html is also sanitized, with javascript removed. a user can choose to load external resources (e.g. images for tracking purposes). the frontend is just (strict) typescript, no external frameworks. all incoming/outgoing data is typechecked, both the api request parameters and response types, and the data coming in over SSE. the types and checking code are generated with sherpats, which uses the api definitions generated by sherpadoc based on the Go code. so types from the backend are automatically propagated to the frontend. since there is no framework to automatically propagate properties and rerender components, changes coming in over the SSE connection are propagated explicitly with regular function calls. the ui is separated into "views", each with a "root" dom element that is added to the visible document. these views have additional functions for getting changes propagated, often resulting in the view updating its (internal) ui state (dom). we keep the frontend compilation simple, it's just a few typescript files that get compiled (combined and types stripped) into a single js file, no additional runtime code needed or complicated build processes used. the webmail is served is served from a compressed, cachable html file that includes style and the javascript, currently just over 225kb uncompressed, under 60kb compressed (not minified, including comments). we include the generated js files in the repository, to keep Go's easily buildable self-contained binaries. authentication is basic http, as with the account and admin pages. most data comes in over one long-term SSE connection to the backend. api requests signal which mailbox/search/messages are requested over the SSE connection. fetching individual messages, and making changes, are done through api calls. the operations are similar to imap, so some code has been moved from package imapserver to package store. the future jmap implementation will benefit from these changes too. more functionality will probably be moved to the store package in the future. the quickstart enables webmail on the internal listener by default (for new installs). users can enable it on the public listener if they want to. mox localserve enables it too. to enable webmail on existing installs, add settings like the following to the listeners in mox.conf, similar to AccountHTTP(S): WebmailHTTP: Enabled: true WebmailHTTPS: Enabled: true special thanks to liesbeth, gerben, andrii for early user feedback. there is plenty still to do, see the list at the top of webmail/webmail.ts. feedback welcome as always.
2023-08-07 22:57:03 +03:00
// join elements in l with the results of calls to efn. efn can return
// HTMLElements, which cannot be inserted into the dom multiple times, hence the
// function.
const join = (l: any, efn: () => any): any[] => {
const r: any[] = []
const n = l.length
for (let i = 0; i < n; i++) {
r.push(l[i])
if (i < n-1) {
r.push(efn())
}
}
return r
}
// addLinks turns a line of text into alternating strings and links. Links that
// would end with interpunction followed by whitespace are returned with that
// interpunction moved to the next string instead.
const addLinks = (text: string): (HTMLAnchorElement | string)[] => {
// todo: look at ../rfc/3986 and fix up regexp. we should probably accept utf-8.
const re = RegExp('(http|https):\/\/([:%0-9a-zA-Z._~!$&\'/()*+,;=-]+@)?([\\[\\]0-9a-zA-Z.-]+)(:[0-9]+)?([:@%0-9a-zA-Z._~!$&\'/()*+,;=-]*)(\\?[:@%0-9a-zA-Z._~!$&\'/()*+,;=?-]*)?(#[:@%0-9a-zA-Z._~!$&\'/()*+,;=?-]*)?')
const r = []
while (text.length > 0) {
const l = re.exec(text)
if (!l) {
r.push(text)
break
}
let s = text.substring(0, l.index)
let url = l[0]
text = text.substring(l.index+url.length)
r.push(s)
// If URL ends with interpunction, and next character is whitespace or end, don't
// include the interpunction in the URL.
if (!text || /^[ \t\r\n]/.test(text)) {
if (/[)>][!,.:;?]$/.test(url)) {
text = url.substring(url.length-2)+text
url = url.substring(0, url.length-2)
} else if (/[)>!,.:;?]$/.test(url)) {
text = url.substring(url.length-1)+text
url = url.substring(0, url.length-1)
}
add webmail it was far down on the roadmap, but implemented earlier, because it's interesting, and to help prepare for a jmap implementation. for jmap we need to implement more client-like functionality than with just imap. internal data structures need to change. jmap has lots of other requirements, so it's already a big project. by implementing a webmail now, some of the required data structure changes become clear and can be made now, so the later jmap implementation can do things similarly to the webmail code. the webmail frontend and webmail are written together, making their interface/api much smaller and simpler than jmap. one of the internal changes is that we now keep track of per-mailbox total/unread/unseen/deleted message counts and mailbox sizes. keeping this data consistent after any change to the stored messages (through the code base) is tricky, so mox now has a consistency check that verifies the counts are correct, which runs only during tests, each time an internal account reference is closed. we have a few more internal "changes" that are propagated for the webmail frontend (that imap doesn't have a way to propagate on a connection), like changes to the special-use flags on mailboxes, and used keywords in a mailbox. more changes that will be required have revealed themselves while implementing the webmail, and will be implemented next. the webmail user interface is modeled after the mail clients i use or have used: thunderbird, macos mail, mutt; and webmails i normally only use for testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed, but still the goal is to make this webmail client easy to use for everyone. the user interface looks like most other mail clients: a list of mailboxes, a search bar, a message list view, and message details. there is a top/bottom and a left/right layout for the list/message view, default is automatic based on screen size. the panes can be resized by the user. buttons for actions are just text, not icons. clicking a button briefly shows the shortcut for the action in the bottom right, helping with learning to operate quickly. any text that is underdotted has a title attribute that causes more information to be displayed, e.g. what a button does or a field is about. to highlight potential phishing attempts, any text (anywhere in the webclient) that switches unicode "blocks" (a rough approximation to (language) scripts) within a word is underlined orange. multiple messages can be selected with familiar ui interaction: clicking while holding control and/or shift keys. keyboard navigation works with arrows/page up/down and home/end keys, and also with a few basic vi-like keys for list/message navigation. we prefer showing the text instead of html (with inlined images only) version of a message. html messages are shown in an iframe served from an endpoint with CSP headers to prevent dangerous resources (scripts, external images) from being loaded. the html is also sanitized, with javascript removed. a user can choose to load external resources (e.g. images for tracking purposes). the frontend is just (strict) typescript, no external frameworks. all incoming/outgoing data is typechecked, both the api request parameters and response types, and the data coming in over SSE. the types and checking code are generated with sherpats, which uses the api definitions generated by sherpadoc based on the Go code. so types from the backend are automatically propagated to the frontend. since there is no framework to automatically propagate properties and rerender components, changes coming in over the SSE connection are propagated explicitly with regular function calls. the ui is separated into "views", each with a "root" dom element that is added to the visible document. these views have additional functions for getting changes propagated, often resulting in the view updating its (internal) ui state (dom). we keep the frontend compilation simple, it's just a few typescript files that get compiled (combined and types stripped) into a single js file, no additional runtime code needed or complicated build processes used. the webmail is served is served from a compressed, cachable html file that includes style and the javascript, currently just over 225kb uncompressed, under 60kb compressed (not minified, including comments). we include the generated js files in the repository, to keep Go's easily buildable self-contained binaries. authentication is basic http, as with the account and admin pages. most data comes in over one long-term SSE connection to the backend. api requests signal which mailbox/search/messages are requested over the SSE connection. fetching individual messages, and making changes, are done through api calls. the operations are similar to imap, so some code has been moved from package imapserver to package store. the future jmap implementation will benefit from these changes too. more functionality will probably be moved to the store package in the future. the quickstart enables webmail on the internal listener by default (for new installs). users can enable it on the public listener if they want to. mox localserve enables it too. to enable webmail on existing installs, add settings like the following to the listeners in mox.conf, similar to AccountHTTP(S): WebmailHTTP: Enabled: true WebmailHTTPS: Enabled: true special thanks to liesbeth, gerben, andrii for early user feedback. there is plenty still to do, see the list at the top of webmail/webmail.ts. feedback welcome as always.
