add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
package webmail
import (
"bufio"
"bytes"
"context"
"encoding/json"
"fmt"
"io"
"net"
"net/http"
"net/http/httptest"
"net/url"
"os"
"reflect"
"testing"
"time"
"github.com/mjl-/mox/mox-"
"github.com/mjl-/mox/store"
)
func TestView ( t * testing . T ) {
os . RemoveAll ( "../testdata/webmail/data" )
mox . Context = ctxbg
mox . ConfigStaticPath = "../testdata/webmail/mox.conf"
mox . MustLoadConfig ( true , false )
2023-08-08 00:14:31 +03:00
defer store . Switchboard ( ) ( )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
acc , err := store . OpenAccount ( "mjl" )
tcheck ( t , err , "open account" )
err = acc . SetPassword ( "test1234" )
tcheck ( t , err , "set password" )
defer func ( ) {
err := acc . Close ( )
xlog . Check ( err , "closing account" )
} ( )
api := Webmail { maxMessageSize : 1024 * 1024 }
reqInfo := requestInfo { "mjl@mox.example" , "mjl" , & http . Request { } }
ctx := context . WithValue ( ctxbg , requestInfoCtxKey , reqInfo )
api . MailboxCreate ( ctx , "Lists/Go/Nuts" )
var zerom store . Message
var (
inboxMinimal = & testmsg { "Inbox" , store . Flags { } , nil , msgMinimal , zerom , 0 }
inboxFlags = & testmsg { "Inbox" , store . Flags { Seen : true } , [ ] string { "testlabel" } , msgAltRel , zerom , 0 } // With flags, and larger.
listsMinimal = & testmsg { "Lists" , store . Flags { } , nil , msgMinimal , zerom , 0 }
listsGoNutsMinimal = & testmsg { "Lists/Go/Nuts" , store . Flags { } , nil , msgMinimal , zerom , 0 }
trashMinimal = & testmsg { "Trash" , store . Flags { } , nil , msgMinimal , zerom , 0 }
junkMinimal = & testmsg { "Trash" , store . Flags { } , nil , msgMinimal , zerom , 0 }
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
trashAlt = & testmsg { "Trash" , store . Flags { } , nil , msgAlt , zerom , 0 }
inboxAltReply = & testmsg { "Inbox" , store . Flags { } , nil , msgAltReply , zerom , 0 }
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
)
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
var testmsgs = [ ] * testmsg { inboxMinimal , inboxFlags , listsMinimal , listsGoNutsMinimal , trashMinimal , junkMinimal , trashAlt , inboxAltReply }
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
for _ , tm := range testmsgs {
tdeliver ( t , acc , tm )
}
// Token
tokens := [ ] string { }
for i := 0 ; i < 20 ; i ++ {
tokens = append ( tokens , api . Token ( ctx ) )
}
// Only last 10 tokens are still valid and around, checked below.
// Request
tneedError ( t , func ( ) { api . Request ( ctx , Request { ID : 1 , Cancel : true } ) } ) // Zero/invalid SSEID.
// We start an actual HTTP server to easily get a body we can do blocking reads on.
// With a httptest.ResponseRecorder, it's a bit more work to parse SSE events as
// they come in.
server := httptest . NewServer ( http . HandlerFunc ( Handler ( 1024 * 1024 ) ) )
defer server . Close ( )
serverURL , err := url . Parse ( server . URL )
tcheck ( t , err , "parsing server url" )
_ , port , err := net . SplitHostPort ( serverURL . Host )
tcheck ( t , err , "parsing host port in server url" )
eventsURL := fmt . Sprintf ( "http://%s/events" , net . JoinHostPort ( "localhost" , port ) )
request := Request {
Page : Page { Count : 10 } ,
}
requestJSON , err := json . Marshal ( request )
tcheck ( t , err , "marshal request as json" )
testFail := func ( method , path string , expStatusCode int ) {
t . Helper ( )
req , err := http . NewRequest ( method , path , nil )
tcheck ( t , err , "making request" )
resp , err := http . DefaultClient . Do ( req )
tcheck ( t , err , "http transaction" )
resp . Body . Close ( )
if resp . StatusCode != expStatusCode {
t . Fatalf ( "got statuscode %d, expected %d" , resp . StatusCode , expStatusCode )
}
}
testFail ( "POST" , eventsURL + "?token=" + tokens [ 0 ] + "&request=" + string ( requestJSON ) , http . StatusMethodNotAllowed ) // Must be GET.
