2023-01-30 16:27:06 +03:00
/ *
Package store implements storage for accounts , their mailboxes , IMAP
subscriptions and messages , and broadcasts updates ( e . g . mail delivery ) to
interested sessions ( e . g . IMAP connections ) .
Layout of storage for accounts :
< DataDir > / accounts / < name > / index . db
< DataDir > / accounts / < name > / msg / [ a - zA - Z0 - 9_ - ] + / < id >
Index . db holds tables for user information , mailboxes , and messages . Messages
are stored in the msg / subdirectory , each in their own file . The on - disk message
does not contain headers generated during an incoming SMTP transaction , such as
Received and Authentication - Results headers . Those are in the database to
prevent having to rewrite incoming messages ( e . g . Authentication - Result for DKIM
signatures can only be determined after having read the message ) . Messages must
be read through MsgReader , which transparently adds the prefix from the
database .
* /
package store
// todo: make up a function naming scheme that indicates whether caller should broadcast changes.
import (
"context"
2023-02-05 18:29:03 +03:00
"crypto/md5"
2023-02-05 14:30:14 +03:00
"crypto/sha1"
"crypto/sha256"
2023-02-05 18:29:03 +03:00
"encoding"
2023-01-30 16:27:06 +03:00
"encoding/json"
"errors"
"fmt"
2023-02-05 18:29:03 +03:00
"hash"
2023-01-30 16:27:06 +03:00
"io"
"os"
"path/filepath"
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
"sort"
2023-01-30 16:27:06 +03:00
"strings"
"sync"
"time"
"golang.org/x/crypto/bcrypt"
2023-06-24 01:24:43 +03:00
"golang.org/x/exp/slices"
2023-01-30 16:27:06 +03:00
"golang.org/x/text/unicode/norm"
"github.com/mjl-/bstore"
"github.com/mjl-/mox/config"
"github.com/mjl-/mox/dns"
"github.com/mjl-/mox/message"
"github.com/mjl-/mox/mlog"
"github.com/mjl-/mox/mox-"
"github.com/mjl-/mox/moxio"
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
"github.com/mjl-/mox/moxvar"
2023-01-30 16:27:06 +03:00
"github.com/mjl-/mox/publicsuffix"
"github.com/mjl-/mox/scram"
"github.com/mjl-/mox/smtp"
)
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
// If true, each time an account is closed its database file is checked for
// consistency. If an inconsistency is found, panic is called. Set by default
// because of all the packages with tests, the mox main function sets it to
// false again.
var CheckConsistencyOnClose = true
2023-01-30 16:27:06 +03:00
var xlog = mlog . New ( "store" )
var (
ErrUnknownMailbox = errors . New ( "no such mailbox" )
ErrUnknownCredentials = errors . New ( "credentials not found" )
ErrAccountUnknown = errors . New ( "no such account" )
)
var subjectpassRand = mox . NewRand ( )
2023-08-09 10:31:23 +03:00
var DefaultInitialMailboxes = config . InitialMailboxes {
SpecialUse : config . SpecialUseMailboxes {
Sent : "Sent" ,
Archive : "Archive" ,
Trash : "Trash" ,
Draft : "Drafts" ,
Junk : "Junk" ,
} ,
}
2023-01-30 16:27:06 +03:00
2023-02-05 14:30:14 +03:00
type SCRAM struct {
Salt [ ] byte
Iterations int
SaltedPassword [ ] byte
}
2023-02-05 18:29:03 +03:00
// CRAMMD5 holds HMAC ipad and opad hashes that are initialized with the first
// block with (a derivation of) the key/password, so we don't store the password in plain
// text.
type CRAMMD5 struct {
Ipad hash . Hash
Opad hash . Hash
}
// BinaryMarshal is used by bstore to store the ipad/opad hash states.
func ( c CRAMMD5 ) MarshalBinary ( ) ( [ ] byte , error ) {
if c . Ipad == nil || c . Opad == nil {
return nil , nil
}
ipad , err := c . Ipad . ( encoding . BinaryMarshaler ) . MarshalBinary ( )
if err != nil {
return nil , fmt . Errorf ( "marshal ipad: %v" , err )
}
opad , err := c . Opad . ( encoding . BinaryMarshaler ) . MarshalBinary ( )
if err != nil {
return nil , fmt . Errorf ( "marshal opad: %v" , err )
}
buf := make ( [ ] byte , 2 + len ( ipad ) + len ( opad ) )
ipadlen := uint16 ( len ( ipad ) )
buf [ 0 ] = byte ( ipadlen >> 8 )
buf [ 1 ] = byte ( ipadlen >> 0 )
copy ( buf [ 2 : ] , ipad )
copy ( buf [ 2 + len ( ipad ) : ] , opad )
return buf , nil
}
// BinaryUnmarshal is used by bstore to restore the ipad/opad hash states.
func ( c * CRAMMD5 ) UnmarshalBinary ( buf [ ] byte ) error {
if len ( buf ) == 0 {
* c = CRAMMD5 { }
return nil
}
if len ( buf ) < 2 {
return fmt . Errorf ( "short buffer" )
}
ipadlen := int ( uint16 ( buf [ 0 ] ) << 8 | uint16 ( buf [ 1 ] ) << 0 )
if len ( buf ) < 2 + ipadlen {
return fmt . Errorf ( "buffer too short for ipadlen" )
}
ipad := md5 . New ( )
opad := md5 . New ( )
if err := ipad . ( encoding . BinaryUnmarshaler ) . UnmarshalBinary ( buf [ 2 : 2 + ipadlen ] ) ; err != nil {
return fmt . Errorf ( "unmarshal ipad: %v" , err )
}
if err := opad . ( encoding . BinaryUnmarshaler ) . UnmarshalBinary ( buf [ 2 + ipadlen : ] ) ; err != nil {
return fmt . Errorf ( "unmarshal opad: %v" , err )
}
* c = CRAMMD5 { ipad , opad }
return nil
}
// Password holds credentials in various forms, for logging in with SMTP/IMAP.
2023-01-30 16:27:06 +03:00
type Password struct {
2023-02-13 15:53:47 +03:00
Hash string // bcrypt hash for IMAP LOGIN, SASL PLAIN and HTTP basic authentication.
2023-02-05 18:29:03 +03:00
CRAMMD5 CRAMMD5 // For SASL CRAM-MD5.
SCRAMSHA1 SCRAM // For SASL SCRAM-SHA-1.
SCRAMSHA256 SCRAM // For SASL SCRAM-SHA-256.
2023-01-30 16:27:06 +03:00
}
// Subjectpass holds the secret key used to sign subjectpass tokens.
type Subjectpass struct {
Email string // Our destination address (canonical, with catchall localpart stripped).
Key string
}
// NextUIDValidity is a singleton record in the database with the next UIDValidity
// to use for the next mailbox.
type NextUIDValidity struct {
ID int // Just a single record with ID 1.
Next uint32
}
2023-07-24 22:21:05 +03:00
// SyncState track ModSeqs.
type SyncState struct {
ID int // Just a single record with ID 1.
// Last used, next assigned will be one higher. The first value we hand out is 2.
// That's because 0 (the default value for old existing messages, from before the
// Message.ModSeq field) is special in IMAP, so we return it as 1.
LastModSeq ModSeq ` bstore:"nonzero" `
// Highest ModSeq of expunged record that we deleted. When a clients synchronizes
// and requests changes based on a modseq before this one, we don't have the
// history to provide information about deletions. We normally keep these expunged
// records around, but we may periodically truly delete them to reclaim storage
// space. Initially set to -1 because we don't want to match with any ModSeq in the
// database, which can be zero values.
HighestDeletedModSeq ModSeq
}
2023-01-30 16:27:06 +03:00
// Mailbox is collection of messages, e.g. Inbox or Sent.
type Mailbox struct {
ID int64
// "Inbox" is the name for the special IMAP "INBOX". Slash separated
// for hierarchy.
Name string ` bstore:"nonzero,unique" `
// If UIDs are invalidated, e.g. when renaming a mailbox to a previously existing
// name, UIDValidity must be changed. Used by IMAP for synchronization.
UIDValidity uint32
// UID likely to be assigned to next message. Used by IMAP to detect messages
// delivered to a mailbox.
UIDNext UID
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
SpecialUse
// Keywords as used in messages. Storing a non-system keyword for a message
// automatically adds it to this list. Used in the IMAP FLAGS response. Only
// "atoms" are allowed (IMAP syntax), keywords are case-insensitive, only stored in
// lower case (for JMAP), sorted.
Keywords [ ] string
HaveCounts bool // Whether MailboxCounts have been initialized.
MailboxCounts // Statistics about messages, kept up to date whenever a change happens.
}
// MailboxCounts tracks statistics about messages for a mailbox.
type MailboxCounts struct {
Total int64 // Total number of messages, excluding \Deleted. For JMAP.
Deleted int64 // Number of messages with \Deleted flag. Used for IMAP message count that includes messages with \Deleted.
Unread int64 // Messages without \Seen, excluding those with \Deleted, for JMAP.
Unseen int64 // Messages without \Seen, including those with \Deleted, for IMAP.
Size int64 // Number of bytes for all messages.
}
func ( mc MailboxCounts ) String ( ) string {
return fmt . Sprintf ( "%d total, %d deleted, %d unread, %d unseen, size %d bytes" , mc . Total , mc . Deleted , mc . Unread , mc . Unseen , mc . Size )
}
// Add increases mailbox counts mc with those of delta.
func ( mc * MailboxCounts ) Add ( delta MailboxCounts ) {
mc . Total += delta . Total
mc . Deleted += delta . Deleted
mc . Unread += delta . Unread
mc . Unseen += delta . Unseen
mc . Size += delta . Size
}
// Add decreases mailbox counts mc with those of delta.
func ( mc * MailboxCounts ) Sub ( delta MailboxCounts ) {
mc . Total -= delta . Total
mc . Deleted -= delta . Deleted
mc . Unread -= delta . Unread
mc . Unseen -= delta . Unseen
mc . Size -= delta . Size
}
// SpecialUse identifies a specific role for a mailbox, used by clients to
// understand where messages should go.
type SpecialUse struct {
2023-01-30 16:27:06 +03:00
Archive bool
Draft bool
Junk bool
Sent bool
Trash bool
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
}
2023-06-24 01:24:43 +03:00
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
// CalculateCounts calculates the full current counts for messages in the mailbox.
func ( mb * Mailbox ) CalculateCounts ( tx * bstore . Tx ) ( mc MailboxCounts , err error ) {
q := bstore . QueryTx [ Message ] ( tx )
q . FilterNonzero ( Message { MailboxID : mb . ID } )
q . FilterEqual ( "Expunged" , false )
err = q . ForEach ( func ( m Message ) error {
mc . Add ( m . MailboxCounts ( ) )
return nil
} )
return
}
// ChangeSpecialUse returns a change for special-use flags, for broadcasting to
// other connections.
func ( mb Mailbox ) ChangeSpecialUse ( ) ChangeMailboxSpecialUse {
return ChangeMailboxSpecialUse { mb . ID , mb . Name , mb . SpecialUse }
}
// ChangeKeywords returns a change with new keywords for a mailbox (e.g. after
// setting a new keyword on a message in the mailbox), for broadcasting to other
// connections.
func ( mb Mailbox ) ChangeKeywords ( ) ChangeMailboxKeywords {
return ChangeMailboxKeywords { mb . ID , mb . Name , mb . Keywords }
}
// KeywordsChanged returns whether the keywords in a mailbox have changed.
func ( mb Mailbox ) KeywordsChanged ( origmb Mailbox ) bool {
if len ( mb . Keywords ) != len ( origmb . Keywords ) {
return true
}
// Keywords are stored sorted.
for i , kw := range mb . Keywords {
if origmb . Keywords [ i ] != kw {
return true
}
}
return false
}
// CountsChange returns a change with mailbox counts.
func ( mb Mailbox ) ChangeCounts ( ) ChangeMailboxCounts {
return ChangeMailboxCounts { mb . ID , mb . Name , mb . MailboxCounts }
2023-01-30 16:27:06 +03:00
}
// Subscriptions are separate from existence of mailboxes.
type Subscription struct {
Name string
}
// Flags for a mail message.
type Flags struct {
Seen bool
Answered bool
Flagged bool
Forwarded bool
Junk bool
Notjunk bool
Deleted bool
Draft bool
Phishing bool
MDNSent bool
}
// FlagsAll is all flags set, for use as mask.
var FlagsAll = Flags { true , true , true , true , true , true , true , true , true , true }
// Validation of "message From" domain.
type Validation uint8
const (
ValidationUnknown Validation = 0
ValidationStrict Validation = 1 // Like DMARC, with strict policies.
ValidationDMARC Validation = 2 // Actual DMARC policy.
ValidationRelaxed Validation = 3 // Like DMARC, with relaxed policies.
ValidationPass Validation = 4 // For SPF.
ValidationNeutral Validation = 5 // For SPF.
ValidationTemperror Validation = 6
ValidationPermerror Validation = 7
ValidationFail Validation = 8
ValidationSoftfail Validation = 9 // For SPF.
ValidationNone Validation = 10 // E.g. No records.
)
// Message stored in database and per-message file on disk.
//
// Contents are always the combined data from MsgPrefix and the on-disk file named
// based on ID.
//
// Messages always have a header section, even if empty. Incoming messages without
// header section must get an empty header section added before inserting.
type Message struct {
// ID, unchanged over lifetime, determines path to on-disk msg file.
// Set during deliver.
ID int64
UID UID ` bstore:"nonzero" ` // UID, for IMAP. Set during deliver.
2023-07-24 22:21:05 +03:00
MailboxID int64 ` bstore:"nonzero,unique MailboxID+UID,index MailboxID+Received,index MailboxID+ModSeq,ref Mailbox" `
// Modification sequence, for faster syncing with IMAP QRESYNC and JMAP.
// ModSeq is the last modification. CreateSeq is the Seq the message was inserted,
// always <= ModSeq. If Expunged is set, the message has been removed and should not
// be returned to the user. In this case, ModSeq is the Seq where the message is
// removed, and will never be changed again.
// We have an index on both ModSeq (for JMAP that synchronizes per account) and
// MailboxID+ModSeq (for IMAP that synchronizes per mailbox).
// The index on CreateSeq helps efficiently finding created messages for JMAP.
// The value of ModSeq is special for IMAP. Messages that existed before ModSeq was
// added have 0 as value. But modseq 0 in IMAP is special, so we return it as 1. If
// we get modseq 1 from a client, the IMAP server will translate it to 0. When we
// return modseq to clients, we turn 0 into 1.