2023-08-07 22:57:03 +03:00
}
r.push(dom.a(url, attr.href(url), attr.target('_blank'), attr.rel('noopener noreferrer')))
}
return r
}
// renderText turns text into a renderable element with ">" interpreted as quoted
// text (with different levels), and URLs replaced by links.
const renderText = (text: string): HTMLElement => {
return dom.div(text.split('\n').map(line => {
let q = 0
for (const c of line) {
if (c == '>') {
q++
} else if (c !== ' ') {
break
}
}
if (q == 0) {
return [addLinks(line), '\n']
}
q = (q-1)%3 + 1
return dom.div(dom._class('quoted'+q), addLinks(line))
}))
}
const displayName = (s: string) => {
// ../rfc/5322:1216
// ../rfc/5322:1270
// todo: need support for group addresses (eg "undisclosed recipients").
// ../rfc/5322:697
const specials = /[()<>\[\]:;@\\,."]/
if (specials.test(s)) {
return '"' + s.replace('\\', '\\\\').replace('"', '\\"') + '"'
}
return s
}
// format an address with both name and email address.
const formatAddress = (a: api.MessageAddress): string => {
let s = '<' + a.User + '@' + a.Domain.ASCII + '>'
if (a.Name) {
s = displayName(a.Name) + ' ' + s
}
return s
}
// returns an address with all available details, including unicode version if
// available.
const formatAddressFull = (a: api.MessageAddress): string => {
let s = ''
if (a.Name) {
s = a.Name + ' '
}
s += '<' + a.User + '@' + a.Domain.ASCII + '>'
if (a.Domain.Unicode) {
s += ' (' + a.User + '@' + a.Domain.Unicode + ')'
}
return s
}
// like formatAddressFull, but underline domain with dmarc-like validation if appropriate.
const formatAddressFullValidated = (a: api.MessageAddress, m: api.Message, use: boolean): (string | HTMLElement)[] => {
const domainText = (s: string): HTMLElement | string => {
if (!use) {
return s
}
// We want to show how "approved" this message is given the message From's domain.
// We have MsgFromValidation available. It's not the greatest, being a mix of
// potential strict validations, actual DMARC policy validation, potential relaxed
// validation, but no explicit fail or (temporary) errors. We also don't know if
// historic messages were from a mailing list. We could add a heuristic based on
// List-Id headers, but it would be unreliable...
// todo: add field to Message with the exact results.
let color = ''
let title = ''
switch (m.MsgFromValidation) {
case api.Validation.ValidationStrict:
color = underlineGreen
title = 'Message would have matched a strict DMARC policy.'
break
case api.Validation.ValidationDMARC:
color = underlineGreen
title = 'Message matched DMARC policy of domain.'
break
case api.Validation.ValidationRelaxed:
color = underlineGreen
title = 'Domain did not have a DMARC policy, but message would match a relaxed policy if it had existed.'
break;
case api.Validation.ValidationNone:
if (m.IsForward || m.IsMailingList) {
color = underlineBlue
title = 'Message would not pass DMARC policy, but came in through a configured mailing list or forwarding address.'
} else {
color = underlineRed
title = 'Either domain did not have a DMARC policy, or message did not adhere to it.'
}
break;
default:
// Also for zero value, when unknown. E.g. for sent messages added with IMAP.
return dom.span(attr.title('Unknown DMARC verification result.'), s)
}
return dom.span(attr.title(title), style({borderBottom: '1.5px solid '+color, textDecoration: 'none'}), s)
}
let l: (string | HTMLElement)[] = []
if (a.Name) {
l.push(a.Name + ' ')
}
l.push('<' + a.User + '@')
l.push(domainText(a.Domain.ASCII))
l.push('>')
if (a.Domain.Unicode) {
// Not underlining because unicode domain may already cause underlining.
l.push(' (' + a.User + '@' + a.Domain.Unicode+')')
}
return l
}
// format just the name if present and it doesn't look like an address, or otherwise just the email address.
add webmail it was far down on the roadmap, but implemented earlier, because it's interesting, and to help prepare for a jmap implementation. for jmap we need to implement more client-like functionality than with just imap. internal data structures need to change. jmap has lots of other requirements, so it's already a big project. by implementing a webmail now, some of the required data structure changes become clear and can be made now, so the later jmap implementation can do things similarly to the webmail code. the webmail frontend and webmail are written together, making their interface/api much smaller and simpler than jmap. one of the internal changes is that we now keep track of per-mailbox total/unread/unseen/deleted message counts and mailbox sizes. keeping this data consistent after any change to the stored messages (through the code base) is tricky, so mox now has a consistency check that verifies the counts are correct, which runs only during tests, each time an internal account reference is closed. we have a few more internal "changes" that are propagated for the webmail frontend (that imap doesn't have a way to propagate on a connection), like changes to the special-use flags on mailboxes, and used keywords in a mailbox. more changes that will be required have revealed themselves while implementing the webmail, and will be implemented next. the webmail user interface is modeled after the mail clients i use or have used: thunderbird, macos mail, mutt; and webmails i normally only use for testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed, but still the goal is to make this webmail client easy to use for everyone. the user interface looks like most other mail clients: a list of mailboxes, a search bar, a message list view, and message details. there is a top/bottom and a left/right layout for the list/message view, default is automatic based on screen size. the panes can be resized by the user. buttons for actions are just text, not icons. clicking a button briefly shows the shortcut for the action in the bottom right, helping with learning to operate quickly. any text that is underdotted has a title attribute that causes more information to be displayed, e.g. what a button does or a field is about. to highlight potential phishing attempts, any text (anywhere in the webclient) that switches unicode "blocks" (a rough approximation to (language) scripts) within a word is underlined orange. multiple messages can be selected with familiar ui interaction: clicking while holding control and/or shift keys. keyboard navigation works with arrows/page up/down and home/end keys, and also with a few basic vi-like keys for list/message navigation. we prefer showing the text instead of html (with inlined images only) version of a message. html messages are shown in an iframe served from an endpoint with CSP headers to prevent dangerous resources (scripts, external images) from being loaded. the html is also sanitized, with javascript removed. a user can choose to load external resources (e.g. images for tracking purposes). the frontend is just (strict) typescript, no external frameworks. all incoming/outgoing data is typechecked, both the api request parameters and response types, and the data coming in over SSE. the types and checking code are generated with sherpats, which uses the api definitions generated by sherpadoc based on the Go code. so types from the backend are automatically propagated to the frontend. since there is no framework to automatically propagate properties and rerender components, changes coming in over the SSE connection are propagated explicitly with regular function calls. the ui is separated into "views", each with a "root" dom element that is added to the visible document. these views have additional functions for getting changes propagated, often resulting in the view updating its (internal) ui state (dom). we keep the frontend compilation simple, it's just a few typescript files that get compiled (combined and types stripped) into a single js file, no additional runtime code needed or complicated build processes used. the webmail is served is served from a compressed, cachable html file that includes style and the javascript, currently just over 225kb uncompressed, under 60kb compressed (not minified, including comments). we include the generated js files in the repository, to keep Go's easily buildable self-contained binaries. authentication is basic http, as with the account and admin pages. most data comes in over one long-term SSE connection to the backend. api requests signal which mailbox/search/messages are requested over the SSE connection. fetching individual messages, and making changes, are done through api calls. the operations are similar to imap, so some code has been moved from package imapserver to package store. the future jmap implementation will benefit from these changes too. more functionality will probably be moved to the store package in the future. the quickstart enables webmail on the internal listener by default (for new installs). users can enable it on the public listener if they want to. mox localserve enables it too. to enable webmail on existing installs, add settings like the following to the listeners in mox.conf, similar to AccountHTTP(S): WebmailHTTP: Enabled: true WebmailHTTPS: Enabled: true special thanks to liesbeth, gerben, andrii for early user feedback. there is plenty still to do, see the list at the top of webmail/webmail.ts. feedback welcome as always.