testFail ( "GET" , eventsURL , http . StatusBadRequest ) // Missing token.
testFail ( "GET" , eventsURL + "?token=" + tokens [ 0 ] + "&request=" + string ( requestJSON ) , http . StatusBadRequest ) // Bad (old) token.
testFail ( "GET" , eventsURL + "?token=" + tokens [ len ( tokens ) - 5 ] + "&request=bad" , http . StatusBadRequest ) // Bad request.
// Start connection for testing and filters below.
req , err := http . NewRequest ( "GET" , eventsURL + "?token=" + tokens [ len ( tokens ) - 1 ] + "&request=" + string ( requestJSON ) , nil )
tcheck ( t , err , "making request" )
resp , err := http . DefaultClient . Do ( req )
tcheck ( t , err , "http transaction" )
defer resp . Body . Close ( )
if resp . StatusCode != http . StatusOK {
t . Fatalf ( "got statuscode %d, expected %d" , resp . StatusCode , http . StatusOK )
}
evr := eventReader { t , bufio . NewReader ( resp . Body ) , resp . Body }
var start EventStart
evr . Get ( "start" , & start )
var viewMsgs EventViewMsgs
evr . Get ( "viewMsgs" , & viewMsgs )
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
tcompare ( t , len ( viewMsgs . MessageItems ) , 3 )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
tcompare ( t , viewMsgs . ViewEnd , true )
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
var inbox , archive , lists , trash store . Mailbox
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
for _ , mb := range start . Mailboxes {
if mb . Archive {
archive = mb
} else if mb . Name == start . MailboxName {
inbox = mb
} else if mb . Name == "Lists" {
lists = mb
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
} else if mb . Name == "Trash" {
trash = mb
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
}
}
// Can only use a token once.
testFail ( "GET" , eventsURL + "?token=" + tokens [ len ( tokens ) - 1 ] + "&request=bad" , http . StatusBadRequest )
// Check a few initial query/page combinations.
testConn := func ( token , more string , request Request , check func ( EventStart , eventReader ) ) {
t . Helper ( )
reqJSON , err := json . Marshal ( request )
tcheck ( t , err , "marshal request json" )
req , err := http . NewRequest ( "GET" , eventsURL + "?token=" + token + more + "&request=" + string ( reqJSON ) , nil )
tcheck ( t , err , "making request" )
resp , err := http . DefaultClient . Do ( req )
tcheck ( t , err , "http transaction" )
defer resp . Body . Close ( )
if resp . StatusCode != http . StatusOK {
t . Fatalf ( "got statuscode %d, expected %d" , resp . StatusCode , http . StatusOK )
}
xevr := eventReader { t , bufio . NewReader ( resp . Body ) , resp . Body }
var xstart EventStart
xevr . Get ( "start" , & xstart )
check ( start , xevr )
}
// Connection with waitMinMsec/waitMaxMsec, just exercising code path.
waitReq := Request {
Page : Page { Count : 10 } ,
}
testConn ( api . Token ( ctx ) , "&waitMinMsec=1&waitMaxMsec=2" , waitReq , func ( start EventStart , evr eventReader ) {
var vm EventViewMsgs
evr . Get ( "viewMsgs" , & vm )
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
tcompare ( t , len ( vm . MessageItems ) , 3 )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
} )
// Connection with DestMessageID.
destMsgReq := Request {
Query : Query {
Filter : Filter { MailboxID : inbox . ID } ,
} ,
Page : Page { DestMessageID : inboxFlags . ID , Count : 10 } ,
}
testConn ( tokens [ len ( tokens ) - 3 ] , "" , destMsgReq , func ( start EventStart , evr eventReader ) {
var vm EventViewMsgs
evr . Get ( "viewMsgs" , & vm )
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
tcompare ( t , len ( vm . MessageItems ) , 3 )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
tcompare ( t , vm . ParsedMessage . ID , destMsgReq . Page . DestMessageID )
} )
// todo: destmessageid past count, needs large mailbox
// Connection with missing DestMessageID, still fine.