ModSeq ModSeq ` bstore:"index" `
CreateSeq ModSeq ` bstore:"index" `
Expunged bool
2023-01-30 16:27:06 +03:00
2023-08-09 17:47:29 +03:00
// If set, this message was delivered to a Rejects mailbox. When it is moved to a
// different mailbox, its MailboxOrigID is set to the destination mailbox and this
// flag cleared.
IsReject bool
2023-08-09 23:31:37 +03:00
// If set, this is a forwarded message (through a ruleset with IsForward). This
// causes fields used during junk analysis to be moved to their Orig variants, and
// masked IP fields cleared, so they aren't used in junk classifications for
// incoming messages. This ensures the forwarded messages don't cause negative
// reputation for the forwarding mail server, which may also be sending regular
// messages.
IsForward bool
2023-03-03 15:19:27 +03:00
// MailboxOrigID is the mailbox the message was originally delivered to. Typically
2023-07-26 20:23:20 +03:00
// Inbox or Rejects, but can also be a mailbox configured in a Ruleset, or
// Postmaster, TLS/DMARC reporting addresses. MailboxOrigID is not changed when the
// message is moved to another mailbox, e.g. Archive/Trash/Junk. Used for
// per-mailbox reputation.
2023-03-03 15:19:27 +03:00
//
// MailboxDestinedID is normally 0, but when a message is delivered to the Rejects
// mailbox, it is set to the intended mailbox according to delivery rules,
// typically that of Inbox. When such a message is moved out of Rejects, the
// MailboxOrigID is corrected by setting it to MailboxDestinedID. This ensures the
// message is used for reputation calculation for future deliveries to that
// mailbox.
//
// These are not bstore references to prevent having to update all messages in a
// mailbox when the original mailbox is removed. Use of these fields requires
// checking if the mailbox still exists.
MailboxOrigID int64
MailboxDestinedID int64
2023-01-30 16:27:06 +03:00
Received time . Time ` bstore:"default now,index" `
2023-08-09 23:31:37 +03:00
// Full IP address of remote SMTP server. Empty if not delivered over SMTP. The
// masked IPs are used to classify incoming messages. They are left empty for
// messages matching a ruleset for forwarded messages.
2023-01-30 16:27:06 +03:00
RemoteIP string
RemoteIPMasked1 string ` bstore:"index RemoteIPMasked1+Received" ` // For IPv4 /32, for IPv6 /64, for reputation.
RemoteIPMasked2 string ` bstore:"index RemoteIPMasked2+Received" ` // For IPv4 /26, for IPv6 /48.
RemoteIPMasked3 string ` bstore:"index RemoteIPMasked3+Received" ` // For IPv4 /21, for IPv6 /32.
2023-08-09 23:31:37 +03:00
// Only set if present and not an IP address. Unicode string. Empty for forwarded
// messages.
EHLODomain string ` bstore:"index EHLODomain+Received" `
2023-01-30 16:27:06 +03:00
MailFrom string // With localpart and domain. Can be empty.
MailFromLocalpart smtp . Localpart // SMTP "MAIL FROM", can be empty.
2023-08-09 23:31:37 +03:00
// Only set if it is a domain, not an IP. Unicode string. Empty for forwarded
// messages, but see OrigMailFromDomain.
MailFromDomain string ` bstore:"index MailFromDomain+Received" `
RcptToLocalpart smtp . Localpart // SMTP "RCPT TO", can be empty.
RcptToDomain string // Unicode string.
2023-01-30 16:27:06 +03:00
// Parsed "From" message header, used for reputation along with domain validation.
MsgFromLocalpart smtp . Localpart
MsgFromDomain string ` bstore:"index MsgFromDomain+Received" ` // Unicode string.
MsgFromOrgDomain string ` bstore:"index MsgFromOrgDomain+Received" ` // Unicode string.
// Simplified statements of the Validation fields below, used for incoming messages
// to check reputation.
EHLOValidated bool
MailFromValidated bool
MsgFromValidated bool
EHLOValidation Validation // Validation can also take reverse IP lookup into account, not only SPF.
MailFromValidation Validation // Can have SPF-specific validations like ValidationSoftfail.
MsgFromValidation Validation // Desirable validations: Strict, DMARC, Relaxed. Will not be just Pass.
2023-08-09 23:31:37 +03:00
// Domains with verified DKIM signatures. Unicode string. For forwarded messages, a
// DKIM domain that matched a ruleset's verified domain is left out, but included
// in OrigDKIMDomains.
DKIMDomains [ ] string ` bstore:"index DKIMDomains+Received" `
// For forwarded messages,
OrigEHLODomain string
OrigDKIMDomains [ ] string
2023-01-30 16:27:06 +03:00
// Value of Message-Id header. Only set for messages that were
// delivered to the rejects mailbox. For ensuring such messages are
// delivered only once. Value includes <>.
MessageID string ` bstore:"index" `
2023-07-24 22:21:05 +03:00
// Hash of message. For rejects delivery, so optional like MessageID.
MessageHash [ ] byte
2023-01-30 16:27:06 +03:00
Flags
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
// For keywords other than system flags or the basic well-known $-flags. Only in
// "atom" syntax (IMAP), they are case-insensitive, always stored in lower-case
// (for JMAP), sorted.
Keywords [ ] string ` bstore:"index" `
improve training of junk filter
before, we used heuristics to decide when to train/untrain a message as junk or
nonjunk: the message had to be seen, be in certain mailboxes. then if a message
was marked as junk, it was junk. and otherwise it was nonjunk. this wasn't good
enough: you may want to keep some messages around as neither junk or nonjunk.
and that wasn't possible.
ideally, we would just look at the imap $Junk and $NotJunk flags. the problem
is that mail clients don't set these flags, or don't make it easy. thunderbird
can set the flags based on its own bayesian filter. it has a shortcut for
marking Junk and moving it to the junk folder (good), but the counterpart of
notjunk only marks a message as notjunk without showing in the UI that it was
marked as notjunk. there is also no "move and mark as notjunk" mechanism. e.g.
"archive" does not mark a message as notjunk. ios mail and mutt don't appear to
have any way to see or change the $Junk and $NotJunk flags.
what email clients do have is the ability to move messages to other
mailboxes/folders. so mox now has a mechanism that allows you to configure
mailboxes that automatically set $Junk or $NotJunk (or clear both) when a
message is moved/copied/delivered to that folder. e.g. a mailbox called junk or
spam or rejects marks its messags as junk. inbox, postmaster, dmarc, tlsrpt,
neutral* mark their messages as neither junk or notjunk. other folders mark
their messages as notjunk. e.g. list/*, archive. this functionality is
optional, but enabled with the quickstart and for new accounts.
also, mox now keeps track of the previous training of a message and will only
untrain/train if needed. before, there probably have been duplicate or missing
(un)trainings.
this also includes a new subcommand "retrain" to recreate the junkfilter for an
account. you should run it after updating to this version. and you should
probably also modify your account config to include the AutomaticJunkFlags.
2023-02-12 01:00:12 +03:00
Size int64
TrainedJunk * bool // If nil, no training done yet. Otherwise, true is trained as junk, false trained as nonjunk.
MsgPrefix [ ] byte // Typically holds received headers and/or header separator.
2023-01-30 16:27:06 +03:00
// ParsedBuf message structure. Currently saved as JSON of message.Part because bstore
// cannot yet store recursive types. Created when first needed, and saved in the
// database.
2023-07-01 18:25:10 +03:00
// todo: once replaced with non-json storage, remove date fixup in ../message/part.go.
2023-01-30 16:27:06 +03:00
ParsedBuf [ ] byte
}
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
// MailboxCounts returns the delta to counts this message means for its
// mailbox.
func ( m Message ) MailboxCounts ( ) ( mc MailboxCounts ) {
if m . Expunged {
return
}
if m . Deleted {
mc . Deleted ++
} else {
mc . Total ++
}
if ! m . Seen {
mc . Unseen ++
if ! m . Deleted {
mc . Unread ++
}
}
mc . Size += m . Size
return
}
func ( m Message ) ChangeAddUID ( ) ChangeAddUID {
return ChangeAddUID { m . MailboxID , m . UID , m . ModSeq , m . Flags , m . Keywords }
}
func ( m Message ) ChangeFlags ( orig Flags ) ChangeFlags {
mask := m . Flags . Changed ( orig )
return ChangeFlags { MailboxID : m . MailboxID , UID : m . UID , ModSeq : m . ModSeq , Mask : mask , Flags : m . Flags , Keywords : m . Keywords }
}
2023-07-24 22:21:05 +03:00
// ModSeq represents a modseq as stored in the database. ModSeq 0 in the
// database is sent to the client as 1, because modseq 0 is special in IMAP.
// ModSeq coming from the client are of type int64.
type ModSeq int64
func ( ms ModSeq ) Client ( ) int64 {
if ms == 0 {
return 1
}
return int64 ( ms )
}
// ModSeqFromClient converts a modseq from a client to a modseq for internal
// use, e.g. in a database query.
// ModSeq 1 is turned into 0 (the Go zero value for ModSeq).
func ModSeqFromClient ( modseq int64 ) ModSeq {
if modseq == 1 {
return 0
}
return ModSeq ( modseq )
}
// PrepareExpunge clears fields that are no longer needed after an expunge, so
// almost all fields. Does not change ModSeq, but does set Expunged.
func ( m * Message ) PrepareExpunge ( ) {
* m = Message {
ID : m . ID ,
UID : m . UID ,
MailboxID : m . MailboxID ,
CreateSeq : m . CreateSeq ,
ModSeq : m . ModSeq ,
Expunged : true ,
}
}
2023-01-30 16:27:06 +03:00
// LoadPart returns a message.Part by reading from m.ParsedBuf.
func ( m Message ) LoadPart ( r io . ReaderAt ) ( message . Part , error ) {
if m . ParsedBuf == nil {
return message . Part { } , fmt . Errorf ( "message not parsed" )
}
var p message . Part
err := json . Unmarshal ( m . ParsedBuf , & p )
if err != nil {
return p , fmt . Errorf ( "unmarshal message part" )
}
p . SetReaderAt ( r )
return p , nil
}
improve training of junk filter
before, we used heuristics to decide when to train/untrain a message as junk or
nonjunk: the message had to be seen, be in certain mailboxes. then if a message
was marked as junk, it was junk. and otherwise it was nonjunk. this wasn't good
enough: you may want to keep some messages around as neither junk or nonjunk.
and that wasn't possible.
ideally, we would just look at the imap $Junk and $NotJunk flags. the problem
is that mail clients don't set these flags, or don't make it easy. thunderbird
can set the flags based on its own bayesian filter. it has a shortcut for
marking Junk and moving it to the junk folder (good), but the counterpart of
notjunk only marks a message as notjunk without showing in the UI that it was
marked as notjunk. there is also no "move and mark as notjunk" mechanism. e.g.
"archive" does not mark a message as notjunk. ios mail and mutt don't appear to
have any way to see or change the $Junk and $NotJunk flags.
what email clients do have is the ability to move messages to other
mailboxes/folders. so mox now has a mechanism that allows you to configure
mailboxes that automatically set $Junk or $NotJunk (or clear both) when a
message is moved/copied/delivered to that folder. e.g. a mailbox called junk or
spam or rejects marks its messags as junk. inbox, postmaster, dmarc, tlsrpt,
neutral* mark their messages as neither junk or notjunk. other folders mark
their messages as notjunk. e.g. list/*, archive. this functionality is
optional, but enabled with the quickstart and for new accounts.
also, mox now keeps track of the previous training of a message and will only
untrain/train if needed. before, there probably have been duplicate or missing
(un)trainings.
this also includes a new subcommand "retrain" to recreate the junkfilter for an
account. you should run it after updating to this version. and you should
probably also modify your account config to include the AutomaticJunkFlags.
2023-02-12 01:00:12 +03:00
// NeedsTraining returns whether message needs a training update, based on
// TrainedJunk (current training status) and new Junk/Notjunk flags.
func ( m Message ) NeedsTraining ( ) bool {
untrain := m . TrainedJunk != nil
untrainJunk := untrain && * m . TrainedJunk
train := m . Junk || m . Notjunk && ! ( m . Junk && m . Notjunk )
trainJunk := m . Junk
return untrain != train || untrain && train && untrainJunk != trainJunk
}
// JunkFlagsForMailbox sets Junk and Notjunk flags based on mailbox name if configured. Often
// used when delivering/moving/copying messages to a mailbox. Mail clients are not
// very helpful with setting junk/notjunk flags. But clients can move/copy messages
// to other mailboxes. So we set flags when clients move a message.
func ( m * Message ) JunkFlagsForMailbox ( mailbox string , conf config . Account ) {
if ! conf . AutomaticJunkFlags . Enabled {
return
}
lmailbox := strings . ToLower ( mailbox )
if conf . JunkMailbox != nil && conf . JunkMailbox . MatchString ( lmailbox ) {
m . Junk = true
m . Notjunk = false
} else if conf . NeutralMailbox != nil && conf . NeutralMailbox . MatchString ( lmailbox ) {
m . Junk = false
m . Notjunk = false
} else if conf . NotJunkMailbox != nil && conf . NotJunkMailbox . MatchString ( lmailbox ) {
m . Junk = false
m . Notjunk = true
} else if conf . JunkMailbox == nil && conf . NeutralMailbox != nil && conf . NotJunkMailbox != nil {
m . Junk = true
m . Notjunk = false
} else if conf . JunkMailbox != nil && conf . NeutralMailbox == nil && conf . NotJunkMailbox != nil {
m . Junk = false
m . Notjunk = false
} else if conf . JunkMailbox != nil && conf . NeutralMailbox != nil && conf . NotJunkMailbox == nil {
m . Junk = false
m . Notjunk = true
}
}
2023-01-30 16:27:06 +03:00
// Recipient represents the recipient of a message. It is tracked to allow
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
// first-time incoming replies from users this account has sent messages to. When a
// mailbox is added to the Sent mailbox the message is parsed and recipients are
// inserted as recipient. Recipients are never removed other than for removing the
// message. On move/copy of a message, recipients aren't modified either. For IMAP,
// this assumes a client simply appends messages to the Sent mailbox (as opposed to
// copying messages from some place).
2023-01-30 16:27:06 +03:00
type Recipient struct {
ID int64
MessageID int64 ` bstore:"nonzero,ref Message" ` // Ref gives it its own index, useful for fast removal as well.
Localpart smtp . Localpart ` bstore:"nonzero" `
Domain string ` bstore:"nonzero,index Domain+Localpart" ` // Unicode string.
OrgDomain string ` bstore:"nonzero,index" ` // Unicode string.