2023-08-07 22:57:03 +03:00
const formatAddressShort = (a: api.MessageAddress): string => {
const n = a.Name
if (n && !n.includes('<') && !n.includes('@') && !n.includes('>')) {
return n
add webmail it was far down on the roadmap, but implemented earlier, because it's interesting, and to help prepare for a jmap implementation. for jmap we need to implement more client-like functionality than with just imap. internal data structures need to change. jmap has lots of other requirements, so it's already a big project. by implementing a webmail now, some of the required data structure changes become clear and can be made now, so the later jmap implementation can do things similarly to the webmail code. the webmail frontend and webmail are written together, making their interface/api much smaller and simpler than jmap. one of the internal changes is that we now keep track of per-mailbox total/unread/unseen/deleted message counts and mailbox sizes. keeping this data consistent after any change to the stored messages (through the code base) is tricky, so mox now has a consistency check that verifies the counts are correct, which runs only during tests, each time an internal account reference is closed. we have a few more internal "changes" that are propagated for the webmail frontend (that imap doesn't have a way to propagate on a connection), like changes to the special-use flags on mailboxes, and used keywords in a mailbox. more changes that will be required have revealed themselves while implementing the webmail, and will be implemented next. the webmail user interface is modeled after the mail clients i use or have used: thunderbird, macos mail, mutt; and webmails i normally only use for testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed, but still the goal is to make this webmail client easy to use for everyone. the user interface looks like most other mail clients: a list of mailboxes, a search bar, a message list view, and message details. there is a top/bottom and a left/right layout for the list/message view, default is automatic based on screen size. the panes can be resized by the user. buttons for actions are just text, not icons. clicking a button briefly shows the shortcut for the action in the bottom right, helping with learning to operate quickly. any text that is underdotted has a title attribute that causes more information to be displayed, e.g. what a button does or a field is about. to highlight potential phishing attempts, any text (anywhere in the webclient) that switches unicode "blocks" (a rough approximation to (language) scripts) within a word is underlined orange. multiple messages can be selected with familiar ui interaction: clicking while holding control and/or shift keys. keyboard navigation works with arrows/page up/down and home/end keys, and also with a few basic vi-like keys for list/message navigation. we prefer showing the text instead of html (with inlined images only) version of a message. html messages are shown in an iframe served from an endpoint with CSP headers to prevent dangerous resources (scripts, external images) from being loaded. the html is also sanitized, with javascript removed. a user can choose to load external resources (e.g. images for tracking purposes). the frontend is just (strict) typescript, no external frameworks. all incoming/outgoing data is typechecked, both the api request parameters and response types, and the data coming in over SSE. the types and checking code are generated with sherpats, which uses the api definitions generated by sherpadoc based on the Go code. so types from the backend are automatically propagated to the frontend. since there is no framework to automatically propagate properties and rerender components, changes coming in over the SSE connection are propagated explicitly with regular function calls. the ui is separated into "views", each with a "root" dom element that is added to the visible document. these views have additional functions for getting changes propagated, often resulting in the view updating its (internal) ui state (dom). we keep the frontend compilation simple, it's just a few typescript files that get compiled (combined and types stripped) into a single js file, no additional runtime code needed or complicated build processes used. the webmail is served is served from a compressed, cachable html file that includes style and the javascript, currently just over 225kb uncompressed, under 60kb compressed (not minified, including comments). we include the generated js files in the repository, to keep Go's easily buildable self-contained binaries. authentication is basic http, as with the account and admin pages. most data comes in over one long-term SSE connection to the backend. api requests signal which mailbox/search/messages are requested over the SSE connection. fetching individual messages, and making changes, are done through api calls. the operations are similar to imap, so some code has been moved from package imapserver to package store. the future jmap implementation will benefit from these changes too. more functionality will probably be moved to the store package in the future. the quickstart enables webmail on the internal listener by default (for new installs). users can enable it on the public listener if they want to. mox localserve enables it too. to enable webmail on existing installs, add settings like the following to the listeners in mox.conf, similar to AccountHTTP(S): WebmailHTTP: Enabled: true WebmailHTTPS: Enabled: true special thanks to liesbeth, gerben, andrii for early user feedback. there is plenty still to do, see the list at the top of webmail/webmail.ts. feedback welcome as always.
2023-08-07 22:57:03 +03:00
}
return '<' + a.User + '@' + a.Domain.ASCII + '>'
}
// return just the email address.
const formatEmailASCII = (a: api.MessageAddress): string => {
return a.User + '@' + a.Domain.ASCII
}
const equalAddress = (a: api.MessageAddress, b: api.MessageAddress) => {
return (!a.User || !b.User || a.User === b.User) && a.Domain.ASCII === b.Domain.ASCII
}
const addressList = (allAddrs: boolean, l: api.MessageAddress[]) => {
if (l.length <= 5 || allAddrs) {
return dom.span(join(l.map(a => formatAddressFull(a)), () => ', '))
}
let elem = dom.span(
join(
l.slice(0, 4).map(a => formatAddressFull(a)),
() => ', '
),
' ',
dom.clickbutton('More...', attr.title('More addresses:\n'+l.slice(4).map(a => formatAddressFull(a)).join(',\n')), function click() {
const nelem = dom.span(
join(l.map(a => formatAddressFull(a)), () => ', '),
' ',
dom.clickbutton('Less...', function click() {
elem.replaceWith(addressList(allAddrs, l))
}),
)
elem.replaceWith(nelem)
elem = nelem
})
)
return elem
}
add webmail it was far down on the roadmap, but implemented earlier, because it's interesting, and to help prepare for a jmap implementation. for jmap we need to implement more client-like functionality than with just imap. internal data structures need to change. jmap has lots of other requirements, so it's already a big project. by implementing a webmail now, some of the required data structure changes become clear and can be made now, so the later jmap implementation can do things similarly to the webmail code. the webmail frontend and webmail are written together, making their interface/api much smaller and simpler than jmap. one of the internal changes is that we now keep track of per-mailbox total/unread/unseen/deleted message counts and mailbox sizes. keeping this data consistent after any change to the stored messages (through the code base) is tricky, so mox now has a consistency check that verifies the counts are correct, which runs only during tests, each time an internal account reference is closed. we have a few more internal "changes" that are propagated for the webmail frontend (that imap doesn't have a way to propagate on a connection), like changes to the special-use flags on mailboxes, and used keywords in a mailbox. more changes that will be required have revealed themselves while implementing the webmail, and will be implemented next. the webmail user interface is modeled after the mail clients i use or have used: thunderbird, macos mail, mutt; and webmails i normally only use for testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed, but still the goal is to make this webmail client easy to use for everyone. the user interface looks like most other mail clients: a list of mailboxes, a search bar, a message list view, and message details. there is a top/bottom and a left/right layout for the list/message view, default is automatic based on screen size. the panes can be resized by the user. buttons for actions are just text, not icons. clicking a button briefly shows the shortcut for the action in the bottom right, helping with learning to operate quickly. any text that is underdotted has a title attribute that causes more information to be displayed, e.g. what a button does or a field is about. to highlight potential phishing attempts, any text (anywhere in the webclient) that switches unicode "blocks" (a rough approximation to (language) scripts) within a word is underlined orange. multiple messages can be selected with familiar ui interaction: clicking while holding control and/or shift keys. keyboard navigation works with arrows/page up/down and home/end keys, and also with a few basic vi-like keys for list/message navigation. we prefer showing the text instead of html (with inlined images only) version of a message. html messages are shown in an iframe served from an endpoint with CSP headers to prevent dangerous resources (scripts, external images) from being loaded. the html is also sanitized, with javascript removed. a user can choose to load external resources (e.g. images for tracking purposes). the frontend is just (strict) typescript, no external frameworks. all incoming/outgoing data is typechecked, both the api request parameters and response types, and the data coming in over SSE. the types and checking code are generated with sherpats, which uses the api definitions generated by sherpadoc based on the Go code. so types from the backend are automatically propagated to the frontend. since there is no framework to automatically propagate properties and rerender components, changes coming in over the SSE connection are propagated explicitly with regular function calls. the ui is separated into "views", each with a "root" dom element that is added to the visible document. these views have additional functions for getting changes propagated, often resulting in the view updating its (internal) ui state (dom). we keep the frontend compilation simple, it's just a few typescript files that get compiled (combined and types stripped) into a single js file, no additional runtime code needed or complicated build processes used. the webmail is served is served from a compressed, cachable html file that includes style and the javascript, currently just over 225kb uncompressed, under 60kb compressed (not minified, including comments). we include the generated js files in the repository, to keep Go's easily buildable self-contained binaries. authentication is basic http, as with the account and admin pages. most data comes in over one long-term SSE connection to the backend. api requests signal which mailbox/search/messages are requested over the SSE connection. fetching individual messages, and making changes, are done through api calls. the operations are similar to imap, so some code has been moved from package imapserver to package store. the future jmap implementation will benefit from these changes too. more functionality will probably be moved to the store package in the future. the quickstart enables webmail on the internal listener by default (for new installs). users can enable it on the public listener if they want to. mox localserve enables it too. to enable webmail on existing installs, add settings like the following to the listeners in mox.conf, similar to AccountHTTP(S): WebmailHTTP: Enabled: true WebmailHTTPS: Enabled: true special thanks to liesbeth, gerben, andrii for early user feedback. there is plenty still to do, see the list at the top of webmail/webmail.ts. feedback welcome as always.