badDestMsgReq := Request {
Query : Query {
Filter : Filter { MailboxID : inbox . ID } ,
} ,
Page : Page { DestMessageID : inboxFlags . ID + 999 , Count : 10 } ,
}
testConn ( api . Token ( ctx ) , "" , badDestMsgReq , func ( start EventStart , evr eventReader ) {
var vm EventViewMsgs
evr . Get ( "viewMsgs" , & vm )
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
tcompare ( t , len ( vm . MessageItems ) , 3 )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
} )
// Connection with missing unknown AnchorMessageID, resets view.
badAnchorMsgReq := Request {
Query : Query {
Filter : Filter { MailboxID : inbox . ID } ,
} ,
Page : Page { AnchorMessageID : inboxFlags . ID + 999 , Count : 10 } ,
}
testConn ( api . Token ( ctx ) , "" , badAnchorMsgReq , func ( start EventStart , evr eventReader ) {
var viewReset EventViewReset
evr . Get ( "viewReset" , & viewReset )
var vm EventViewMsgs
evr . Get ( "viewMsgs" , & vm )
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
tcompare ( t , len ( vm . MessageItems ) , 3 )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
} )
// Connection that starts with a filter, without mailbox.
searchReq := Request {
Query : Query {
Filter : Filter { Labels : [ ] string { ` \seen ` } } ,
} ,
Page : Page { Count : 10 } ,
}
testConn ( api . Token ( ctx ) , "" , searchReq , func ( start EventStart , evr eventReader ) {
var vm EventViewMsgs
evr . Get ( "viewMsgs" , & vm )
tcompare ( t , len ( vm . MessageItems ) , 1 )
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
tcompare ( t , vm . MessageItems [ 0 ] [ 0 ] . Message . ID , inboxFlags . ID )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
} )
// Paginate from previous last element. There is nothing new.
var viewID int64 = 1
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
api . Request ( ctx , Request { ID : 1 , SSEID : start . SSEID , ViewID : viewID , Query : Query { Filter : Filter { MailboxID : inbox . ID } } , Page : Page { Count : 10 , AnchorMessageID : viewMsgs . MessageItems [ len ( viewMsgs . MessageItems ) - 1 ] [ 0 ] . Message . ID } } )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
evr . Get ( "viewMsgs" , & viewMsgs )
tcompare ( t , len ( viewMsgs . MessageItems ) , 0 )
// Request archive mailbox, empty.
viewID ++
api . Request ( ctx , Request { ID : 1 , SSEID : start . SSEID , ViewID : viewID , Query : Query { Filter : Filter { MailboxID : archive . ID } } , Page : Page { Count : 10 } } )
evr . Get ( "viewMsgs" , & viewMsgs )
tcompare ( t , len ( viewMsgs . MessageItems ) , 0 )
tcompare ( t , viewMsgs . ViewEnd , true )
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
threadlen := func ( mil [ ] [ ] MessageItem ) int {
n := 0
for _ , l := range mil {
n += len ( l )
}
return n
}
// Request with threading, should also include parent message from Trash mailbox (trashAlt).
viewID ++
api . Request ( ctx , Request { ID : 1 , SSEID : start . SSEID , ViewID : viewID , Query : Query { Filter : Filter { MailboxID : inbox . ID } , Threading : "unread" } , Page : Page { Count : 10 } } )
evr . Get ( "viewMsgs" , & viewMsgs )
tcompare ( t , len ( viewMsgs . MessageItems ) , 3 )
tcompare ( t , threadlen ( viewMsgs . MessageItems ) , 3 + 1 )
tcompare ( t , viewMsgs . ViewEnd , true )
// And likewise when querying Trash, should also include child message in Inbox (inboxAltReply).
viewID ++
api . Request ( ctx , Request { ID : 1 , SSEID : start . SSEID , ViewID : viewID , Query : Query { Filter : Filter { MailboxID : trash . ID } , Threading : "on" } , Page : Page { Count : 10 } } )
evr . Get ( "viewMsgs" , & viewMsgs )
tcompare ( t , len ( viewMsgs . MessageItems ) , 3 )
tcompare ( t , threadlen ( viewMsgs . MessageItems ) , 3 + 1 )
tcompare ( t , viewMsgs . ViewEnd , true )
// Without threading, the inbox has just 3 messages.