Sent time . Time ` bstore:"nonzero" `
}
2023-03-28 21:50:36 +03:00
// Outgoing is a message submitted for delivery from the queue. Used to enforce
// maximum outgoing messages.
type Outgoing struct {
ID int64
Recipient string ` bstore:"nonzero,index" ` // Canonical international address with utf8 domain.
Submitted time . Time ` bstore:"nonzero,default now" `
}
add a "backup" subcommand to make consistent backups, and a "verifydata" subcommand to verify a backup before restoring, and add tests for future upgrades
the backup command will make consistent snapshots of all the database files. i
had been copying the db files before, and it usually works. but if the file is
modified during the backup, it is inconsistent and is likely to generate errors
when reading (can be at any moment in the future, when reading some db page).
"mox backup" opens the database file and writes out a copy in a transaction.
it also duplicates the message files.
before doing a restore, you could run "mox verifydata" on the to-be-restored
"data" directory. it check the database files, and compares the message files
with the database.
the new "gentestdata" subcommand generates a basic "data" directory, with a
queue and a few accounts. we will use it in the future along with "verifydata"
to test upgrades from old version to the latest version. both when going to the
next version, and when skipping several versions. the script test-upgrades.sh
executes these tests and doesn't do anything at the moment, because no releases
have this subcommand yet.
inspired by a failed upgrade attempt of a pre-release version.
2023-05-26 20:26:51 +03:00
// Types stored in DB.
2023-07-24 22:21:05 +03:00
var DBTypes = [ ] any { NextUIDValidity { } , Message { } , Recipient { } , Mailbox { } , Subscription { } , Outgoing { } , Password { } , Subjectpass { } , SyncState { } }
add a "backup" subcommand to make consistent backups, and a "verifydata" subcommand to verify a backup before restoring, and add tests for future upgrades
the backup command will make consistent snapshots of all the database files. i
had been copying the db files before, and it usually works. but if the file is
modified during the backup, it is inconsistent and is likely to generate errors
when reading (can be at any moment in the future, when reading some db page).
"mox backup" opens the database file and writes out a copy in a transaction.
it also duplicates the message files.
before doing a restore, you could run "mox verifydata" on the to-be-restored
"data" directory. it check the database files, and compares the message files
with the database.
the new "gentestdata" subcommand generates a basic "data" directory, with a
queue and a few accounts. we will use it in the future along with "verifydata"
to test upgrades from old version to the latest version. both when going to the
next version, and when skipping several versions. the script test-upgrades.sh
executes these tests and doesn't do anything at the moment, because no releases
have this subcommand yet.
inspired by a failed upgrade attempt of a pre-release version.
2023-05-26 20:26:51 +03:00
2023-01-30 16:27:06 +03:00
// Account holds the information about a user, includings mailboxes, messages, imap subscriptions.
type Account struct {
Name string // Name, according to configuration.
Dir string // Directory where account files, including the database, bloom filter, and mail messages, are stored for this account.
DBPath string // Path to database with mailboxes, messages, etc.
DB * bstore . DB // Open database connection.
// Write lock must be held for account/mailbox modifications including message delivery.
// Read lock for reading mailboxes/messages.
// When making changes to mailboxes/messages, changes must be broadcasted before
// releasing the lock to ensure proper UID ordering.
sync . RWMutex
nused int // Reference count, while >0, this account is alive and shared.
}
// InitialUIDValidity returns a UIDValidity used for initializing an account.
// It can be replaced during tests with a predictable value.
var InitialUIDValidity = func ( ) uint32 {
return uint32 ( time . Now ( ) . Unix ( ) >> 1 ) // A 2-second resolution will get us far enough beyond 2038.
}
var openAccounts = struct {
names map [ string ] * Account
sync . Mutex
} {
names : map [ string ] * Account { } ,
}
func closeAccount ( acc * Account ) ( rerr error ) {
openAccounts . Lock ( )
acc . nused --
defer openAccounts . Unlock ( )
if acc . nused == 0 {
rerr = acc . DB . Close ( )
acc . DB = nil
delete ( openAccounts . names , acc . Name )
}
return
}
// OpenAccount opens an account by name.
//
// No additional data path prefix or ".db" suffix should be added to the name.
// A single shared account exists per name.
func OpenAccount ( name string ) ( * Account , error ) {
openAccounts . Lock ( )
defer openAccounts . Unlock ( )
if acc , ok := openAccounts . names [ name ] ; ok {
acc . nused ++
return acc , nil
}
if _ , ok := mox . Conf . Account ( name ) ; ! ok {
return nil , ErrAccountUnknown
}
acc , err := openAccount ( name )
if err != nil {
return nil , err
}
openAccounts . names [ name ] = acc
return acc , nil
}
// openAccount opens an existing account, or creates it if it is missing.
func openAccount ( name string ) ( a * Account , rerr error ) {
dir := filepath . Join ( mox . DataDirPath ( "accounts" ) , name )
2023-08-16 15:36:17 +03:00
return OpenAccountDB ( dir , name )
}
// OpenAccountDB opens an account database file and returns an initialized account
// or error. Only exported for use by subcommands that verify the database file.
// Almost all account opens must go through OpenAccount/OpenEmail/OpenEmailAuth.
func OpenAccountDB ( accountDir , accountName string ) ( a * Account , rerr error ) {
dbpath := filepath . Join ( accountDir , "index.db" )
2023-01-30 16:27:06 +03:00
// Create account if it doesn't exist yet.
isNew := false
if _ , err := os . Stat ( dbpath ) ; err != nil && os . IsNotExist ( err ) {
isNew = true
2023-08-16 15:36:17 +03:00
os . MkdirAll ( accountDir , 0770 )
2023-01-30 16:27:06 +03:00
}
add a "backup" subcommand to make consistent backups, and a "verifydata" subcommand to verify a backup before restoring, and add tests for future upgrades
the backup command will make consistent snapshots of all the database files. i
had been copying the db files before, and it usually works. but if the file is
modified during the backup, it is inconsistent and is likely to generate errors
when reading (can be at any moment in the future, when reading some db page).
"mox backup" opens the database file and writes out a copy in a transaction.
it also duplicates the message files.
before doing a restore, you could run "mox verifydata" on the to-be-restored
"data" directory. it check the database files, and compares the message files
with the database.
the new "gentestdata" subcommand generates a basic "data" directory, with a
queue and a few accounts. we will use it in the future along with "verifydata"
to test upgrades from old version to the latest version. both when going to the
next version, and when skipping several versions. the script test-upgrades.sh
executes these tests and doesn't do anything at the moment, because no releases
have this subcommand yet.
inspired by a failed upgrade attempt of a pre-release version.
2023-05-26 20:26:51 +03:00
db , err := bstore . Open ( context . TODO ( ) , dbpath , & bstore . Options { Timeout : 5 * time . Second , Perm : 0660 } , DBTypes ... )
2023-01-30 16:27:06 +03:00
if err != nil {
return nil , err
}
defer func ( ) {
if rerr != nil {
db . Close ( )
if isNew {
os . Remove ( dbpath )
}
}
} ( )
if isNew {
if err := initAccount ( db ) ; err != nil {
return nil , fmt . Errorf ( "initializing account: %v" , err )
}
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
} else {
// Ensure mailbox counts are set.
var mentioned bool
err := db . Write ( context . TODO ( ) , func ( tx * bstore . Tx ) error {
return bstore . QueryTx [ Mailbox ] ( tx ) . FilterEqual ( "HaveCounts" , false ) . ForEach ( func ( mb Mailbox ) error {
if ! mentioned {
mentioned = true
2023-08-16 15:36:17 +03:00
xlog . Info ( "first calculation of mailbox counts for account" , mlog . Field ( "account" , accountName ) )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
}
mc , err := mb . CalculateCounts ( tx )
if err != nil {
return err
}
mb . HaveCounts = true
mb . MailboxCounts = mc
return tx . Update ( & mb )
} )
} )
if err != nil {
return nil , fmt . Errorf ( "calculating counts for mailbox: %v" , err )
}
2023-01-30 16:27:06 +03:00
}
return & Account {
2023-08-16 15:36:17 +03:00
Name : accountName ,
Dir : accountDir ,
2023-01-30 16:27:06 +03:00
DBPath : dbpath ,
DB : db ,
2023-08-16 15:36:17 +03:00
nused : 1 ,
2023-01-30 16:27:06 +03:00
} , nil
}
func initAccount ( db * bstore . DB ) error {
2023-05-22 15:40:36 +03:00
return db . Write ( context . TODO ( ) , func ( tx * bstore . Tx ) error {
2023-01-30 16:27:06 +03:00
uidvalidity := InitialUIDValidity ( )
2023-08-09 10:31:23 +03:00
if len ( mox . Conf . Static . DefaultMailboxes ) > 0 {
// Deprecated in favor of InitialMailboxes.
defaultMailboxes := mox . Conf . Static . DefaultMailboxes
mailboxes := [ ] string { "Inbox" }
2023-01-30 16:27:06 +03:00
for _ , name := range defaultMailboxes {
if strings . EqualFold ( name , "Inbox" ) {
continue
}
mailboxes = append ( mailboxes , name )
}
2023-08-09 10:31:23 +03:00
for _ , name := range mailboxes {
mb := Mailbox { Name : name , UIDValidity : uidvalidity , UIDNext : 1 , HaveCounts : true }
if strings . HasPrefix ( name , "Archive" ) {
mb . Archive = true
} else if strings . HasPrefix ( name , "Drafts" ) {
mb . Draft = true
} else if strings . HasPrefix ( name , "Junk" ) {
mb . Junk = true
} else if strings . HasPrefix ( name , "Sent" ) {
mb . Sent = true
} else if strings . HasPrefix ( name , "Trash" ) {
mb . Trash = true
}
if err := tx . Insert ( & mb ) ; err != nil {
return fmt . Errorf ( "creating mailbox: %w" , err )
}
if err := tx . Insert ( & Subscription { name } ) ; err != nil {
return fmt . Errorf ( "adding subscription: %w" , err )
}
2023-01-30 16:27:06 +03:00
}
2023-08-09 10:31:23 +03:00
} else {
mailboxes := mox . Conf . Static . InitialMailboxes
var zerouse config . SpecialUseMailboxes
if mailboxes . SpecialUse == zerouse && len ( mailboxes . Regular ) == 0 {
mailboxes = DefaultInitialMailboxes
2023-01-30 16:27:06 +03:00
}
2023-08-09 10:31:23 +03:00
add := func ( name string , use SpecialUse ) error {
mb := Mailbox { Name : name , UIDValidity : uidvalidity , UIDNext : 1 , SpecialUse : use , HaveCounts : true }
if err := tx . Insert ( & mb ) ; err != nil {
return fmt . Errorf ( "creating mailbox: %w" , err )
}
if err := tx . Insert ( & Subscription { name } ) ; err != nil {
return fmt . Errorf ( "adding subscription: %w" , err )
}
return nil
}
addSpecialOpt := func ( nameOpt string , use SpecialUse ) error {
if nameOpt == "" {
return nil
}
return add ( nameOpt , use )
}
l := [ ] struct {
nameOpt string
use SpecialUse
} {
{ "Inbox" , SpecialUse { } } ,
{ mailboxes . SpecialUse . Archive , SpecialUse { Archive : true } } ,
{ mailboxes . SpecialUse . Draft , SpecialUse { Draft : true } } ,
{ mailboxes . SpecialUse . Junk , SpecialUse { Junk : true } } ,
{ mailboxes . SpecialUse . Sent , SpecialUse { Sent : true } } ,
{ mailboxes . SpecialUse . Trash , SpecialUse { Trash : true } } ,
}
for _ , e := range l {
if err := addSpecialOpt ( e . nameOpt , e . use ) ; err != nil {
return err
}
}
for _ , name := range mailboxes . Regular {
if err := add ( name , SpecialUse { } ) ; err != nil {
return err
}
2023-01-30 16:27:06 +03:00
}
}
uidvalidity ++
if err := tx . Insert ( & NextUIDValidity { 1 , uidvalidity } ) ; err != nil {
return fmt . Errorf ( "inserting nextuidvalidity: %w" , err )
}
return nil
} )
}
// Close reduces the reference count, and closes the database connection when
// it was the last user.
func ( a * Account ) Close ( ) error {
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
if CheckConsistencyOnClose {
2023-08-08 23:10:53 +03:00
xerr := a . CheckConsistency ( )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
err := closeAccount ( a )
if xerr != nil {
panic ( xerr )
}
return err
}
2023-01-30 16:27:06 +03:00
return closeAccount ( a )
}
2023-08-08 23:10:53 +03:00
// CheckConsistency checks the consistency of the database and returns a non-nil
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
// error for these cases:
//
2023-08-08 23:10:53 +03:00
// - Missing on-disk file for message.
// - Mismatch between message size and length of MsgPrefix and on-disk file.
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
// - Missing HaveCounts.
// - Incorrect mailbox counts.
// - Message with UID >= mailbox uid next.
// - Mailbox uidvalidity >= account uid validity.
// - ModSeq > 0, CreateSeq > 0, CreateSeq <= ModSeq.
2023-08-08 23:10:53 +03:00
func ( a * Account ) CheckConsistency ( ) error {
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
var uiderrors [ ] string // With a limit, could be many.
var modseqerrors [ ] string // With limit.
2023-08-08 23:10:53 +03:00
var fileerrors [ ] string // With limit.