2023-08-07 22:57:03 +03:00
// loadMsgheaderView loads the common message headers into msgheaderelem.
// if refineKeyword is set, labels are shown and a click causes a call to
// refineKeyword.
const loadMsgheaderView = (msgheaderelem: HTMLElement, mi: api.MessageItem, moreHeaders: string[], refineKeyword: null | ((kw: string) => Promise<void>), allAddrs: boolean) => {
add webmail it was far down on the roadmap, but implemented earlier, because it's interesting, and to help prepare for a jmap implementation. for jmap we need to implement more client-like functionality than with just imap. internal data structures need to change. jmap has lots of other requirements, so it's already a big project. by implementing a webmail now, some of the required data structure changes become clear and can be made now, so the later jmap implementation can do things similarly to the webmail code. the webmail frontend and webmail are written together, making their interface/api much smaller and simpler than jmap. one of the internal changes is that we now keep track of per-mailbox total/unread/unseen/deleted message counts and mailbox sizes. keeping this data consistent after any change to the stored messages (through the code base) is tricky, so mox now has a consistency check that verifies the counts are correct, which runs only during tests, each time an internal account reference is closed. we have a few more internal "changes" that are propagated for the webmail frontend (that imap doesn't have a way to propagate on a connection), like changes to the special-use flags on mailboxes, and used keywords in a mailbox. more changes that will be required have revealed themselves while implementing the webmail, and will be implemented next. the webmail user interface is modeled after the mail clients i use or have used: thunderbird, macos mail, mutt; and webmails i normally only use for testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed, but still the goal is to make this webmail client easy to use for everyone. the user interface looks like most other mail clients: a list of mailboxes, a search bar, a message list view, and message details. there is a top/bottom and a left/right layout for the list/message view, default is automatic based on screen size. the panes can be resized by the user. buttons for actions are just text, not icons. clicking a button briefly shows the shortcut for the action in the bottom right, helping with learning to operate quickly. any text that is underdotted has a title attribute that causes more information to be displayed, e.g. what a button does or a field is about. to highlight potential phishing attempts, any text (anywhere in the webclient) that switches unicode "blocks" (a rough approximation to (language) scripts) within a word is underlined orange. multiple messages can be selected with familiar ui interaction: clicking while holding control and/or shift keys. keyboard navigation works with arrows/page up/down and home/end keys, and also with a few basic vi-like keys for list/message navigation. we prefer showing the text instead of html (with inlined images only) version of a message. html messages are shown in an iframe served from an endpoint with CSP headers to prevent dangerous resources (scripts, external images) from being loaded. the html is also sanitized, with javascript removed. a user can choose to load external resources (e.g. images for tracking purposes). the frontend is just (strict) typescript, no external frameworks. all incoming/outgoing data is typechecked, both the api request parameters and response types, and the data coming in over SSE. the types and checking code are generated with sherpats, which uses the api definitions generated by sherpadoc based on the Go code. so types from the backend are automatically propagated to the frontend. since there is no framework to automatically propagate properties and rerender components, changes coming in over the SSE connection are propagated explicitly with regular function calls. the ui is separated into "views", each with a "root" dom element that is added to the visible document. these views have additional functions for getting changes propagated, often resulting in the view updating its (internal) ui state (dom). we keep the frontend compilation simple, it's just a few typescript files that get compiled (combined and types stripped) into a single js file, no additional runtime code needed or complicated build processes used. the webmail is served is served from a compressed, cachable html file that includes style and the javascript, currently just over 225kb uncompressed, under 60kb compressed (not minified, including comments). we include the generated js files in the repository, to keep Go's easily buildable self-contained binaries. authentication is basic http, as with the account and admin pages. most data comes in over one long-term SSE connection to the backend. api requests signal which mailbox/search/messages are requested over the SSE connection. fetching individual messages, and making changes, are done through api calls. the operations are similar to imap, so some code has been moved from package imapserver to package store. the future jmap implementation will benefit from these changes too. more functionality will probably be moved to the store package in the future. the quickstart enables webmail on the internal listener by default (for new installs). users can enable it on the public listener if they want to. mox localserve enables it too. to enable webmail on existing installs, add settings like the following to the listeners in mox.conf, similar to AccountHTTP(S): WebmailHTTP: Enabled: true WebmailHTTPS: Enabled: true special thanks to liesbeth, gerben, andrii for early user feedback. there is plenty still to do, see the list at the top of webmail/webmail.ts. feedback welcome as always.