viewID ++
api . Request ( ctx , Request { ID : 1 , SSEID : start . SSEID , ViewID : viewID , Query : Query { Filter : Filter { MailboxID : inbox . ID } , Threading : "off" } , Page : Page { Count : 10 } } )
evr . Get ( "viewMsgs" , & viewMsgs )
tcompare ( t , len ( viewMsgs . MessageItems ) , 3 )
tcompare ( t , threadlen ( viewMsgs . MessageItems ) , 3 )
tcompare ( t , viewMsgs . ViewEnd , true )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
testFilter := func ( orderAsc bool , f Filter , nf NotFilter , expIDs [ ] int64 ) {
t . Helper ( )
viewID ++
api . Request ( ctx , Request { ID : 1 , SSEID : start . SSEID , ViewID : viewID , Query : Query { OrderAsc : orderAsc , Filter : f , NotFilter : nf } , Page : Page { Count : 10 } } )
evr . Get ( "viewMsgs" , & viewMsgs )
ids := make ( [ ] int64 , len ( viewMsgs . MessageItems ) )
for i , mi := range viewMsgs . MessageItems {
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
ids [ i ] = mi [ 0 ] . Message . ID
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
}
tcompare ( t , ids , expIDs )
tcompare ( t , viewMsgs . ViewEnd , true )
}
// Test filtering.
var znf NotFilter
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
testFilter ( false , Filter { MailboxID : lists . ID , MailboxChildrenIncluded : true } , znf , [ ] int64 { listsGoNutsMinimal . ID , listsMinimal . ID } ) // Mailbox and sub mailbox.
testFilter ( true , Filter { MailboxID : lists . ID , MailboxChildrenIncluded : true } , znf , [ ] int64 { listsMinimal . ID , listsGoNutsMinimal . ID } ) // Oldest first first.
testFilter ( false , Filter { MailboxID : - 1 } , znf , [ ] int64 { inboxAltReply . ID , listsGoNutsMinimal . ID , listsMinimal . ID , inboxFlags . ID , inboxMinimal . ID } ) // All except trash/junk/rejects.
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
testFilter ( false , Filter { Labels : [ ] string { ` \seen ` } } , znf , [ ] int64 { inboxFlags . ID } )
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
testFilter ( false , Filter { MailboxID : inbox . ID } , NotFilter { Labels : [ ] string { ` \seen ` } } , [ ] int64 { inboxAltReply . ID , inboxMinimal . ID } )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
testFilter ( false , Filter { Labels : [ ] string { ` testlabel ` } } , znf , [ ] int64 { inboxFlags . ID } )
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
testFilter ( false , Filter { MailboxID : inbox . ID } , NotFilter { Labels : [ ] string { ` testlabel ` } } , [ ] int64 { inboxAltReply . ID , inboxMinimal . ID } )
testFilter ( false , Filter { MailboxID : inbox . ID , Oldest : & inboxFlags . m . Received } , znf , [ ] int64 { inboxAltReply . ID , inboxFlags . ID } )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
testFilter ( false , Filter { MailboxID : inbox . ID , Newest : & inboxMinimal . m . Received } , znf , [ ] int64 { inboxMinimal . ID } )
testFilter ( false , Filter { MailboxID : inbox . ID , SizeMin : inboxFlags . m . Size } , znf , [ ] int64 { inboxFlags . ID } )
testFilter ( false , Filter { MailboxID : inbox . ID , SizeMax : inboxMinimal . m . Size } , znf , [ ] int64 { inboxMinimal . ID } )
testFilter ( false , Filter { From : [ ] string { "mjl+altrel@mox.example" } } , znf , [ ] int64 { inboxFlags . ID } )
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
testFilter ( false , Filter { MailboxID : inbox . ID } , NotFilter { From : [ ] string { "mjl+altrel@mox.example" } } , [ ] int64 { inboxAltReply . ID , inboxMinimal . ID } )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