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
var errors [ ] string
err := a . DB . Read ( context . Background ( ) , func ( tx * bstore . Tx ) error {
nuv := NextUIDValidity { ID : 1 }
err := tx . Get ( & nuv )
if err != nil {
return fmt . Errorf ( "fetching next uid validity: %v" , err )
}
mailboxes := map [ int64 ] Mailbox { }
err = bstore . QueryTx [ Mailbox ] ( tx ) . ForEach ( func ( mb Mailbox ) error {
mailboxes [ mb . ID ] = mb
if mb . UIDValidity >= nuv . Next {
errmsg := fmt . Sprintf ( "mailbox %q (id %d) has uidvalidity %d >= account next uidvalidity %d" , mb . Name , mb . ID , mb . UIDValidity , nuv . Next )
errors = append ( errors , errmsg )
}
return nil
} )
if err != nil {
return fmt . Errorf ( "listing mailboxes: %v" , err )
}
counts := map [ int64 ] MailboxCounts { }
err = bstore . QueryTx [ Message ] ( tx ) . ForEach ( func ( m Message ) error {
mc := counts [ m . MailboxID ]
mc . Add ( m . MailboxCounts ( ) )
counts [ m . MailboxID ] = mc
mb := mailboxes [ m . MailboxID ]
if ( m . ModSeq == 0 || m . CreateSeq == 0 || m . CreateSeq > m . ModSeq ) && len ( modseqerrors ) < 20 {
modseqerr := fmt . Sprintf ( "message %d in mailbox %q (id %d) has invalid modseq %d or createseq %d, both must be > 0 and createseq <= modseq" , m . ID , mb . Name , mb . ID , m . ModSeq , m . CreateSeq )
modseqerrors = append ( modseqerrors , modseqerr )
}
if m . UID >= mb . UIDNext && len ( uiderrors ) < 20 {
uiderr := fmt . Sprintf ( "message %d in mailbox %q (id %d) has uid %d >= mailbox uidnext %d" , m . ID , mb . Name , mb . ID , m . UID , mb . UIDNext )
uiderrors = append ( uiderrors , uiderr )
}
2023-08-08 23:10:53 +03:00
if m . Expunged {
return nil
}
p := a . MessagePath ( m . ID )
st , err := os . Stat ( p )
if err != nil {
existserr := fmt . Sprintf ( "message %d in mailbox %q (id %d) on-disk file %s: %v" , m . ID , mb . Name , mb . ID , p , err )
fileerrors = append ( fileerrors , existserr )
} else if len ( fileerrors ) < 20 && m . Size != int64 ( len ( m . MsgPrefix ) ) + st . Size ( ) {
sizeerr := fmt . Sprintf ( "message %d in mailbox %q (id %d) has size %d != len msgprefix %d + on-disk file size %d = %d" , m . ID , mb . Name , mb . ID , m . Size , len ( m . MsgPrefix ) , st . Size ( ) , int64 ( len ( m . MsgPrefix ) ) + st . Size ( ) )
fileerrors = append ( fileerrors , sizeerr )
}
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
return nil
} )
if err != nil {
return fmt . Errorf ( "reading messages: %v" , err )
}
for _ , mb := range mailboxes {
if ! mb . HaveCounts {
errmsg := fmt . Sprintf ( "mailbox %q (id %d) does not have counts, should be %#v" , mb . Name , mb . ID , counts [ mb . ID ] )
errors = append ( errors , errmsg )
} else if mb . MailboxCounts != counts [ mb . ID ] {
mbcounterr := fmt . Sprintf ( "mailbox %q (id %d) has wrong counts %s, should be %s" , mb . Name , mb . ID , mb . MailboxCounts , counts [ mb . ID ] )
errors = append ( errors , mbcounterr )
}
}
return nil
} )
if err != nil {
return err
}
errors = append ( errors , uiderrors ... )
errors = append ( errors , modseqerrors ... )
2023-08-08 23:10:53 +03:00
errors = append ( errors , fileerrors ... )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
if len ( errors ) > 0 {
return fmt . Errorf ( "%s" , strings . Join ( errors , "; " ) )
}
return nil
}
2023-01-30 16:27:06 +03:00
// Conf returns the configuration for this account if it still exists. During
// an SMTP session, a configuration update may drop an account.
func ( a * Account ) Conf ( ) ( config . Account , bool ) {
return mox . Conf . Account ( a . Name )
}
// NextUIDValidity returns the next new/unique uidvalidity to use for this account.
func ( a * Account ) NextUIDValidity ( tx * bstore . Tx ) ( uint32 , error ) {
nuv := NextUIDValidity { ID : 1 }
if err := tx . Get ( & nuv ) ; err != nil {
return 0 , err
}
v := nuv . Next
nuv . Next ++
if err := tx . Update ( & nuv ) ; err != nil {
return 0 , err
}
return v , nil
}
2023-07-24 22:21:05 +03:00
// NextModSeq returns the next modification sequence, which is global per account,
// over all types.
func ( a * Account ) NextModSeq ( tx * bstore . Tx ) ( ModSeq , error ) {
v := SyncState { ID : 1 }
if err := tx . Get ( & v ) ; err == bstore . ErrAbsent {
// We start assigning from modseq 2. Modseq 0 is not usable, so returned as 1, so
// already used.
// HighestDeletedModSeq is -1 so comparison against the default ModSeq zero value
// makes sense.
v = SyncState { 1 , 2 , - 1 }
return v . LastModSeq , tx . Insert ( & v )
} else if err != nil {
return 0 , err
}
v . LastModSeq ++
return v . LastModSeq , tx . Update ( & v )
}
func ( a * Account ) HighestDeletedModSeq ( tx * bstore . Tx ) ( ModSeq , error ) {
v := SyncState { ID : 1 }
err := tx . Get ( & v )
if err == bstore . ErrAbsent {
return 0 , nil
}
return v . HighestDeletedModSeq , err
}
2023-01-30 16:27:06 +03:00
// WithWLock runs fn with account writelock held. Necessary for account/mailbox modification. For message delivery, a read lock is required.
func ( a * Account ) WithWLock ( fn func ( ) ) {
a . Lock ( )
defer a . Unlock ( )
fn ( )
}
// WithRLock runs fn with account read lock held. Needed for message delivery.
func ( a * Account ) WithRLock ( fn func ( ) ) {
a . RLock ( )
defer a . RUnlock ( )
fn ( )
}
2023-04-20 15:16:56 +03:00
// DeliverMessage delivers a mail message to the account.
2023-01-30 16:27:06 +03:00
//
// If consumeFile is set, the original msgFile is moved/renamed or copied and
// removed as part of delivery.
//
// The message, with msg.MsgPrefix and msgFile combined, must have a header
// section. The caller is responsible for adding a header separator to
// msg.MsgPrefix if missing from an incoming message.
//
2023-08-09 10:31:23 +03:00
// If the destination mailbox has the Sent special-use flag, the message is parsed
// for its recipients (to/cc/bcc). Their domains are added to Recipients for use in
// dmarc reputation.
2023-01-30 16:27:06 +03:00
//
// If sync is true, the message file and its directory are synced. Should be true
// for regular mail delivery, but can be false when importing many messages.
//
2023-07-24 22:21:05 +03:00
// If CreateSeq/ModSeq is not set, it is assigned automatically.
//
2023-01-30 16:27:06 +03:00
// Must be called with account rlock or wlock.
//
// Caller must broadcast new message.
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
//
// Caller must update mailbox counts.
2023-08-09 10:31:23 +03:00
func ( a * Account ) DeliverMessage ( log * mlog . Log , tx * bstore . Tx , m * Message , msgFile * os . File , consumeFile , sync , notrain bool ) error {
2023-07-24 22:21:05 +03:00
if m . Expunged {
return fmt . Errorf ( "cannot deliver expunged message" )
}
2023-01-30 16:27:06 +03:00
mb := Mailbox { ID : m . MailboxID }
2023-04-20 15:16:56 +03:00
if err := tx . Get ( & mb ) ; err != nil {
return fmt . Errorf ( "get mailbox: %w" , err )
}
2023-01-30 16:27:06 +03:00
m . UID = mb . UIDNext
mb . UIDNext ++
2023-04-20 15:16:56 +03:00
if err := tx . Update ( & mb ) ; err != nil {
return fmt . Errorf ( "updating mailbox nextuid: %w" , err )
}
2023-01-30 16:27:06 +03:00
improve training of junk filter
before, we used heuristics to decide when to train/untrain a message as junk or
nonjunk: the message had to be seen, be in certain mailboxes. then if a message
was marked as junk, it was junk. and otherwise it was nonjunk. this wasn't good
enough: you may want to keep some messages around as neither junk or nonjunk.
and that wasn't possible.
ideally, we would just look at the imap $Junk and $NotJunk flags. the problem
is that mail clients don't set these flags, or don't make it easy. thunderbird
can set the flags based on its own bayesian filter. it has a shortcut for
marking Junk and moving it to the junk folder (good), but the counterpart of
notjunk only marks a message as notjunk without showing in the UI that it was
marked as notjunk. there is also no "move and mark as notjunk" mechanism. e.g.
"archive" does not mark a message as notjunk. ios mail and mutt don't appear to
have any way to see or change the $Junk and $NotJunk flags.
what email clients do have is the ability to move messages to other
mailboxes/folders. so mox now has a mechanism that allows you to configure
mailboxes that automatically set $Junk or $NotJunk (or clear both) when a
message is moved/copied/delivered to that folder. e.g. a mailbox called junk or
spam or rejects marks its messags as junk. inbox, postmaster, dmarc, tlsrpt,
neutral* mark their messages as neither junk or notjunk. other folders mark
their messages as notjunk. e.g. list/*, archive. this functionality is
optional, but enabled with the quickstart and for new accounts.
also, mox now keeps track of the previous training of a message and will only
untrain/train if needed. before, there probably have been duplicate or missing
(un)trainings.
this also includes a new subcommand "retrain" to recreate the junkfilter for an
account. you should run it after updating to this version. and you should
probably also modify your account config to include the AutomaticJunkFlags.
2023-02-12 01:00:12 +03:00
conf , _ := a . Conf ( )
m . JunkFlagsForMailbox ( mb . Name , conf )
2023-01-30 16:27:06 +03:00
var part * message . Part
if m . ParsedBuf == nil {
mr := FileMsgReader ( m . MsgPrefix , msgFile ) // We don't close, it would close the msgFile.
2023-08-15 09:25:56 +03:00
p , err := message . EnsurePart ( log , false , mr , m . Size )
2023-01-30 16:27:06 +03:00
if err != nil {
log . Infox ( "parsing delivered message" , err , mlog . Field ( "parse" , "" ) , mlog . Field ( "message" , m . ID ) )
// We continue, p is still valid.
}
part = & p
buf , err := json . Marshal ( part )
2023-04-20 15:16:56 +03:00
if err != nil {
return fmt . Errorf ( "marshal parsed message: %w" , err )
}
2023-01-30 16:27:06 +03:00
m . ParsedBuf = buf
}
2023-03-03 15:19:27 +03:00
// If we are delivering to the originally intended mailbox, no need to store the mailbox ID again.
if m . MailboxDestinedID != 0 && m . MailboxDestinedID == m . MailboxOrigID {
m . MailboxDestinedID = 0
}
2023-07-24 22:21:05 +03:00
if m . CreateSeq == 0 || m . ModSeq == 0 {
modseq , err := a . NextModSeq ( tx )
if err != nil {
return fmt . Errorf ( "assigning next modseq: %w" , err )
}
m . CreateSeq = modseq
m . ModSeq = modseq
}
2023-03-03 15:19:27 +03:00
2023-04-20 15:16:56 +03:00
if err := tx . Insert ( m ) ; err != nil {
return fmt . Errorf ( "inserting message: %w" , err )
}
2023-01-30 16:27:06 +03:00
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
// todo: perhaps we should match the recipients based on smtp submission and a matching message-id? we now miss the addresses in bcc's. for webmail, we could insert the recipients directly.
2023-08-09 10:31:23 +03:00
if mb . Sent {
2023-01-30 16:27:06 +03:00
// Attempt to parse the message for its To/Cc/Bcc headers, which we insert into Recipient.
if part == nil {
var p message . Part
if err := json . Unmarshal ( m . ParsedBuf , & p ) ; err != nil {
log . Errorx ( "unmarshal parsed message for its to,cc,bcc headers, continuing" , err , mlog . Field ( "parse" , "" ) )
} else {
part = & p
}
}
if part != nil && part . Envelope != nil {
e := part . Envelope
sent := e . Date
if sent . IsZero ( ) {
sent = m . Received
}
if sent . IsZero ( ) {
sent = time . Now ( )
}
addrs := append ( append ( e . To , e . CC ... ) , e . BCC ... )
for _ , addr := range addrs {
if addr . User == "" {
// Would trigger error because Recipient.Localpart must be nonzero. todo: we could allow empty localpart in db, and filter by not using FilterNonzero.
log . Info ( "to/cc/bcc address with empty localpart, not inserting as recipient" , mlog . Field ( "address" , addr ) )
continue
}
d , err := dns . ParseDomain ( addr . Host )
if err != nil {
log . Debugx ( "parsing domain in to/cc/bcc address" , err , mlog . Field ( "address" , addr ) )
continue
}
mr := Recipient {
MessageID : m . ID ,
Localpart : smtp . Localpart ( addr . User ) ,
Domain : d . Name ( ) ,
OrgDomain : publicsuffix . Lookup ( context . TODO ( ) , d ) . Name ( ) ,
Sent : sent ,
}
2023-04-20 15:16:56 +03:00
if err := tx . Insert ( & mr ) ; err != nil {
return fmt . Errorf ( "inserting sent message recipients: %w" , err )
}
2023-01-30 16:27:06 +03:00
}
}
}
msgPath := a . MessagePath ( m . ID )
msgDir := filepath . Dir ( msgPath )
os . MkdirAll ( msgDir , 0770 )
// Sync file data to disk.
if sync {
2023-04-20 15:16:56 +03:00
if err := msgFile . Sync ( ) ; err != nil {
return fmt . Errorf ( "fsync message file: %w" , err )
}
2023-01-30 16:27:06 +03:00
}
if consumeFile {
2023-04-20 15:16:56 +03:00
if err := os . Rename ( msgFile . Name ( ) , msgPath ) ; err != nil {
2023-07-23 13:15:29 +03:00
// Could be due to cross-filesystem rename. Users shouldn't configure their systems that way.
2023-04-20 15:16:56 +03:00
return fmt . Errorf ( "moving msg file to destination directory: %w" , err )
}
2023-07-23 13:15:29 +03:00
} else if err := moxio . LinkOrCopy ( log , msgPath , msgFile . Name ( ) , & moxio . AtReader { R : msgFile } , true ) ; err != nil {
return fmt . Errorf ( "linking/copying message to new file: %w" , err )
2023-01-30 16:27:06 +03:00
}
if sync {
2023-04-20 15:16:56 +03:00
if err := moxio . SyncDir ( msgDir ) ; err != nil {
return fmt . Errorf ( "sync directory: %w" , err )
}
2023-01-30 16:27:06 +03:00
}
2023-02-27 00:21:13 +03:00
if ! notrain && m . NeedsTraining ( ) {
l := [ ] Message { * m }
2023-05-22 15:40:36 +03:00
if err := a . RetrainMessages ( context . TODO ( ) , log , tx , l , false ) ; err != nil {
2023-04-20 15:16:56 +03:00
return fmt . Errorf ( "training junkfilter: %w" , err )
}
2023-02-27 00:21:13 +03:00
* m = l [ 0 ]
2023-02-16 11:57:27 +03:00
}
2023-04-20 15:16:56 +03:00
return nil
2023-01-30 16:27:06 +03:00
}
// SetPassword saves a new password for this account. This password is used for
// IMAP, SMTP (submission) sessions and the HTTP account web page.
func ( a * Account ) SetPassword ( password string ) error {
hash , err := bcrypt . GenerateFromPassword ( [ ] byte ( password ) , bcrypt . DefaultCost )
if err != nil {
return fmt . Errorf ( "generating password hash: %w" , err )
}
2023-05-22 15:40:36 +03:00
err = a . DB . Write ( context . TODO ( ) , func ( tx * bstore . Tx ) error {
2023-01-30 16:27:06 +03:00
if _ , err := bstore . QueryTx [ Password ] ( tx ) . Delete ( ) ; err != nil {
return fmt . Errorf ( "deleting existing password: %v" , err )
}
var pw Password
pw . Hash = string ( hash )
2023-02-05 14:30:14 +03:00
2023-02-05 18:29:03 +03:00
// CRAM-MD5 calculates an HMAC-MD5, with the password as key, over a per-attempt
// unique text that includes a timestamp. HMAC performs two hashes. Both times, the
// first block is based on the key/password. We hash those first blocks now, and
// store the hash state in the database. When we actually authenticate, we'll
// complete the HMAC by hashing only the text. We cannot store crypto/hmac's hash,
// because it does not expose its internal state and isn't a BinaryMarshaler.