2023-08-07 22:57:03 +03:00
const msgenv = mi.Envelope
const received = mi.Message.Received
const receivedlocal = new Date(received.getTime())
add webmail it was far down on the roadmap, but implemented earlier, because it's interesting, and to help prepare for a jmap implementation. for jmap we need to implement more client-like functionality than with just imap. internal data structures need to change. jmap has lots of other requirements, so it's already a big project. by implementing a webmail now, some of the required data structure changes become clear and can be made now, so the later jmap implementation can do things similarly to the webmail code. the webmail frontend and webmail are written together, making their interface/api much smaller and simpler than jmap. one of the internal changes is that we now keep track of per-mailbox total/unread/unseen/deleted message counts and mailbox sizes. keeping this data consistent after any change to the stored messages (through the code base) is tricky, so mox now has a consistency check that verifies the counts are correct, which runs only during tests, each time an internal account reference is closed. we have a few more internal "changes" that are propagated for the webmail frontend (that imap doesn't have a way to propagate on a connection), like changes to the special-use flags on mailboxes, and used keywords in a mailbox. more changes that will be required have revealed themselves while implementing the webmail, and will be implemented next. the webmail user interface is modeled after the mail clients i use or have used: thunderbird, macos mail, mutt; and webmails i normally only use for testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed, but still the goal is to make this webmail client easy to use for everyone. the user interface looks like most other mail clients: a list of mailboxes, a search bar, a message list view, and message details. there is a top/bottom and a left/right layout for the list/message view, default is automatic based on screen size. the panes can be resized by the user. buttons for actions are just text, not icons. clicking a button briefly shows the shortcut for the action in the bottom right, helping with learning to operate quickly. any text that is underdotted has a title attribute that causes more information to be displayed, e.g. what a button does or a field is about. to highlight potential phishing attempts, any text (anywhere in the webclient) that switches unicode "blocks" (a rough approximation to (language) scripts) within a word is underlined orange. multiple messages can be selected with familiar ui interaction: clicking while holding control and/or shift keys. keyboard navigation works with arrows/page up/down and home/end keys, and also with a few basic vi-like keys for list/message navigation. we prefer showing the text instead of html (with inlined images only) version of a message. html messages are shown in an iframe served from an endpoint with CSP headers to prevent dangerous resources (scripts, external images) from being loaded. the html is also sanitized, with javascript removed. a user can choose to load external resources (e.g. images for tracking purposes). the frontend is just (strict) typescript, no external frameworks. all incoming/outgoing data is typechecked, both the api request parameters and response types, and the data coming in over SSE. the types and checking code are generated with sherpats, which uses the api definitions generated by sherpadoc based on the Go code. so types from the backend are automatically propagated to the frontend. since there is no framework to automatically propagate properties and rerender components, changes coming in over the SSE connection are propagated explicitly with regular function calls. the ui is separated into "views", each with a "root" dom element that is added to the visible document. these views have additional functions for getting changes propagated, often resulting in the view updating its (internal) ui state (dom). we keep the frontend compilation simple, it's just a few typescript files that get compiled (combined and types stripped) into a single js file, no additional runtime code needed or complicated build processes used. the webmail is served is served from a compressed, cachable html file that includes style and the javascript, currently just over 225kb uncompressed, under 60kb compressed (not minified, including comments). we include the generated js files in the repository, to keep Go's easily buildable self-contained binaries. authentication is basic http, as with the account and admin pages. most data comes in over one long-term SSE connection to the backend. api requests signal which mailbox/search/messages are requested over the SSE connection. fetching individual messages, and making changes, are done through api calls. the operations are similar to imap, so some code has been moved from package imapserver to package store. the future jmap implementation will benefit from these changes too. more functionality will probably be moved to the store package in the future. the quickstart enables webmail on the internal listener by default (for new installs). users can enable it on the public listener if they want to. mox localserve enables it too. to enable webmail on existing installs, add settings like the following to the listeners in mox.conf, similar to AccountHTTP(S): WebmailHTTP: Enabled: true WebmailHTTPS: Enabled: true special thanks to liesbeth, gerben, andrii for early user feedback. there is plenty still to do, see the list at the top of webmail/webmail.ts. feedback welcome as always.
2023-08-07 22:57:03 +03:00
dom._kids(msgheaderelem,
// todo: make addresses clickable, start search (keep current mailbox if any)
dom.tr(
dom.td('From:', style({textAlign: 'right', color: '#555', whiteSpace: 'nowrap'})),
dom.td(
style({width: '100%'}),
dom.div(style({display: 'flex', justifyContent: 'space-between'}),
dom.div(join((msgenv.From || []).map(a => formatAddressFullValidated(a, mi.Message, !!msgenv.From && msgenv.From.length === 1)), () => ', ')),
add webmail it was far down on the roadmap, but implemented earlier, because it's interesting, and to help prepare for a jmap implementation. for jmap we need to implement more client-like functionality than with just imap. internal data structures need to change. jmap has lots of other requirements, so it's already a big project. by implementing a webmail now, some of the required data structure changes become clear and can be made now, so the later jmap implementation can do things similarly to the webmail code. the webmail frontend and webmail are written together, making their interface/api much smaller and simpler than jmap. one of the internal changes is that we now keep track of per-mailbox total/unread/unseen/deleted message counts and mailbox sizes. keeping this data consistent after any change to the stored messages (through the code base) is tricky, so mox now has a consistency check that verifies the counts are correct, which runs only during tests, each time an internal account reference is closed. we have a few more internal "changes" that are propagated for the webmail frontend (that imap doesn't have a way to propagate on a connection), like changes to the special-use flags on mailboxes, and used keywords in a mailbox. more changes that will be required have revealed themselves while implementing the webmail, and will be implemented next. the webmail user interface is modeled after the mail clients i use or have used: thunderbird, macos mail, mutt; and webmails i normally only use for testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed, but still the goal is to make this webmail client easy to use for everyone. the user interface looks like most other mail clients: a list of mailboxes, a search bar, a message list view, and message details. there is a top/bottom and a left/right layout for the list/message view, default is automatic based on screen size. the panes can be resized by the user. buttons for actions are just text, not icons. clicking a button briefly shows the shortcut for the action in the bottom right, helping with learning to operate quickly. any text that is underdotted has a title attribute that causes more information to be displayed, e.g. what a button does or a field is about. to highlight potential phishing attempts, any text (anywhere in the webclient) that switches unicode "blocks" (a rough approximation to (language) scripts) within a word is underlined orange. multiple messages can be selected with familiar ui interaction: clicking while holding control and/or shift keys. keyboard navigation works with arrows/page up/down and home/end keys, and also with a few basic vi-like keys for list/message navigation. we prefer showing the text instead of html (with inlined images only) version of a message. html messages are shown in an iframe served from an endpoint with CSP headers to prevent dangerous resources (scripts, external images) from being loaded. the html is also sanitized, with javascript removed. a user can choose to load external resources (e.g. images for tracking purposes). the frontend is just (strict) typescript, no external frameworks. all incoming/outgoing data is typechecked, both the api request parameters and response types, and the data coming in over SSE. the types and checking code are generated with sherpats, which uses the api definitions generated by sherpadoc based on the Go code. so types from the backend are automatically propagated to the frontend. since there is no framework to automatically propagate properties and rerender components, changes coming in over the SSE connection are propagated explicitly with regular function calls. the ui is separated into "views", each with a "root" dom element that is added to the visible document. these views have additional functions for getting changes propagated, often resulting in the view updating its (internal) ui state (dom). we keep the frontend compilation simple, it's just a few typescript files that get compiled (combined and types stripped) into a single js file, no additional runtime code needed or complicated build processes used. the webmail is served is served from a compressed, cachable html file that includes style and the javascript, currently just over 225kb uncompressed, under 60kb compressed (not minified, including comments). we include the generated js files in the repository, to keep Go's easily buildable self-contained binaries. authentication is basic http, as with the account and admin pages. most data comes in over one long-term SSE connection to the backend. api requests signal which mailbox/search/messages are requested over the SSE connection. fetching individual messages, and making changes, are done through api calls. the operations are similar to imap, so some code has been moved from package imapserver to package store. the future jmap implementation will benefit from these changes too. more functionality will probably be moved to the store package in the future. the quickstart enables webmail on the internal listener by default (for new installs). users can enable it on the public listener if they want to. mox localserve enables it too. to enable webmail on existing installs, add settings like the following to the listeners in mox.conf, similar to AccountHTTP(S): WebmailHTTP: Enabled: true WebmailHTTPS: Enabled: true special thanks to liesbeth, gerben, andrii for early user feedback. there is plenty still to do, see the list at the top of webmail/webmail.ts. feedback welcome as always.