testFilter ( false , Filter { To : [ ] string { "mox+altrel@other.example" } } , znf , [ ] int64 { inboxFlags . ID } )
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
testFilter ( false , Filter { MailboxID : inbox . ID } , NotFilter { To : [ ] string { "mox+altrel@other.example" } } , [ ] int64 { inboxAltReply . ID , inboxMinimal . ID } )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
testFilter ( false , Filter { From : [ ] string { "mjl+altrel@mox.example" , "bogus" } } , znf , [ ] int64 { } )
testFilter ( false , Filter { To : [ ] string { "mox+altrel@other.example" , "bogus" } } , znf , [ ] int64 { } )
testFilter ( false , Filter { Subject : [ ] string { "test" , "alt" , "rel" } } , znf , [ ] int64 { inboxFlags . ID } )
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
testFilter ( false , Filter { MailboxID : inbox . ID } , NotFilter { Subject : [ ] string { "alt" } } , [ ] int64 { inboxAltReply . ID , inboxMinimal . ID } )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
testFilter ( false , Filter { MailboxID : inbox . ID , Words : [ ] string { "the text body" , "body" , "the " } } , znf , [ ] int64 { inboxFlags . ID } )
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
testFilter ( false , Filter { MailboxID : inbox . ID } , NotFilter { Words : [ ] string { "the text body" } } , [ ] int64 { inboxAltReply . ID , inboxMinimal . ID } )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
testFilter ( false , Filter { Headers : [ ] [ 2 ] string { { "X-Special" , "" } } } , znf , [ ] int64 { inboxFlags . ID } )
testFilter ( false , Filter { Headers : [ ] [ 2 ] string { { "X-Special" , "testing" } } } , znf , [ ] int64 { inboxFlags . ID } )
testFilter ( false , Filter { Headers : [ ] [ 2 ] string { { "X-Special" , "other" } } } , znf , [ ] int64 { } )
testFilter ( false , Filter { Attachments : AttachmentImage } , znf , [ ] int64 { inboxFlags . ID } )
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
testFilter ( false , Filter { MailboxID : inbox . ID } , NotFilter { Attachments : AttachmentImage } , [ ] int64 { inboxAltReply . ID , inboxMinimal . ID } )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
// Test changes.
getChanges := func ( changes ... any ) {
t . Helper ( )
var viewChanges EventViewChanges
evr . Get ( "viewChanges" , & viewChanges )
if len ( viewChanges . Changes ) != len ( changes ) {
t . Fatalf ( "got %d changes, expected %d" , len ( viewChanges . Changes ) , len ( changes ) )
}
for i , dst := range changes {
src := viewChanges . Changes [ i ]
dstType := reflect . TypeOf ( dst ) . Elem ( ) . Name ( )
if src [ 0 ] != dstType {
t . Fatalf ( "change %d is of type %s, expected %s" , i , src [ 0 ] , dstType )
}
// Marshal and unmarshal is easiest...
buf , err := json . Marshal ( src [ 1 ] )
tcheck ( t , err , "marshal change" )
dec := json . NewDecoder ( bytes . NewReader ( buf ) )
dec . DisallowUnknownFields ( )
err = dec . Decode ( dst )
tcheck ( t , err , "parsing change" )
}
}
// ChangeMailboxAdd
api . MailboxCreate ( ctx , "Newbox" )
var chmbadd ChangeMailboxAdd
getChanges ( & chmbadd )
tcompare ( t , chmbadd . Mailbox . Name , "Newbox" )
// ChangeMailboxRename
api . MailboxRename ( ctx , chmbadd . Mailbox . ID , "Newbox2" )
var chmbrename ChangeMailboxRename
getChanges ( & chmbrename )
tcompare ( t , chmbrename , ChangeMailboxRename {
ChangeRenameMailbox : store . ChangeRenameMailbox { MailboxID : chmbadd . Mailbox . ID , OldName : "Newbox" , NewName : "Newbox2" , Flags : nil } ,
} )
// ChangeMailboxSpecialUse
api . MailboxSetSpecialUse ( ctx , store . Mailbox { ID : chmbadd . Mailbox . ID , SpecialUse : store . SpecialUse { Archive : true } } )