// ../rfc/2104:121
pw . CRAMMD5 . Ipad = md5 . New ( )
pw . CRAMMD5 . Opad = md5 . New ( )
key := [ ] byte ( password )
if len ( key ) > 64 {
t := md5 . Sum ( key )
key = t [ : ]
}
ipad := make ( [ ] byte , md5 . BlockSize )
opad := make ( [ ] byte , md5 . BlockSize )
copy ( ipad , key )
copy ( opad , key )
for i := range ipad {
ipad [ i ] ^ = 0x36
opad [ i ] ^ = 0x5c
}
pw . CRAMMD5 . Ipad . Write ( ipad )
pw . CRAMMD5 . Opad . Write ( opad )
2023-02-05 14:30:14 +03:00
pw . SCRAMSHA1 . Salt = scram . MakeRandom ( )
pw . SCRAMSHA1 . Iterations = 2 * 4096
pw . SCRAMSHA1 . SaltedPassword = scram . SaltPassword ( sha1 . New , password , pw . SCRAMSHA1 . Salt , pw . SCRAMSHA1 . Iterations )
2023-01-30 16:27:06 +03:00
pw . SCRAMSHA256 . Salt = scram . MakeRandom ( )
pw . SCRAMSHA256 . Iterations = 4096
2023-02-05 14:30:14 +03:00
pw . SCRAMSHA256 . SaltedPassword = scram . SaltPassword ( sha256 . New , password , pw . SCRAMSHA256 . Salt , pw . SCRAMSHA256 . Iterations )
2023-01-30 16:27:06 +03:00
if err := tx . Insert ( & pw ) ; err != nil {
return fmt . Errorf ( "inserting new password: %v" , err )
}
return nil
} )
if err == nil {
xlog . Info ( "new password set for account" , mlog . Field ( "account" , a . Name ) )
}
return err
}
// Subjectpass returns the signing key for use with subjectpass for the given
// email address with canonical localpart.
func ( a * Account ) Subjectpass ( email string ) ( key string , err error ) {
2023-05-22 15:40:36 +03:00
return key , a . DB . Write ( context . TODO ( ) , func ( tx * bstore . Tx ) error {
2023-01-30 16:27:06 +03:00
v := Subjectpass { Email : email }
err := tx . Get ( & v )
if err == nil {
key = v . Key
return nil
}
if ! errors . Is ( err , bstore . ErrAbsent ) {
return fmt . Errorf ( "get subjectpass key from accounts database: %w" , err )
}
key = ""
const chars = "abcdefghijklmnopqrstuvwxyz0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
for i := 0 ; i < 16 ; i ++ {
key += string ( chars [ subjectpassRand . Intn ( len ( chars ) ) ] )
}
v . Key = key
return tx . Insert ( & v )
} )
}
// Ensure mailbox is present in database, adding records for the mailbox and its
// parents if they aren't present.
//
// If subscribe is true, any mailboxes that were created will also be subscribed to.
// Caller must hold account wlock.
// Caller must propagate changes if any.
2023-02-16 11:57:27 +03:00
func ( a * Account ) MailboxEnsure ( tx * bstore . Tx , name string , subscribe bool ) ( mb Mailbox , changes [ ] Change , rerr error ) {
2023-01-30 16:27:06 +03:00
if norm . NFC . String ( name ) != name {
2023-02-16 11:57:27 +03:00
return Mailbox { } , nil , fmt . Errorf ( "mailbox name not normalized" )
2023-01-30 16:27:06 +03:00
}
// Quick sanity check.
if strings . EqualFold ( name , "inbox" ) && name != "Inbox" {
2023-02-16 11:57:27 +03:00
return Mailbox { } , nil , fmt . Errorf ( "bad casing for inbox" )
2023-01-30 16:27:06 +03:00
}
elems := strings . Split ( name , "/" )
q := bstore . QueryTx [ Mailbox ] ( tx )
q . FilterFn ( func ( mb Mailbox ) bool {
return mb . Name == elems [ 0 ] || strings . HasPrefix ( mb . Name , elems [ 0 ] + "/" )
} )
l , err := q . List ( )
2023-02-16 11:57:27 +03:00
if err != nil {
return Mailbox { } , nil , fmt . Errorf ( "list mailboxes: %v" , err )
}
2023-01-30 16:27:06 +03:00
mailboxes := map [ string ] Mailbox { }
for _ , xmb := range l {
mailboxes [ xmb . Name ] = xmb
}
p := ""
for _ , elem := range elems {
if p != "" {
p += "/"
}
p += elem
var ok bool
mb , ok = mailboxes [ p ]
if ok {
continue
}
uidval , err := a . NextUIDValidity ( tx )
2023-02-16 11:57:27 +03:00
if err != nil {
return Mailbox { } , nil , fmt . Errorf ( "next uid validity: %v" , err )
}
2023-01-30 16:27:06 +03:00
mb = Mailbox {
Name : p ,
UIDValidity : uidval ,
UIDNext : 1 ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
HaveCounts : true ,
2023-01-30 16:27:06 +03:00
}
err = tx . Insert ( & mb )
2023-02-16 11:57:27 +03:00
if err != nil {
return Mailbox { } , nil , fmt . Errorf ( "creating new mailbox: %v" , err )
}
2023-01-30 16:27:06 +03:00
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
var flags [ ] string
2023-01-30 16:27:06 +03:00
if subscribe {
2023-08-01 11:14:02 +03:00
if tx . Get ( & Subscription { p } ) != nil {
err := tx . Insert ( & Subscription { p } )
if err != nil {
return Mailbox { } , nil , fmt . Errorf ( "subscribing to mailbox: %v" , err )
}
2023-01-30 16:27:06 +03:00
}
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
flags = [ ] string { ` \Subscribed ` }
2023-01-30 16:27:06 +03:00
}
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
changes = append ( changes , ChangeAddMailbox { mb , flags } )
2023-01-30 16:27:06 +03:00
}
2023-02-16 11:57:27 +03:00
return mb , changes , nil
}
2023-04-20 15:16:56 +03:00
// MailboxExists checks if mailbox exists.
2023-01-30 16:27:06 +03:00
// Caller must hold account rlock.
2023-04-20 15:16:56 +03:00
func ( a * Account ) MailboxExists ( tx * bstore . Tx , name string ) ( bool , error ) {
2023-01-30 16:27:06 +03:00
q := bstore . QueryTx [ Mailbox ] ( tx )
q . FilterEqual ( "Name" , name )
2023-04-20 15:16:56 +03:00
return q . Exists ( )
2023-01-30 16:27:06 +03:00
}
2023-04-20 15:16:56 +03:00
// MailboxFind finds a mailbox by name, returning a nil mailbox and nil error if mailbox does not exist.
func ( a * Account ) MailboxFind ( tx * bstore . Tx , name string ) ( * Mailbox , error ) {
2023-01-30 16:27:06 +03:00
q := bstore . QueryTx [ Mailbox ] ( tx )
q . FilterEqual ( "Name" , name )
mb , err := q . Get ( )
if err == bstore . ErrAbsent {
2023-04-20 15:16:56 +03:00
return nil , nil
}
if err != nil {
return nil , fmt . Errorf ( "looking up mailbox: %w" , err )
2023-01-30 16:27:06 +03:00
}
2023-04-20 15:16:56 +03:00
return & mb , nil
2023-01-30 16:27:06 +03:00
}
2023-04-20 15:16:56 +03:00
// SubscriptionEnsure ensures a subscription for name exists. The mailbox does not
2023-01-30 16:27:06 +03:00
// have to exist. Any parents are not automatically subscribed.
2023-04-20 15:16:56 +03:00
// Changes are returned and must be broadcasted by the caller.
func ( a * Account ) SubscriptionEnsure ( tx * bstore . Tx , name string ) ( [ ] Change , error ) {
if err := tx . Get ( & Subscription { name } ) ; err == nil {
return nil , nil
2023-01-30 16:27:06 +03:00
}
2023-04-20 15:16:56 +03:00
if err := tx . Insert ( & Subscription { name } ) ; err != nil {
return nil , fmt . Errorf ( "inserting subscription: %w" , err )
}
2023-01-30 16:27:06 +03:00
q := bstore . QueryTx [ Mailbox ] ( tx )
q . FilterEqual ( "Name" , name )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
_ , err := q . Get ( )
if err == nil {
return [ ] Change { ChangeAddSubscription { name , nil } } , nil
} else if err != bstore . ErrAbsent {
2023-04-20 15:16:56 +03:00
return nil , fmt . Errorf ( "looking up mailbox for subscription: %w" , err )
}
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
return [ ] Change { ChangeAddSubscription { name , [ ] string { ` \NonExistent ` } } } , nil
2023-01-30 16:27:06 +03:00
}
// MessageRuleset returns the first ruleset (if any) that message the message
// represented by msgPrefix and msgFile, with smtp and validation fields from m.
func MessageRuleset ( log * mlog . Log , dest config . Destination , m * Message , msgPrefix [ ] byte , msgFile * os . File ) * config . Ruleset {
if len ( dest . Rulesets ) == 0 {
return nil
}
mr := FileMsgReader ( msgPrefix , msgFile ) // We don't close, it would close the msgFile.
2023-08-15 09:25:56 +03:00
p , err := message . Parse ( log , false , mr )
2023-01-30 16:27:06 +03:00
if err != nil {
log . Errorx ( "parsing message for evaluating rulesets, continuing with headers" , err , mlog . Field ( "parse" , "" ) )
// note: part is still set.
}
// todo optimize: only parse header if needed for rulesets. and probably reuse an earlier parsing.
header , err := p . Header ( )
if err != nil {
log . Errorx ( "parsing message headers for evaluating rulesets, delivering to default mailbox" , err , mlog . Field ( "parse" , "" ) )
// todo: reject message?
return nil
}
ruleset :
for _ , rs := range dest . Rulesets {
if rs . SMTPMailFromRegexpCompiled != nil {
if ! rs . SMTPMailFromRegexpCompiled . MatchString ( m . MailFrom ) {
continue ruleset
}
}
if ! rs . VerifiedDNSDomain . IsZero ( ) {
d := rs . VerifiedDNSDomain . Name ( )
suffix := "." + d
matchDomain := func ( s string ) bool {
return s == d || strings . HasSuffix ( s , suffix )
}
var ok bool
if m . EHLOValidated && matchDomain ( m . EHLODomain ) {
ok = true
}
if m . MailFromValidated && matchDomain ( m . MailFromDomain ) {
ok = true
}
for _ , d := range m . DKIMDomains {
if matchDomain ( d ) {
ok = true
break
}
}
if ! ok {
continue ruleset
}
}
header :
for _ , t := range rs . HeadersRegexpCompiled {
for k , vl := range header {
k = strings . ToLower ( k )
if ! t [ 0 ] . MatchString ( k ) {
continue
}
for _ , v := range vl {
v = strings . ToLower ( strings . TrimSpace ( v ) )
if t [ 1 ] . MatchString ( v ) {
continue header
}
}
}
continue ruleset
}
return & rs
}
return nil
}
// MessagePath returns the file system path of a message.
func ( a * Account ) MessagePath ( messageID int64 ) string {
return filepath . Join ( a . Dir , "msg" , MessagePath ( messageID ) )
}
// MessageReader opens a message for reading, transparently combining the
// message prefix with the original incoming message.
func ( a * Account ) MessageReader ( m Message ) * MsgReader {
return & MsgReader { prefix : m . MsgPrefix , path : a . MessagePath ( m . ID ) , size : m . Size }
}
// Deliver delivers an email to dest, based on the configured rulesets.
//
// Caller must hold account wlock (mailbox may be created).
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
// Message delivery, possible mailbox creation, and updated mailbox counts are
// broadcasted.
2023-01-30 16:27:06 +03:00
func ( a * Account ) Deliver ( log * mlog . Log , dest config . Destination , m * Message , msgFile * os . File , consumeFile bool ) error {
var mailbox string
rs := MessageRuleset ( log , dest , m , m . MsgPrefix , msgFile )
if rs != nil {
mailbox = rs . Mailbox
} else if dest . Mailbox == "" {
mailbox = "Inbox"
} else {
mailbox = dest . Mailbox
}
return a . DeliverMailbox ( log , mailbox , m , msgFile , consumeFile )
}
// DeliverMailbox delivers an email to the specified mailbox.
//
// Caller must hold account wlock (mailbox may be created).
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
// Message delivery, possible mailbox creation, and updated mailbox counts are
// broadcasted.
2023-01-30 16:27:06 +03:00
func ( a * Account ) DeliverMailbox ( log * mlog . Log , mailbox string , m * Message , msgFile * os . File , consumeFile bool ) error {
var changes [ ] Change
2023-05-22 15:40:36 +03:00
err := a . DB . Write ( context . TODO ( ) , func ( tx * bstore . Tx ) error {
2023-04-20 15:16:56 +03:00
mb , chl , err := a . MailboxEnsure ( tx , mailbox , true )
if err != nil {
return fmt . Errorf ( "ensuring mailbox: %w" , err )
}
2023-01-30 16:27:06 +03:00
m . MailboxID = mb . ID
m . MailboxOrigID = mb . ID
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
// Update count early, DeliverMessage will update mb too and we don't want to fetch
// it again before updating.
mb . MailboxCounts . Add ( m . MailboxCounts ( ) )
if err := tx . Update ( & mb ) ; err != nil {
return fmt . Errorf ( "updating mailbox for delivery: %w" , err )
}
2023-08-09 10:31:23 +03:00
if err := a . DeliverMessage ( log , tx , m , msgFile , consumeFile , true , false ) ; err != nil {
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
return err
}
changes = append ( changes , chl ... )
changes = append ( changes , m . ChangeAddUID ( ) , mb . ChangeCounts ( ) )
return nil
2023-01-30 16:27:06 +03:00
} )
// todo: if rename succeeded but transaction failed, we should remove the file.
if err != nil {
return err
}
2023-07-23 16:28:37 +03:00
BroadcastChanges ( a , changes )
2023-01-30 16:27:06 +03:00
return nil
}
// TidyRejectsMailbox removes old reject emails, and returns whether there is space for a new delivery.