2023-08-07 22:57:03 +03:00
dom.div(
attr.title('Received: ' + received.toString() + ';\nDate header in message: ' + (msgenv.Date ? msgenv.Date.toString() : '(missing/invalid)')),
receivedlocal.toDateString() + ' ' + receivedlocal.toTimeString().split(' ')[0],
),
)
),
),
(msgenv.ReplyTo || []).length === 0 ? [] : dom.tr(
dom.td('Reply-To:', style({textAlign: 'right', color: '#555', whiteSpace: 'nowrap'})),
dom.td(join((msgenv.ReplyTo || []).map(a => formatAddressFull(a)), () => ', ')),
),
dom.tr(
dom.td('To:', style({textAlign: 'right', color: '#555', whiteSpace: 'nowrap'})),
dom.td(addressList(allAddrs, msgenv.To || [])),
add webmail it was far down on the roadmap, but implemented earlier, because it's interesting, and to help prepare for a jmap implementation. for jmap we need to implement more client-like functionality than with just imap. internal data structures need to change. jmap has lots of other requirements, so it's already a big project. by implementing a webmail now, some of the required data structure changes become clear and can be made now, so the later jmap implementation can do things similarly to the webmail code. the webmail frontend and webmail are written together, making their interface/api much smaller and simpler than jmap. one of the internal changes is that we now keep track of per-mailbox total/unread/unseen/deleted message counts and mailbox sizes. keeping this data consistent after any change to the stored messages (through the code base) is tricky, so mox now has a consistency check that verifies the counts are correct, which runs only during tests, each time an internal account reference is closed. we have a few more internal "changes" that are propagated for the webmail frontend (that imap doesn't have a way to propagate on a connection), like changes to the special-use flags on mailboxes, and used keywords in a mailbox. more changes that will be required have revealed themselves while implementing the webmail, and will be implemented next. the webmail user interface is modeled after the mail clients i use or have used: thunderbird, macos mail, mutt; and webmails i normally only use for testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed, but still the goal is to make this webmail client easy to use for everyone. the user interface looks like most other mail clients: a list of mailboxes, a search bar, a message list view, and message details. there is a top/bottom and a left/right layout for the list/message view, default is automatic based on screen size. the panes can be resized by the user. buttons for actions are just text, not icons. clicking a button briefly shows the shortcut for the action in the bottom right, helping with learning to operate quickly. any text that is underdotted has a title attribute that causes more information to be displayed, e.g. what a button does or a field is about. to highlight potential phishing attempts, any text (anywhere in the webclient) that switches unicode "blocks" (a rough approximation to (language) scripts) within a word is underlined orange. multiple messages can be selected with familiar ui interaction: clicking while holding control and/or shift keys. keyboard navigation works with arrows/page up/down and home/end keys, and also with a few basic vi-like keys for list/message navigation. we prefer showing the text instead of html (with inlined images only) version of a message. html messages are shown in an iframe served from an endpoint with CSP headers to prevent dangerous resources (scripts, external images) from being loaded. the html is also sanitized, with javascript removed. a user can choose to load external resources (e.g. images for tracking purposes). the frontend is just (strict) typescript, no external frameworks. all incoming/outgoing data is typechecked, both the api request parameters and response types, and the data coming in over SSE. the types and checking code are generated with sherpats, which uses the api definitions generated by sherpadoc based on the Go code. so types from the backend are automatically propagated to the frontend. since there is no framework to automatically propagate properties and rerender components, changes coming in over the SSE connection are propagated explicitly with regular function calls. the ui is separated into "views", each with a "root" dom element that is added to the visible document. these views have additional functions for getting changes propagated, often resulting in the view updating its (internal) ui state (dom). we keep the frontend compilation simple, it's just a few typescript files that get compiled (combined and types stripped) into a single js file, no additional runtime code needed or complicated build processes used. the webmail is served is served from a compressed, cachable html file that includes style and the javascript, currently just over 225kb uncompressed, under 60kb compressed (not minified, including comments). we include the generated js files in the repository, to keep Go's easily buildable self-contained binaries. authentication is basic http, as with the account and admin pages. most data comes in over one long-term SSE connection to the backend. api requests signal which mailbox/search/messages are requested over the SSE connection. fetching individual messages, and making changes, are done through api calls. the operations are similar to imap, so some code has been moved from package imapserver to package store. the future jmap implementation will benefit from these changes too. more functionality will probably be moved to the store package in the future. the quickstart enables webmail on the internal listener by default (for new installs). users can enable it on the public listener if they want to. mox localserve enables it too. to enable webmail on existing installs, add settings like the following to the listeners in mox.conf, similar to AccountHTTP(S): WebmailHTTP: Enabled: true WebmailHTTPS: Enabled: true special thanks to liesbeth, gerben, andrii for early user feedback. there is plenty still to do, see the list at the top of webmail/webmail.ts. feedback welcome as always.
2023-08-07 22:57:03 +03:00
),
(msgenv.CC || []).length === 0 ? [] : dom.tr(
dom.td('Cc:', style({textAlign: 'right', color: '#555', whiteSpace: 'nowrap'})),
dom.td(addressList(allAddrs, msgenv.CC || [])),
add webmail it was far down on the roadmap, but implemented earlier, because it's interesting, and to help prepare for a jmap implementation. for jmap we need to implement more client-like functionality than with just imap. internal data structures need to change. jmap has lots of other requirements, so it's already a big project. by implementing a webmail now, some of the required data structure changes become clear and can be made now, so the later jmap implementation can do things similarly to the webmail code. the webmail frontend and webmail are written together, making their interface/api much smaller and simpler than jmap. one of the internal changes is that we now keep track of per-mailbox total/unread/unseen/deleted message counts and mailbox sizes. keeping this data consistent after any change to the stored messages (through the code base) is tricky, so mox now has a consistency check that verifies the counts are correct, which runs only during tests, each time an internal account reference is closed. we have a few more internal "changes" that are propagated for the webmail frontend (that imap doesn't have a way to propagate on a connection), like changes to the special-use flags on mailboxes, and used keywords in a mailbox. more changes that will be required have revealed themselves while implementing the webmail, and will be implemented next. the webmail user interface is modeled after the mail clients i use or have used: thunderbird, macos mail, mutt; and webmails i normally only use for testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed, but still the goal is to make this webmail client easy to use for everyone. the user interface looks like most other mail clients: a list of mailboxes, a search bar, a message list view, and message details. there is a top/bottom and a left/right layout for the list/message view, default is automatic based on screen size. the panes can be resized by the user. buttons for actions are just text, not icons. clicking a button briefly shows the shortcut for the action in the bottom right, helping with learning to operate quickly. any text that is underdotted has a title attribute that causes more information to be displayed, e.g. what a button does or a field is about. to highlight potential phishing attempts, any text (anywhere in the webclient) that switches unicode "blocks" (a rough approximation to (language) scripts) within a word is underlined orange. multiple messages can be selected with familiar ui interaction: clicking while holding control and/or shift keys. keyboard navigation works with arrows/page up/down and home/end keys, and also with a few basic vi-like keys for list/message navigation. we prefer showing the text instead of html (with inlined images only) version of a message. html messages are shown in an iframe served from an endpoint with CSP headers to prevent dangerous resources (scripts, external images) from being loaded. the html is also sanitized, with javascript removed. a user can choose to load external resources (e.g. images for tracking purposes). the frontend is just (strict) typescript, no external frameworks. all incoming/outgoing data is typechecked, both the api request parameters and response types, and the data coming in over SSE. the types and checking code are generated with sherpats, which uses the api definitions generated by sherpadoc based on the Go code. so types from the backend are automatically propagated to the frontend. since there is no framework to automatically propagate properties and rerender components, changes coming in over the SSE connection are propagated explicitly with regular function calls. the ui is separated into "views", each with a "root" dom element that is added to the visible document. these views have additional functions for getting changes propagated, often resulting in the view updating its (internal) ui state (dom). we keep the frontend compilation simple, it's just a few typescript files that get compiled (combined and types stripped) into a single js file, no additional runtime code needed or complicated build processes used. the webmail is served is served from a compressed, cachable html file that includes style and the javascript, currently just over 225kb uncompressed, under 60kb compressed (not minified, including comments). we include the generated js files in the repository, to keep Go's easily buildable self-contained binaries. authentication is basic http, as with the account and admin pages. most data comes in over one long-term SSE connection to the backend. api requests signal which mailbox/search/messages are requested over the SSE connection. fetching individual messages, and making changes, are done through api calls. the operations are similar to imap, so some code has been moved from package imapserver to package store. the future jmap implementation will benefit from these changes too. more functionality will probably be moved to the store package in the future. the quickstart enables webmail on the internal listener by default (for new installs). users can enable it on the public listener if they want to. mox localserve enables it too. to enable webmail on existing installs, add settings like the following to the listeners in mox.conf, similar to AccountHTTP(S): WebmailHTTP: Enabled: true WebmailHTTPS: Enabled: true special thanks to liesbeth, gerben, andrii for early user feedback. there is plenty still to do, see the list at the top of webmail/webmail.ts. feedback welcome as always.