//
// Caller most hold account wlock.
// Changes are broadcasted.
improve training of junk filter
before, we used heuristics to decide when to train/untrain a message as junk or
nonjunk: the message had to be seen, be in certain mailboxes. then if a message
was marked as junk, it was junk. and otherwise it was nonjunk. this wasn't good
enough: you may want to keep some messages around as neither junk or nonjunk.
and that wasn't possible.
ideally, we would just look at the imap $Junk and $NotJunk flags. the problem
is that mail clients don't set these flags, or don't make it easy. thunderbird
can set the flags based on its own bayesian filter. it has a shortcut for
marking Junk and moving it to the junk folder (good), but the counterpart of
notjunk only marks a message as notjunk without showing in the UI that it was
marked as notjunk. there is also no "move and mark as notjunk" mechanism. e.g.
"archive" does not mark a message as notjunk. ios mail and mutt don't appear to
have any way to see or change the $Junk and $NotJunk flags.
what email clients do have is the ability to move messages to other
mailboxes/folders. so mox now has a mechanism that allows you to configure
mailboxes that automatically set $Junk or $NotJunk (or clear both) when a
message is moved/copied/delivered to that folder. e.g. a mailbox called junk or
spam or rejects marks its messags as junk. inbox, postmaster, dmarc, tlsrpt,
neutral* mark their messages as neither junk or notjunk. other folders mark
their messages as notjunk. e.g. list/*, archive. this functionality is
optional, but enabled with the quickstart and for new accounts.
also, mox now keeps track of the previous training of a message and will only
untrain/train if needed. before, there probably have been duplicate or missing
(un)trainings.
this also includes a new subcommand "retrain" to recreate the junkfilter for an
account. you should run it after updating to this version. and you should
probably also modify your account config to include the AutomaticJunkFlags.
2023-02-12 01:00:12 +03:00
func ( a * Account ) TidyRejectsMailbox ( log * mlog . Log , rejectsMailbox string ) ( hasSpace bool , rerr error ) {
2023-01-30 16:27:06 +03:00
var changes [ ] Change
2023-02-13 13:06:16 +03:00
var remove [ ] Message
defer func ( ) {
for _ , m := range remove {
p := a . MessagePath ( m . ID )
2023-02-16 15:22:00 +03:00
err := os . Remove ( p )
log . Check ( err , "removing rejects message file" , mlog . Field ( "path" , p ) )
2023-02-13 13:06:16 +03:00
}
} ( )
2023-05-22 15:40:36 +03:00
err := a . DB . Write ( context . TODO ( ) , func ( tx * bstore . Tx ) error {
2023-04-20 15:16:56 +03:00
mb , err := a . MailboxFind ( tx , rejectsMailbox )
if err != nil {
return fmt . Errorf ( "finding mailbox: %w" , err )
}
2023-01-30 16:27:06 +03:00
if mb == nil {
// No messages have been delivered yet.
hasSpace = true
return nil
}
// Gather old messages to remove.
2023-02-13 12:47:20 +03:00
old := time . Now ( ) . Add ( - 14 * 24 * time . Hour )
2023-01-30 16:27:06 +03:00
qdel := bstore . QueryTx [ Message ] ( tx )
qdel . FilterNonzero ( Message { MailboxID : mb . ID } )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
qdel . FilterEqual ( "Expunged" , false )
2023-01-30 16:27:06 +03:00
qdel . FilterLess ( "Received" , old )
2023-02-13 13:06:16 +03:00
remove , err = qdel . List ( )
2023-04-20 15:16:56 +03:00
if err != nil {
return fmt . Errorf ( "listing old messages: %w" , err )
}
2023-01-30 16:27:06 +03:00
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
changes , err = a . rejectsRemoveMessages ( context . TODO ( ) , log , tx , mb , remove )
2023-04-20 15:16:56 +03:00
if err != nil {
return fmt . Errorf ( "removing messages: %w" , err )
}
2023-01-30 16:27:06 +03:00
// We allow up to n messages.
qcount := bstore . QueryTx [ Message ] ( tx )
qcount . FilterNonzero ( Message { MailboxID : mb . ID } )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
qcount . FilterEqual ( "Expunged" , false )
2023-01-30 16:27:06 +03:00
qcount . Limit ( 1000 )
n , err := qcount . Count ( )
2023-04-20 15:16:56 +03:00
if err != nil {
return fmt . Errorf ( "counting rejects: %w" , err )
}
2023-01-30 16:27:06 +03:00
hasSpace = n < 1000
return nil
} )
2023-02-13 13:06:16 +03:00
if err != nil {
remove = nil // Don't remove files on failure.
return false , err
}
2023-01-30 16:27:06 +03:00
2023-07-23 16:28:37 +03:00
BroadcastChanges ( a , changes )
2023-01-30 16:27:06 +03:00
2023-02-13 13:06:16 +03:00
return hasSpace , nil
2023-01-30 16:27:06 +03:00
}
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
func ( a * Account ) rejectsRemoveMessages ( ctx context . Context , log * mlog . Log , tx * bstore . Tx , mb * Mailbox , l [ ] Message ) ( [ ] Change , error ) {
2023-01-30 16:27:06 +03:00
if len ( l ) == 0 {
2023-04-20 15:16:56 +03:00
return nil , nil
2023-01-30 16:27:06 +03:00
}
ids := make ( [ ] int64 , len ( l ) )
anyids := make ( [ ] any , len ( l ) )
for i , m := range l {
ids [ i ] = m . ID
anyids [ i ] = m . ID
}
// Remove any message recipients. Should not happen, but a user can move messages
// from a Sent mailbox to the rejects mailbox...
qdmr := bstore . QueryTx [ Recipient ] ( tx )
qdmr . FilterEqual ( "MessageID" , anyids ... )
2023-04-20 15:16:56 +03:00
if _ , err := qdmr . Delete ( ) ; err != nil {
return nil , fmt . Errorf ( "deleting from message recipient: %w" , err )
}
2023-01-30 16:27:06 +03:00
2023-07-24 22:21:05 +03:00
// Assign new modseq.
modseq , err := a . NextModSeq ( tx )
if err != nil {
return nil , fmt . Errorf ( "assign next modseq: %w" , err )
}
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
// Expunge the messages.
2023-07-24 22:21:05 +03:00
qx := bstore . QueryTx [ Message ] ( tx )
qx . FilterIDs ( ids )
var expunged [ ] Message
qx . Gather ( & expunged )
if _ , err := qx . UpdateNonzero ( Message { ModSeq : modseq , Expunged : true } ) ; err != nil {
return nil , fmt . Errorf ( "expunging messages: %w" , err )
2023-04-20 15:16:56 +03:00
}
improve training of junk filter
before, we used heuristics to decide when to train/untrain a message as junk or
nonjunk: the message had to be seen, be in certain mailboxes. then if a message
was marked as junk, it was junk. and otherwise it was nonjunk. this wasn't good
enough: you may want to keep some messages around as neither junk or nonjunk.
and that wasn't possible.
ideally, we would just look at the imap $Junk and $NotJunk flags. the problem
is that mail clients don't set these flags, or don't make it easy. thunderbird
can set the flags based on its own bayesian filter. it has a shortcut for
marking Junk and moving it to the junk folder (good), but the counterpart of
notjunk only marks a message as notjunk without showing in the UI that it was
marked as notjunk. there is also no "move and mark as notjunk" mechanism. e.g.
"archive" does not mark a message as notjunk. ios mail and mutt don't appear to
have any way to see or change the $Junk and $NotJunk flags.
what email clients do have is the ability to move messages to other
mailboxes/folders. so mox now has a mechanism that allows you to configure
mailboxes that automatically set $Junk or $NotJunk (or clear both) when a
message is moved/copied/delivered to that folder. e.g. a mailbox called junk or
spam or rejects marks its messags as junk. inbox, postmaster, dmarc, tlsrpt,
neutral* mark their messages as neither junk or notjunk. other folders mark
their messages as notjunk. e.g. list/*, archive. this functionality is
optional, but enabled with the quickstart and for new accounts.
also, mox now keeps track of the previous training of a message and will only
untrain/train if needed. before, there probably have been duplicate or missing
(un)trainings.
this also includes a new subcommand "retrain" to recreate the junkfilter for an
account. you should run it after updating to this version. and you should
probably also modify your account config to include the AutomaticJunkFlags.
2023-02-12 01:00:12 +03:00
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
for _ , m := range expunged {
m . Expunged = false // Was set by update, but would cause wrong count.
mb . MailboxCounts . Sub ( m . MailboxCounts ( ) )
}
if err := tx . Update ( mb ) ; err != nil {
return nil , fmt . Errorf ( "updating mailbox counts: %w" , err )
}
improve training of junk filter
before, we used heuristics to decide when to train/untrain a message as junk or
nonjunk: the message had to be seen, be in certain mailboxes. then if a message
was marked as junk, it was junk. and otherwise it was nonjunk. this wasn't good
enough: you may want to keep some messages around as neither junk or nonjunk.
and that wasn't possible.
ideally, we would just look at the imap $Junk and $NotJunk flags. the problem
is that mail clients don't set these flags, or don't make it easy. thunderbird
can set the flags based on its own bayesian filter. it has a shortcut for
marking Junk and moving it to the junk folder (good), but the counterpart of
notjunk only marks a message as notjunk without showing in the UI that it was
marked as notjunk. there is also no "move and mark as notjunk" mechanism. e.g.
"archive" does not mark a message as notjunk. ios mail and mutt don't appear to
have any way to see or change the $Junk and $NotJunk flags.
what email clients do have is the ability to move messages to other
mailboxes/folders. so mox now has a mechanism that allows you to configure
mailboxes that automatically set $Junk or $NotJunk (or clear both) when a
message is moved/copied/delivered to that folder. e.g. a mailbox called junk or
spam or rejects marks its messags as junk. inbox, postmaster, dmarc, tlsrpt,
neutral* mark their messages as neither junk or notjunk. other folders mark
their messages as notjunk. e.g. list/*, archive. this functionality is
optional, but enabled with the quickstart and for new accounts.
also, mox now keeps track of the previous training of a message and will only
untrain/train if needed. before, there probably have been duplicate or missing
(un)trainings.
this also includes a new subcommand "retrain" to recreate the junkfilter for an
account. you should run it after updating to this version. and you should
probably also modify your account config to include the AutomaticJunkFlags.
2023-02-12 01:00:12 +03:00
// Mark as neutral and train so junk filter gets untrained with these (junk) messages.
2023-07-24 22:21:05 +03:00
for i := range expunged {
expunged [ i ] . Junk = false
expunged [ i ] . Notjunk = false
improve training of junk filter
before, we used heuristics to decide when to train/untrain a message as junk or
nonjunk: the message had to be seen, be in certain mailboxes. then if a message
was marked as junk, it was junk. and otherwise it was nonjunk. this wasn't good
enough: you may want to keep some messages around as neither junk or nonjunk.
and that wasn't possible.
ideally, we would just look at the imap $Junk and $NotJunk flags. the problem
is that mail clients don't set these flags, or don't make it easy. thunderbird
can set the flags based on its own bayesian filter. it has a shortcut for
marking Junk and moving it to the junk folder (good), but the counterpart of
notjunk only marks a message as notjunk without showing in the UI that it was
marked as notjunk. there is also no "move and mark as notjunk" mechanism. e.g.
"archive" does not mark a message as notjunk. ios mail and mutt don't appear to
have any way to see or change the $Junk and $NotJunk flags.
what email clients do have is the ability to move messages to other
mailboxes/folders. so mox now has a mechanism that allows you to configure
mailboxes that automatically set $Junk or $NotJunk (or clear both) when a
message is moved/copied/delivered to that folder. e.g. a mailbox called junk or
spam or rejects marks its messags as junk. inbox, postmaster, dmarc, tlsrpt,
neutral* mark their messages as neither junk or notjunk. other folders mark
their messages as notjunk. e.g. list/*, archive. this functionality is
optional, but enabled with the quickstart and for new accounts.
also, mox now keeps track of the previous training of a message and will only
untrain/train if needed. before, there probably have been duplicate or missing
(un)trainings.
this also includes a new subcommand "retrain" to recreate the junkfilter for an
account. you should run it after updating to this version. and you should
probably also modify your account config to include the AutomaticJunkFlags.
2023-02-12 01:00:12 +03:00
}
2023-07-24 22:21:05 +03:00
if err := a . RetrainMessages ( ctx , log , tx , expunged , true ) ; err != nil {
return nil , fmt . Errorf ( "retraining expunged messages: %w" , err )
2023-04-20 15:16:56 +03:00
}
2023-01-30 16:27:06 +03:00
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
changes := make ( [ ] Change , len ( l ) , len ( l ) + 1 )
2023-01-30 16:27:06 +03:00
for i , m := range l {
2023-07-24 22:21:05 +03:00
changes [ i ] = ChangeRemoveUIDs { mb . ID , [ ] UID { m . UID } , modseq }
2023-01-30 16:27:06 +03:00
}
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
changes = append ( changes , mb . ChangeCounts ( ) )
2023-04-20 15:16:56 +03:00
return changes , nil
2023-01-30 16:27:06 +03:00
}
// RejectsRemove removes a message from the rejects mailbox if present.
// Caller most hold account wlock.
// Changes are broadcasted.
2023-02-13 13:06:16 +03:00
func ( a * Account ) RejectsRemove ( log * mlog . Log , rejectsMailbox , messageID string ) error {
2023-01-30 16:27:06 +03:00
var changes [ ] Change
2023-02-13 13:06:16 +03:00
var remove [ ] Message
defer func ( ) {
for _ , m := range remove {
p := a . MessagePath ( m . ID )
2023-02-16 15:22:00 +03:00
err := os . Remove ( p )
log . Check ( err , "removing rejects message file" , mlog . Field ( "path" , p ) )
2023-02-13 13:06:16 +03:00
}
} ( )
2023-05-22 15:40:36 +03:00
err := a . DB . Write ( context . TODO ( ) , func ( tx * bstore . Tx ) error {
2023-04-20 15:16:56 +03:00
mb , err := a . MailboxFind ( tx , rejectsMailbox )
if err != nil {
return fmt . Errorf ( "finding mailbox: %w" , err )
}
2023-01-30 16:27:06 +03:00
if mb == nil {
return nil
}
q := bstore . QueryTx [ Message ] ( tx )
q . FilterNonzero ( Message { MailboxID : mb . ID , MessageID : messageID } )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
q . FilterEqual ( "Expunged" , false )
2023-02-16 15:24:51 +03:00
remove , err = q . List ( )
2023-04-20 15:16:56 +03:00
if err != nil {
return fmt . Errorf ( "listing messages to remove: %w" , err )
}
2023-01-30 16:27:06 +03:00
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
changes , err = a . rejectsRemoveMessages ( context . TODO ( ) , log , tx , mb , remove )
2023-04-20 15:16:56 +03:00
if err != nil {
return fmt . Errorf ( "removing messages: %w" , err )
}
2023-01-30 16:27:06 +03:00
2023-02-13 13:06:16 +03:00
return nil
2023-01-30 16:27:06 +03:00
} )
if err != nil {
2023-02-13 13:06:16 +03:00
remove = nil // Don't remove files on failure.
return err
2023-01-30 16:27:06 +03:00
}
2023-07-23 16:28:37 +03:00
BroadcastChanges ( a , changes )
2023-02-13 13:06:16 +03:00
return nil
2023-01-30 16:27:06 +03:00
}
// We keep a cache of recent successful authentications, so we don't have to bcrypt successful calls each time.
change mox to start as root, bind to network sockets, then drop to regular unprivileged mox user
makes it easier to run on bsd's, where you cannot (easily?) let non-root users
bind to ports <1024. starting as root also paves the way for future improvements
with privilege separation.
unfortunately, this requires changes to how you start mox. though mox will help
by automatically fix up dir/file permissions/ownership.
if you start mox from the systemd unit file, you should update it so it starts
as root and adds a few additional capabilities:
# first update the mox binary, then, as root:
./mox config printservice >mox.service
systemctl daemon-reload
systemctl restart mox
journalctl -f -u mox &
# you should see mox start up, with messages about fixing permissions on dirs/files.
if you used the recommended config/ and data/ directory, in a directory just for
mox, and with the mox user called "mox", this should be enough.
if you don't want mox to modify dir/file permissions, set "NoFixPermissions:
true" in mox.conf.
if you named the mox user something else than mox, e.g. "_mox", add "User: _mox"
to mox.conf.
if you created a shared service user as originally suggested, you may want to
get rid of that as it is no longer useful and may get in the way. e.g. if you
had /home/service/mox with a "service" user, that service user can no longer
access any files: only mox and root can.
this also adds scripts for building mox docker images for alpine-supported
platforms.
the "restart" subcommand has been removed. it wasn't all that useful and got in
the way.
and another change: when adding a domain while mtasts isn't enabled, don't add
the per-domain mtasts config, as it would cause failure to add the domain.
based on report from setting up mox on openbsd from mteege.
and based on issue #3. thanks for the feedback!
2023-02-27 14:19:55 +03:00
var authCache = struct {
2023-01-30 16:27:06 +03:00
sync . Mutex
success map [ authKey ] string
change mox to start as root, bind to network sockets, then drop to regular unprivileged mox user
makes it easier to run on bsd's, where you cannot (easily?) let non-root users
bind to ports <1024. starting as root also paves the way for future improvements
with privilege separation.
unfortunately, this requires changes to how you start mox. though mox will help
by automatically fix up dir/file permissions/ownership.
if you start mox from the systemd unit file, you should update it so it starts
as root and adds a few additional capabilities:
# first update the mox binary, then, as root:
./mox config printservice >mox.service
systemctl daemon-reload
systemctl restart mox
journalctl -f -u mox &
# you should see mox start up, with messages about fixing permissions on dirs/files.
if you used the recommended config/ and data/ directory, in a directory just for
mox, and with the mox user called "mox", this should be enough.
if you don't want mox to modify dir/file permissions, set "NoFixPermissions:
true" in mox.conf.
if you named the mox user something else than mox, e.g. "_mox", add "User: _mox"
to mox.conf.
if you created a shared service user as originally suggested, you may want to
get rid of that as it is no longer useful and may get in the way. e.g. if you
had /home/service/mox with a "service" user, that service user can no longer
access any files: only mox and root can.
this also adds scripts for building mox docker images for alpine-supported
platforms.
the "restart" subcommand has been removed. it wasn't all that useful and got in
the way.
and another change: when adding a domain while mtasts isn't enabled, don't add
the per-domain mtasts config, as it would cause failure to add the domain.
based on report from setting up mox on openbsd from mteege.
and based on issue #3. thanks for the feedback!
2023-02-27 14:19:55 +03:00
} {
success : map [ authKey ] string { } ,
2023-01-30 16:27:06 +03:00
}
type authKey struct {
email , hash string
}
change mox to start as root, bind to network sockets, then drop to regular unprivileged mox user
makes it easier to run on bsd's, where you cannot (easily?) let non-root users
bind to ports <1024. starting as root also paves the way for future improvements
with privilege separation.
unfortunately, this requires changes to how you start mox. though mox will help
by automatically fix up dir/file permissions/ownership.
if you start mox from the systemd unit file, you should update it so it starts
as root and adds a few additional capabilities:
# first update the mox binary, then, as root:
./mox config printservice >mox.service
systemctl daemon-reload
systemctl restart mox
journalctl -f -u mox &
# you should see mox start up, with messages about fixing permissions on dirs/files.
if you used the recommended config/ and data/ directory, in a directory just for
mox, and with the mox user called "mox", this should be enough.
if you don't want mox to modify dir/file permissions, set "NoFixPermissions:
true" in mox.conf.
if you named the mox user something else than mox, e.g. "_mox", add "User: _mox"
to mox.conf.
if you created a shared service user as originally suggested, you may want to
get rid of that as it is no longer useful and may get in the way. e.g. if you
had /home/service/mox with a "service" user, that service user can no longer
access any files: only mox and root can.
this also adds scripts for building mox docker images for alpine-supported
platforms.
the "restart" subcommand has been removed. it wasn't all that useful and got in
the way.
and another change: when adding a domain while mtasts isn't enabled, don't add
the per-domain mtasts config, as it would cause failure to add the domain.
based on report from setting up mox on openbsd from mteege.
and based on issue #3. thanks for the feedback!
2023-02-27 14:19:55 +03:00
// StartAuthCache starts a goroutine that regularly clears the auth cache.
func StartAuthCache ( ) {
go manageAuthCache ( )
}
func manageAuthCache ( ) {
for {
authCache . Lock ( )
authCache . success = map [ authKey ] string { }
authCache . Unlock ( )
time . Sleep ( 15 * time . Minute )
}
2023-01-30 16:27:06 +03:00
}
// OpenEmailAuth opens an account given an email address and password.
//
// The email address may contain a catchall separator.
func OpenEmailAuth ( email string , password string ) ( acc * Account , rerr error ) {
acc , _ , rerr = OpenEmail ( email )
if rerr != nil {
return
}
defer func ( ) {
if rerr != nil && acc != nil {
2023-02-16 15:22:00 +03:00
err := acc . Close ( )
xlog . Check ( err , "closing account after open auth failure" )
2023-01-30 16:27:06 +03:00
acc = nil
}
} ( )
2023-05-22 15:40:36 +03:00
pw , err := bstore . QueryDB [ Password ] ( context . TODO ( ) , acc . DB ) . Get ( )
2023-01-30 16:27:06 +03:00
if err != nil {
if err == bstore . ErrAbsent {
return acc , ErrUnknownCredentials
}
return acc , fmt . Errorf ( "looking up password: %v" , err )
}
authCache . Lock ( )
ok := len ( password ) >= 8 && authCache . success [ authKey { email , pw . Hash } ] == password
authCache . Unlock ( )
if ok {
return
}
if err := bcrypt . CompareHashAndPassword ( [ ] byte ( pw . Hash ) , [ ] byte ( password ) ) ; err != nil {
rerr = ErrUnknownCredentials
} else {
authCache . Lock ( )
authCache . success [ authKey { email , pw . Hash } ] = password
authCache . Unlock ( )
}
return
}
// OpenEmail opens an account given an email address.
//
// The email address may contain a catchall separator.
func OpenEmail ( email string ) ( * Account , config . Destination , error ) {
addr , err := smtp . ParseAddress ( email )
if err != nil {
return nil , config . Destination { } , fmt . Errorf ( "%w: %v" , ErrUnknownCredentials , err )
}
accountName , _ , dest , err := mox . FindAccount ( addr . Localpart , addr . Domain , false )
if err != nil && ( errors . Is ( err , mox . ErrAccountNotFound ) || errors . Is ( err , mox . ErrDomainNotFound ) ) {
return nil , config . Destination { } , ErrUnknownCredentials
} else if err != nil {
return nil , config . Destination { } , fmt . Errorf ( "looking up address: %v" , err )
}
acc , err := OpenAccount ( accountName )
if err != nil {
return nil , config . Destination { } , err
}
return acc , dest , nil
}
// 64 characters, must be power of 2 for MessagePath
const msgDirChars = "abcdefghijklmnopqrstuvwxyz0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ-_"
// MessagePath returns the filename of the on-disk filename, relative to the containing directory such as <account>/msg or queue.
// Returns names like "AB/1".
func MessagePath ( messageID int64 ) string {
v := messageID >> 13 // 8k files per directory.
dir := ""
for {
dir += string ( msgDirChars [ int ( v ) & ( len ( msgDirChars ) - 1 ) ] )
v >>= 6
if v == 0 {
break
}
}
return fmt . Sprintf ( "%s/%d" , dir , messageID )
}
// Set returns a copy of f, with each flag that is true in mask set to the
// value from flags.
func ( f Flags ) Set ( mask , flags Flags ) Flags {
set := func ( d * bool , m , v bool ) {
if m {
* d = v
}
}
r := f
set ( & r . Seen , mask . Seen , flags . Seen )
set ( & r . Answered , mask . Answered , flags . Answered )
set ( & r . Flagged , mask . Flagged , flags . Flagged )
set ( & r . Forwarded , mask . Forwarded , flags . Forwarded )
set ( & r . Junk , mask . Junk , flags . Junk )
set ( & r . Notjunk , mask . Notjunk , flags . Notjunk )
set ( & r . Deleted , mask . Deleted , flags . Deleted )
set ( & r . Draft , mask . Draft , flags . Draft )
set ( & r . Phishing , mask . Phishing , flags . Phishing )
set ( & r . MDNSent , mask . MDNSent , flags . MDNSent )
return r
}
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
// Changed returns a mask of flags that have been between f and other.
func ( f Flags ) Changed ( other Flags ) ( mask Flags ) {
mask . Seen = f . Seen != other . Seen
mask . Answered = f . Answered != other . Answered
mask . Flagged = f . Flagged != other . Flagged
mask . Forwarded = f . Forwarded != other . Forwarded
mask . Junk = f . Junk != other . Junk
mask . Notjunk = f . Notjunk != other . Notjunk
mask . Deleted = f . Deleted != other . Deleted
mask . Draft = f . Draft != other . Draft
mask . Phishing = f . Phishing != other . Phishing
mask . MDNSent = f . MDNSent != other . MDNSent
return
}
var systemWellKnownFlags = map [ string ] bool {
` \answered ` : true ,
` \flagged ` : true ,
` \deleted ` : true ,
` \seen ` : true ,
` \draft ` : true ,
` $junk ` : true ,
` $notjunk ` : true ,
` $forwarded ` : true ,
` $phishing ` : true ,
` $mdnsent ` : true ,
}
// ParseFlagsKeywords parses a list of textual flags into system/known flags, and
// other keywords. Keywords are lower-cased and sorted and check for valid syntax.
func ParseFlagsKeywords ( l [ ] string ) ( flags Flags , keywords [ ] string , rerr error ) {
fields := map [ string ] * bool {
` \answered ` : & flags . Answered ,
` \flagged ` : & flags . Flagged ,
` \deleted ` : & flags . Deleted ,
` \seen ` : & flags . Seen ,
` \draft ` : & flags . Draft ,
` $junk ` : & flags . Junk ,
` $notjunk ` : & flags . Notjunk ,
` $forwarded ` : & flags . Forwarded ,
` $phishing ` : & flags . Phishing ,
` $mdnsent ` : & flags . MDNSent ,
}
seen := map [ string ] bool { }
for _ , f := range l {
f = strings . ToLower ( f )
if field , ok := fields [ f ] ; ok {
* field = true
} else if seen [ f ] {
if moxvar . Pedantic {
return Flags { } , nil , fmt . Errorf ( "duplicate keyword %s" , f )
}
} else {
if err := CheckKeyword ( f ) ; err != nil {
return Flags { } , nil , fmt . Errorf ( "invalid keyword %s" , f )
}
keywords = append ( keywords , f )
seen [ f ] = true
}
}
sort . Strings ( keywords )
return flags , keywords , nil
}
// RemoveKeywords removes keywords from l, returning whether any modifications were
// made, and a slice, a new slice in case of modifications. Keywords must have been
// validated earlier, e.g. through ParseFlagKeywords or CheckKeyword. Should only
// be used with valid keywords, not with system flags like \Seen.
func RemoveKeywords ( l , remove [ ] string ) ( [ ] string , bool ) {
var copied bool
var changed bool
2023-06-24 01:24:43 +03:00
for _ , k := range remove {
if i := slices . Index ( l , k ) ; i >= 0 {
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
if ! copied {
l = append ( [ ] string { } , l ... )
copied = true
}
2023-06-24 01:24:43 +03:00
copy ( l [ i : ] , l [ i + 1 : ] )
l = l [ : len ( l ) - 1 ]
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
changed = true
2023-01-30 16:27:06 +03:00
}
}
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
return l , changed
2023-06-24 01:24:43 +03:00
}
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
// MergeKeywords adds keywords from add into l, returning whether it added any
// keyword, and the slice with keywords, a new slice if modifications were made.
// Keywords are only added if they aren't already present. Should only be used with
// keywords, not with system flags like \Seen.