2023-08-07 22:57:03 +03:00
),
(msgenv.BCC || []).length === 0 ? [] : dom.tr(
dom.td('Bcc:', style({textAlign: 'right', color: '#555', whiteSpace: 'nowrap'})),
dom.td(addressList(allAddrs, msgenv.BCC || [])),
add webmail it was far down on the roadmap, but implemented earlier, because it's interesting, and to help prepare for a jmap implementation. for jmap we need to implement more client-like functionality than with just imap. internal data structures need to change. jmap has lots of other requirements, so it's already a big project. by implementing a webmail now, some of the required data structure changes become clear and can be made now, so the later jmap implementation can do things similarly to the webmail code. the webmail frontend and webmail are written together, making their interface/api much smaller and simpler than jmap. one of the internal changes is that we now keep track of per-mailbox total/unread/unseen/deleted message counts and mailbox sizes. keeping this data consistent after any change to the stored messages (through the code base) is tricky, so mox now has a consistency check that verifies the counts are correct, which runs only during tests, each time an internal account reference is closed. we have a few more internal "changes" that are propagated for the webmail frontend (that imap doesn't have a way to propagate on a connection), like changes to the special-use flags on mailboxes, and used keywords in a mailbox. more changes that will be required have revealed themselves while implementing the webmail, and will be implemented next. the webmail user interface is modeled after the mail clients i use or have used: thunderbird, macos mail, mutt; and webmails i normally only use for testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed, but still the goal is to make this webmail client easy to use for everyone. the user interface looks like most other mail clients: a list of mailboxes, a search bar, a message list view, and message details. there is a top/bottom and a left/right layout for the list/message view, default is automatic based on screen size. the panes can be resized by the user. buttons for actions are just text, not icons. clicking a button briefly shows the shortcut for the action in the bottom right, helping with learning to operate quickly. any text that is underdotted has a title attribute that causes more information to be displayed, e.g. what a button does or a field is about. to highlight potential phishing attempts, any text (anywhere in the webclient) that switches unicode "blocks" (a rough approximation to (language) scripts) within a word is underlined orange. multiple messages can be selected with familiar ui interaction: clicking while holding control and/or shift keys. keyboard navigation works with arrows/page up/down and home/end keys, and also with a few basic vi-like keys for list/message navigation. we prefer showing the text instead of html (with inlined images only) version of a message. html messages are shown in an iframe served from an endpoint with CSP headers to prevent dangerous resources (scripts, external images) from being loaded. the html is also sanitized, with javascript removed. a user can choose to load external resources (e.g. images for tracking purposes). the frontend is just (strict) typescript, no external frameworks. all incoming/outgoing data is typechecked, both the api request parameters and response types, and the data coming in over SSE. the types and checking code are generated with sherpats, which uses the api definitions generated by sherpadoc based on the Go code. so types from the backend are automatically propagated to the frontend. since there is no framework to automatically propagate properties and rerender components, changes coming in over the SSE connection are propagated explicitly with regular function calls. the ui is separated into "views", each with a "root" dom element that is added to the visible document. these views have additional functions for getting changes propagated, often resulting in the view updating its (internal) ui state (dom). we keep the frontend compilation simple, it's just a few typescript files that get compiled (combined and types stripped) into a single js file, no additional runtime code needed or complicated build processes used. the webmail is served is served from a compressed, cachable html file that includes style and the javascript, currently just over 225kb uncompressed, under 60kb compressed (not minified, including comments). we include the generated js files in the repository, to keep Go's easily buildable self-contained binaries. authentication is basic http, as with the account and admin pages. most data comes in over one long-term SSE connection to the backend. api requests signal which mailbox/search/messages are requested over the SSE connection. fetching individual messages, and making changes, are done through api calls. the operations are similar to imap, so some code has been moved from package imapserver to package store. the future jmap implementation will benefit from these changes too. more functionality will probably be moved to the store package in the future. the quickstart enables webmail on the internal listener by default (for new installs). users can enable it on the public listener if they want to. mox localserve enables it too. to enable webmail on existing installs, add settings like the following to the listeners in mox.conf, similar to AccountHTTP(S): WebmailHTTP: Enabled: true WebmailHTTPS: Enabled: true special thanks to liesbeth, gerben, andrii for early user feedback. there is plenty still to do, see the list at the top of webmail/webmail.ts. feedback welcome as always.
2023-08-07 22:57:03 +03:00
),
dom.tr(
dom.td('Subject:', style({textAlign: 'right', color: '#555', whiteSpace: 'nowrap'})),
dom.td(
dom.div(style({display: 'flex', justifyContent: 'space-between'}),
dom.div(msgenv.Subject || ''),
dom.div(
mi.Message.IsForward ? dom.span(style({padding: '0px 0.15em', fontSize: '.9em'}), 'Forwarded', attr.title('Message came in from a forwarded address. Some message authentication policies, like DMARC, were not evaluated.')) : [],
mi.Message.IsMailingList ? dom.span(style({padding: '0px 0.15em', fontSize: '.9em'}), 'Mailing list', attr.title('Message was received from a mailing list. Some message authentication policies, like DMARC, were not evaluated.')) : [],
mi.Message.ReceivedTLSVersion === 1 ? dom.span(style({padding: '0px 0.15em', fontSize: '.9em', borderBottom: '1.5px solid #e15d1c'}), 'Without TLS', attr.title('Message received (last hop) without TLS.')) : [],
mi.Message.ReceivedTLSVersion > 1 && !mi.Message.ReceivedRequireTLS ? dom.span(style({padding: '0px 0.15em', fontSize: '.9em', borderBottom: '1.5px solid #50c40f'}), 'With TLS', attr.title('Message received (last hop) with TLS.')) : [],
mi.Message.ReceivedRequireTLS ? dom.span(style({padding: '.1em .3em', fontSize: '.9em', backgroundColor: '#d2f791', border: '1px solid #ccc', borderRadius: '3px'}), 'With RequireTLS', attr.title('Transported with RequireTLS, ensuring TLS along the entire delivery path from sender to recipient, with TLS certificate verification through MTA-STS and/or DANE.')) : [],
add webmail it was far down on the roadmap, but implemented earlier, because it's interesting, and to help prepare for a jmap implementation. for jmap we need to implement more client-like functionality than with just imap. internal data structures need to change. jmap has lots of other requirements, so it's already a big project. by implementing a webmail now, some of the required data structure changes become clear and can be made now, so the later jmap implementation can do things similarly to the webmail code. the webmail frontend and webmail are written together, making their interface/api much smaller and simpler than jmap. one of the internal changes is that we now keep track of per-mailbox total/unread/unseen/deleted message counts and mailbox sizes. keeping this data consistent after any change to the stored messages (through the code base) is tricky, so mox now has a consistency check that verifies the counts are correct, which runs only during tests, each time an internal account reference is closed. we have a few more internal "changes" that are propagated for the webmail frontend (that imap doesn't have a way to propagate on a connection), like changes to the special-use flags on mailboxes, and used keywords in a mailbox. more changes that will be required have revealed themselves while implementing the webmail, and will be implemented next. the webmail user interface is modeled after the mail clients i use or have used: thunderbird, macos mail, mutt; and webmails i normally only use for testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed, but still the goal is to make this webmail client easy to use for everyone. the user interface looks like most other mail clients: a list of mailboxes, a search bar, a message list view, and message details. there is a top/bottom and a left/right layout for the list/message view, default is automatic based on screen size. the panes can be resized by the user. buttons for actions are just text, not icons. clicking a button briefly shows the shortcut for the action in the bottom right, helping with learning to operate quickly. any text that is underdotted has a title attribute that causes more information to be displayed, e.g. what a button does or a field