2023-06-24 01:24:43 +03:00
func MergeKeywords ( l , add [ ] string ) ( [ ] string , bool ) {
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
var copied bool
2023-06-24 01:24:43 +03:00
var changed bool
for _ , k := range add {
2023-07-24 09:49:19 +03:00
if ! slices . Contains ( l , k ) {
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
if ! copied {
l = append ( [ ] string { } , l ... )
copied = true
}
2023-06-24 01:24:43 +03:00
l = append ( l , k )
changed = true
}
}
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
if changed {
sort . Strings ( l )
}
2023-06-24 01:24:43 +03:00
return l , changed
}
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
// CheckKeyword returns an error if kw is not a valid keyword. Kw should
// already be in lower-case.
func CheckKeyword ( kw string ) error {
if kw == "" {
return fmt . Errorf ( "keyword cannot be empty" )
}
if systemWellKnownFlags [ kw ] {
return fmt . Errorf ( "cannot use well-known flag as keyword" )
}
for _ , c := range kw {
// ../rfc/9051:6334
if c <= ' ' || c > 0x7e || c >= 'A' && c <= 'Z' || strings . ContainsRune ( ` () { %*"\] ` , c ) {
return errors . New ( ` not a valid keyword, must be lower-case ascii without spaces and without any of these characters: () { %*"\] ` )
}
}
return nil
}
// SendLimitReached checks whether sending a message to recipients would reach
// the limit of outgoing messages for the account. If so, the message should
// not be sent. If the returned numbers are >= 0, the limit was reached and the
// values are the configured limits.
//
// To limit damage to the internet and our reputation in case of account
// compromise, we limit the max number of messages sent in a 24 hour window, both
// total number of messages and number of first-time recipients.
func ( a * Account ) SendLimitReached ( tx * bstore . Tx , recipients [ ] smtp . Path ) ( msglimit , rcptlimit int , rerr error ) {
conf , _ := a . Conf ( )
msgmax := conf . MaxOutgoingMessagesPerDay
if msgmax == 0 {
// For human senders, 1000 recipients in a day is quite a lot.
msgmax = 1000
}
rcptmax := conf . MaxFirstTimeRecipientsPerDay
if rcptmax == 0 {
// Human senders may address a new human-sized list of people once in a while. In
// case of a compromise, a spammer will probably try to send to many new addresses.
rcptmax = 200
}
rcpts := map [ string ] time . Time { }
n := 0
err := bstore . QueryTx [ Outgoing ] ( tx ) . FilterGreater ( "Submitted" , time . Now ( ) . Add ( - 24 * time . Hour ) ) . ForEach ( func ( o Outgoing ) error {
n ++
if rcpts [ o . Recipient ] . IsZero ( ) || o . Submitted . Before ( rcpts [ o . Recipient ] ) {
rcpts [ o . Recipient ] = o . Submitted
}
return nil
} )
if err != nil {
return - 1 , - 1 , fmt . Errorf ( "querying message recipients in past 24h: %w" , err )
}
if n + len ( recipients ) > msgmax {
return msgmax , - 1 , nil
}
// Only check if max first-time recipients is reached if there are enough messages
// to trigger the limit.
if n + len ( recipients ) < rcptmax {
return - 1 , - 1 , nil
}
isFirstTime := func ( rcpt string , before time . Time ) ( bool , error ) {
exists , err := bstore . QueryTx [ Outgoing ] ( tx ) . FilterNonzero ( Outgoing { Recipient : rcpt } ) . FilterLess ( "Submitted" , before ) . Exists ( )
return ! exists , err
}
firsttime := 0
now := time . Now ( )
for _ , r := range recipients {
if first , err := isFirstTime ( r . XString ( true ) , now ) ; err != nil {
return - 1 , - 1 , fmt . Errorf ( "checking whether recipient is first-time: %v" , err )
} else if first {
firsttime ++
}
}
for r , t := range rcpts {
if first , err := isFirstTime ( r , t ) ; err != nil {
return - 1 , - 1 , fmt . Errorf ( "checking whether recipient is first-time: %v" , err )
} else if first {
firsttime ++
}
}
if firsttime > rcptmax {
return - 1 , rcptmax , nil
}
return - 1 , - 1 , nil
}
// MailboxCreate creates a new mailbox, including any missing parent mailboxes,
// the total list of created mailboxes is returned in created. On success, if
// exists is false and rerr nil, the changes must be broadcasted by the caller.
//
// Name must be in normalized form.
func ( a * Account ) MailboxCreate ( tx * bstore . Tx , name string ) ( changes [ ] Change , created [ ] string , exists bool , rerr error ) {
elems := strings . Split ( name , "/" )
var p string
for i , elem := range elems {
if i > 0 {
p += "/"
}
p += elem
exists , err := a . MailboxExists ( tx , p )
if err != nil {
return nil , nil , false , fmt . Errorf ( "checking if mailbox exists" )
}
if exists {
if i == len ( elems ) - 1 {
return nil , nil , true , fmt . Errorf ( "mailbox already exists" )
}
2023-06-24 01:24:43 +03:00
continue
}
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
_ , nchanges , err := a . MailboxEnsure ( tx , p , true )
if err != nil {
return nil , nil , false , fmt . Errorf ( "ensuring mailbox exists" )
}
changes = append ( changes , nchanges ... )
created = append ( created , p )
}
return changes , created , false , nil
}
// MailboxRename renames mailbox mbsrc to dst, and any missing parents for the
// destination, and any children of mbsrc and the destination.
//
// Names must be normalized and cannot be Inbox.
func ( a * Account ) MailboxRename ( tx * bstore . Tx , mbsrc Mailbox , dst string ) ( changes [ ] Change , isInbox , notExists , alreadyExists bool , rerr error ) {
if mbsrc . Name == "Inbox" || dst == "Inbox" {
return nil , true , false , false , fmt . Errorf ( "inbox cannot be renamed" )
}
// We gather existing mailboxes that we need for deciding what to create/delete/update.
q := bstore . QueryTx [ Mailbox ] ( tx )
srcPrefix := mbsrc . Name + "/"
dstRoot := strings . SplitN ( dst , "/" , 2 ) [ 0 ]
dstRootPrefix := dstRoot + "/"
q . FilterFn ( func ( mb Mailbox ) bool {
return mb . Name == mbsrc . Name || strings . HasPrefix ( mb . Name , srcPrefix ) || mb . Name == dstRoot || strings . HasPrefix ( mb . Name , dstRootPrefix )
} )
q . SortAsc ( "Name" ) // We'll rename the parents before children.
l , err := q . List ( )
if err != nil {
return nil , false , false , false , fmt . Errorf ( "listing relevant mailboxes: %v" , err )
}
mailboxes := map [ string ] Mailbox { }
for _ , mb := range l {
mailboxes [ mb . Name ] = mb
}
if _ , ok := mailboxes [ mbsrc . Name ] ; ! ok {
return nil , false , true , false , fmt . Errorf ( "mailbox does not exist" )
}
uidval , err := a . NextUIDValidity ( tx )
if err != nil {
return nil , false , false , false , fmt . Errorf ( "next uid validity: %v" , err )
}
// Ensure parent mailboxes for the destination paths exist.
var parent string
dstElems := strings . Split ( dst , "/" )
for i , elem := range dstElems [ : len ( dstElems ) - 1 ] {
if i > 0 {
parent += "/"
}
parent += elem
mb , ok := mailboxes [ parent ]
if ok {
continue
}
omb := mb
mb = Mailbox {
ID : omb . ID ,
Name : parent ,
UIDValidity : uidval ,
UIDNext : 1 ,
HaveCounts : true ,
}
if err := tx . Insert ( & mb ) ; err != nil {
return nil , false , false , false , fmt . Errorf ( "creating parent mailbox %q: %v" , mb . Name , err )
}
if err := tx . Get ( & Subscription { Name : parent } ) ; err != nil {
if err := tx . Insert ( & Subscription { Name : parent } ) ; err != nil {
return nil , false , false , false , fmt . Errorf ( "creating subscription for %q: %v" , parent , err )
}
}
changes = append ( changes , ChangeAddMailbox { Mailbox : mb , Flags : [ ] string { ` \Subscribed ` } } )
}
// Process src mailboxes, renaming them to dst.
for _ , srcmb := range l {
if srcmb . Name != mbsrc . Name && ! strings . HasPrefix ( srcmb . Name , srcPrefix ) {
continue
}
srcName := srcmb . Name
dstName := dst + srcmb . Name [ len ( mbsrc . Name ) : ]
if _ , ok := mailboxes [ dstName ] ; ok {
return nil , false , false , true , fmt . Errorf ( "destination mailbox %q already exists" , dstName )
}
srcmb . Name = dstName
srcmb . UIDValidity = uidval
if err := tx . Update ( & srcmb ) ; err != nil {
return nil , false , false , false , fmt . Errorf ( "renaming mailbox: %v" , err )
}
var dstFlags [ ] string
if tx . Get ( & Subscription { Name : dstName } ) == nil {
dstFlags = [ ] string { ` \Subscribed ` }
}
changes = append ( changes , ChangeRenameMailbox { MailboxID : srcmb . ID , OldName : srcName , NewName : dstName , Flags : dstFlags } )
}
// If we renamed e.g. a/b to a/b/c/d, and a/b/c to a/b/c/d/c, we'll have to recreate a/b and a/b/c.
srcElems := strings . Split ( mbsrc . Name , "/" )
xsrc := mbsrc . Name
for i := 0 ; i < len ( dstElems ) && strings . HasPrefix ( dst , xsrc + "/" ) ; i ++ {
mb := Mailbox {
UIDValidity : uidval ,
UIDNext : 1 ,
Name : xsrc ,
HaveCounts : true ,
}
if err := tx . Insert ( & mb ) ; err != nil {
return nil , false , false , false , fmt . Errorf ( "creating mailbox at old path %q: %v" , mb . Name , err )
}
xsrc += "/" + dstElems [ len ( srcElems ) + i ]
}
return changes , false , false , false , nil
}
// MailboxDelete deletes a mailbox by ID. If it has children, the return value
// indicates that and an error is returned.
//
// Caller should broadcast the changes and remove files for the removed message IDs.
func ( a * Account ) MailboxDelete ( ctx context . Context , log * mlog . Log , tx * bstore . Tx , mailbox Mailbox ) ( changes [ ] Change , removeMessageIDs [ ] int64 , hasChildren bool , rerr error ) {
// Look for existence of child mailboxes. There is a lot of text in the IMAP RFCs about
// NoInferior and NoSelect. We just require only leaf mailboxes are deleted.
qmb := bstore . QueryTx [ Mailbox ] ( tx )
mbprefix := mailbox . Name + "/"
qmb . FilterFn ( func ( mb Mailbox ) bool {
return strings . HasPrefix ( mb . Name , mbprefix )
} )
if childExists , err := qmb . Exists ( ) ; err != nil {
return nil , nil , false , fmt . Errorf ( "checking if mailbox has child: %v" , err )
} else if childExists {
return nil , nil , true , fmt . Errorf ( "mailbox has a child, only leaf mailboxes can be deleted" )
}
// todo jmap: instead of completely deleting a mailbox and its messages, we need to mark them all as expunged.
qm := bstore . QueryTx [ Message ] ( tx )
qm . FilterNonzero ( Message { MailboxID : mailbox . ID } )
remove , err := qm . List ( )
if err != nil {
return nil , nil , false , fmt . Errorf ( "listing messages to remove: %v" , err )
}
if len ( remove ) > 0 {
removeIDs := make ( [ ] any , len ( remove ) )
for i , m := range remove {
removeIDs [ i ] = m . ID
}
qmr := bstore . QueryTx [ Recipient ] ( tx )
qmr . FilterEqual ( "MessageID" , removeIDs ... )
if _ , err = qmr . Delete ( ) ; err != nil {
return nil , nil , false , fmt . Errorf ( "removing message recipients for messages: %v" , err )
}
qm = bstore . QueryTx [ Message ] ( tx )
qm . FilterNonzero ( Message { MailboxID : mailbox . ID } )
if _ , err := qm . Delete ( ) ; err != nil {
return nil , nil , false , fmt . Errorf ( "removing messages: %v" , err )
}
for _ , m := range remove {
if ! m . Expunged {
removeMessageIDs = append ( removeMessageIDs , m . ID )
}
}
// Mark messages as not needing training. Then retrain them, so they are untrained if they were.
n := 0
o := 0
for _ , m := range remove {
if ! m . Expunged {
remove [ o ] = m
remove [ o ] . Junk = false
remove [ o ] . Notjunk = false
n ++
}
}
remove = remove [ : n ]
if err := a . RetrainMessages ( ctx , log , tx , remove , true ) ; err != nil {
return nil , nil , false , fmt . Errorf ( "untraining deleted messages: %v" , err )
}
}
if err := tx . Delete ( & Mailbox { ID : mailbox . ID } ) ; err != nil {
return nil , nil , false , fmt . Errorf ( "removing mailbox: %v" , err )
}
return [ ] Change { ChangeRemoveMailbox { MailboxID : mailbox . ID , Name : mailbox . Name } } , removeMessageIDs , false , nil
}
// CheckMailboxName checks if name is valid, returning an INBOX-normalized name.
// I.e. it changes various casings of INBOX and INBOX/* to Inbox and Inbox/*.
// Name is invalid if it contains leading/trailing/double slashes, or when it isn't
// unicode-normalized, or when empty or has special characters.
//
// If name is the inbox, and allowInbox is false, this is indicated with the isInbox return parameter.
// For that case, and for other invalid names, an error is returned.
func CheckMailboxName ( name string , allowInbox bool ) ( normalizedName string , isInbox bool , rerr error ) {
first := strings . SplitN ( name , "/" , 2 ) [ 0 ]
if strings . EqualFold ( first , "inbox" ) {
if len ( name ) == len ( "inbox" ) && ! allowInbox {
return "" , true , fmt . Errorf ( "special mailbox name Inbox not allowed" )
}
name = "Inbox" + name [ len ( "Inbox" ) : ]
}
if norm . NFC . String ( name ) != name {
return "" , false , errors . New ( "non-unicode-normalized mailbox names not allowed" )
}
if name == "" {
return "" , false , errors . New ( "empty mailbox name" )
}
if strings . HasPrefix ( name , "/" ) || strings . HasSuffix ( name , "/" ) || strings . Contains ( name , "//" ) {
return "" , false , errors . New ( "bad slashes in mailbox name" )
}
for _ , c := range name {
switch c {
case '%' , '*' , '#' , '&' :
return "" , false , fmt . Errorf ( "character %c not allowed in mailbox name" , c )
}
// ../rfc/6855:192
if c <= 0x1f || c >= 0x7f && c <= 0x9f || c == 0x2028 || c == 0x2029 {
return "" , false , errors . New ( "control characters not allowed in mailbox name" )
2023-06-24 01:24:43 +03:00
}
}
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
return name , false , nil
2023-01-30 16:27:06 +03:00
}