is about. to highlight potential phishing attempts, any text (anywhere in the webclient) that switches unicode "blocks" (a rough approximation to (language) scripts) within a word is underlined orange. multiple messages can be selected with familiar ui interaction: clicking while holding control and/or shift keys. keyboard navigation works with arrows/page up/down and home/end keys, and also with a few basic vi-like keys for list/message navigation. we prefer showing the text instead of html (with inlined images only) version of a message. html messages are shown in an iframe served from an endpoint with CSP headers to prevent dangerous resources (scripts, external images) from being loaded. the html is also sanitized, with javascript removed. a user can choose to load external resources (e.g. images for tracking purposes). the frontend is just (strict) typescript, no external frameworks. all incoming/outgoing data is typechecked, both the api request parameters and response types, and the data coming in over SSE. the types and checking code are generated with sherpats, which uses the api definitions generated by sherpadoc based on the Go code. so types from the backend are automatically propagated to the frontend. since there is no framework to automatically propagate properties and rerender components, changes coming in over the SSE connection are propagated explicitly with regular function calls. the ui is separated into "views", each with a "root" dom element that is added to the visible document. these views have additional functions for getting changes propagated, often resulting in the view updating its (internal) ui state (dom). we keep the frontend compilation simple, it's just a few typescript files that get compiled (combined and types stripped) into a single js file, no additional runtime code needed or complicated build processes used. the webmail is served is served from a compressed, cachable html file that includes style and the javascript, currently just over 225kb uncompressed, under 60kb compressed (not minified, including comments). we include the generated js files in the repository, to keep Go's easily buildable self-contained binaries. authentication is basic http, as with the account and admin pages. most data comes in over one long-term SSE connection to the backend. api requests signal which mailbox/search/messages are requested over the SSE connection. fetching individual messages, and making changes, are done through api calls. the operations are similar to imap, so some code has been moved from package imapserver to package store. the future jmap implementation will benefit from these changes too. more functionality will probably be moved to the store package in the future. the quickstart enables webmail on the internal listener by default (for new installs). users can enable it on the public listener if they want to. mox localserve enables it too. to enable webmail on existing installs, add settings like the following to the listeners in mox.conf, similar to AccountHTTP(S): WebmailHTTP: Enabled: true WebmailHTTPS: Enabled: true special thanks to liesbeth, gerben, andrii for early user feedback. there is plenty still to do, see the list at the top of webmail/webmail.ts. feedback welcome as always.
2023-08-07 22:57:03 +03:00
mi.IsSigned ? dom.span(style({backgroundColor: '#666', padding: '0px 0.15em', fontSize: '.9em', color: 'white', borderRadius: '.15em'}), 'Message has a signature') : [],
mi.IsEncrypted ? dom.span(style({backgroundColor: '#666', padding: '0px 0.15em', fontSize: '.9em', color: 'white', borderRadius: '.15em'}), 'Message is encrypted') : [],
refineKeyword ? (mi.Message.Keywords || []).map(kw =>
dom.clickbutton(dom._class('keyword'), kw, async function click() {
await refineKeyword(kw)
}),
) : [],
),
)
),
),
moreHeaders.map(k =>
dom.tr(
dom.td(k+':', style({textAlign: 'right', color: '#555', whiteSpace: 'nowrap'})),
dom.td(),
)
),
add webmail it was far down on the roadmap, but implemented earlier, because it's interesting, and to help prepare for a jmap implementation. for jmap we need to implement more client-like functionality than with just imap. internal data structures need to change. jmap has lots of other requirements, so it's already a big project. by implementing a webmail now, some of the required data structure changes become clear and can be made now, so the later jmap implementation can do things similarly to the webmail code. the webmail frontend and webmail are written together, making their interface/api much smaller and simpler than jmap. one of the internal changes is that we now keep track of per-mailbox total/unread/unseen/deleted message counts and mailbox sizes. keeping this data consistent after any change to the stored messages (through the code base) is tricky, so mox now has a consistency check that verifies the counts are correct, which runs only during tests, each time an internal account reference is closed. we have a few more internal "changes" that are propagated for the webmail frontend (that imap doesn't have a way to propagate on a connection), like changes to the special-use flags on mailboxes, and used keywords in a mailbox. more changes that will be required have revealed themselves while implementing the webmail, and will be implemented next. the webmail user interface is modeled after the mail clients i use or have used: thunderbird, macos mail, mutt; and webmails i normally only use for testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed, but still the goal is to make this webmail client easy to use for everyone. the user interface looks like most other mail clients: a list of mailboxes, a search bar, a message list view, and message details. there is a top/bottom and a left/right layout for the list/message view, default is automatic based on screen size. the panes can be resized by the user. buttons for actions are just text, not icons. clicking a button briefly shows the shortcut for the action in the bottom right, helping with learning to operate quickly. any text that is underdotted has a title attribute that causes more information to be displayed, e.g. what a button does or a field is about. to highlight potential phishing attempts, any text (anywhere in the webclient) that switches unicode "blocks" (a rough approximation to (language) scripts) within a word is underlined orange. multiple messages can be selected with familiar ui interaction: clicking while holding control and/or shift keys. keyboard navigation works with arrows/page up/down and home/end keys, and also with a few basic vi-like keys for list/message navigation. we prefer showing the text instead of html (with inlined images only) version of a message. html messages are shown in an iframe served from an endpoint with CSP headers to prevent dangerous resources (scripts, external images) from being loaded. the html is also sanitized, with javascript removed. a user can choose to load external resources (e.g. images for tracking purposes). the frontend is just (strict) typescript, no external frameworks. all incoming/outgoing data is typechecked, both the api request parameters and response types, and the data coming in over SSE. the types and checking code are generated with sherpats, which uses the api definitions generated by sherpadoc based on the Go code. so types from the backend are automatically propagated to the frontend. since there is no framework to automatically propagate properties and rerender components, changes coming in over the SSE connection are propagated explicitly with regular function calls. the ui is separated into "views", each with a "root" dom element that is added to the visible document. these views have additional functions for getting changes propagated, often resulting in the view updating its (internal) ui state (dom). we keep the frontend compilation simple, it's just a few typescript files that get compiled (combined and types stripped) into a single js file, no additional runtime code needed or complicated build processes used. the webmail is served is served from a compressed, cachable html file that includes style and the javascript, currently just over 225kb uncompressed, under 60kb compressed (not minified, including comments). we include the generated js files in the repository, to keep Go's easily buildable self-contained binaries. authentication is basic http, as with the account and admin pages. most data comes in over one long-term SSE connection to the backend. api requests signal which mailbox/search/messages are requested over the SSE connection. fetching individual messages, and making changes, are done through api calls. the operations are similar to imap, so some code has been moved from package imapserver to package store. the future jmap implementation will benefit from these changes too. more functionality will probably be moved to the store package in the future. the quickstart enables webmail on the internal listener by default (for new installs). users can enable it on the public listener if they want to. mox localserve enables it too. to enable webmail on existing installs, add settings like the following to the listeners in mox.conf, similar to AccountHTTP(S): WebmailHTTP: Enabled: true WebmailHTTPS: Enabled: true special thanks to liesbeth, gerben, andrii for early user feedback. there is plenty still to do, see the list at the top of webmail/webmail.ts. feedback welcome as always.
2023-08-07 22:57:03 +03:00
)
}