var chmbspecialuseOld , chmbspecialuseNew ChangeMailboxSpecialUse
getChanges ( & chmbspecialuseOld , & chmbspecialuseNew )
tcompare ( t , chmbspecialuseOld , ChangeMailboxSpecialUse {
ChangeMailboxSpecialUse : store . ChangeMailboxSpecialUse { MailboxID : archive . ID , MailboxName : "Archive" , SpecialUse : store . SpecialUse { } } ,
} )
tcompare ( t , chmbspecialuseNew , ChangeMailboxSpecialUse {
ChangeMailboxSpecialUse : store . ChangeMailboxSpecialUse { MailboxID : chmbadd . Mailbox . ID , MailboxName : "Newbox2" , SpecialUse : store . SpecialUse { Archive : true } } ,
} )
// ChangeMailboxRemove
api . MailboxDelete ( ctx , chmbadd . Mailbox . ID )
var chmbremove ChangeMailboxRemove
getChanges ( & chmbremove )
tcompare ( t , chmbremove , ChangeMailboxRemove {
ChangeRemoveMailbox : store . ChangeRemoveMailbox { MailboxID : chmbadd . Mailbox . ID , Name : "Newbox2" } ,
} )
// ChangeMsgAdd
inboxNew := & testmsg { "Inbox" , store . Flags { } , nil , msgMinimal , zerom , 0 }
tdeliver ( t , acc , inboxNew )
var chmsgadd ChangeMsgAdd
var chmbcounts ChangeMailboxCounts
getChanges ( & chmsgadd , & chmbcounts )
tcompare ( t , chmsgadd . ChangeAddUID . MailboxID , inbox . ID )
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
tcompare ( t , chmsgadd . MessageItems [ 0 ] . Message . ID , inboxNew . ID )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
chmbcounts . Size = 0
tcompare ( t , chmbcounts , ChangeMailboxCounts {
ChangeMailboxCounts : store . ChangeMailboxCounts {
MailboxID : inbox . ID ,
MailboxName : inbox . Name ,
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
MailboxCounts : store . MailboxCounts { Total : 4 , Unread : 3 , Unseen : 3 } ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
} ,
} )
// ChangeMsgFlags
api . FlagsAdd ( ctx , [ ] int64 { inboxNew . ID } , [ ] string { ` \seen ` , ` changelabel ` , ` aaa ` } )
var chmsgflags ChangeMsgFlags
var chmbkeywords ChangeMailboxKeywords
getChanges ( & chmsgflags , & chmbcounts , & chmbkeywords )
tcompare ( t , chmsgadd . ChangeAddUID . MailboxID , inbox . ID )
tcompare ( t , chmbkeywords , ChangeMailboxKeywords {
ChangeMailboxKeywords : store . ChangeMailboxKeywords {
MailboxID : inbox . ID ,
MailboxName : inbox . Name ,
Keywords : [ ] string { ` aaa ` , ` changelabel ` } ,
} ,
} )
chmbcounts . Size = 0
tcompare ( t , chmbcounts , ChangeMailboxCounts {
ChangeMailboxCounts : store . ChangeMailboxCounts {
MailboxID : inbox . ID ,
MailboxName : inbox . Name ,
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
MailboxCounts : store . MailboxCounts { Total : 4 , Unread : 2 , Unseen : 2 } ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
} ,
} )
// ChangeMsgRemove
api . MessageDelete ( ctx , [ ] int64 { inboxNew . ID , inboxMinimal . ID } )
var chmsgremove ChangeMsgRemove
getChanges ( & chmbcounts , & chmsgremove )
tcompare ( t , chmsgremove . ChangeRemoveUIDs . MailboxID , inbox . ID )
tcompare ( t , chmsgremove . ChangeRemoveUIDs . UIDs , [ ] store . UID { inboxMinimal . m . UID , inboxNew . m . UID } )
chmbcounts . Size = 0
tcompare ( t , chmbcounts , ChangeMailboxCounts {
ChangeMailboxCounts : store . ChangeMailboxCounts {
MailboxID : inbox . ID ,
MailboxName : inbox . Name ,
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
MailboxCounts : store . MailboxCounts { Total : 2 , Unread : 1 , Unseen : 1 } ,
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
} ,
} )
implement message threading in backend and webmail
we match messages to their parents based on the "references" and "in-reply-to"
headers (requiring the same base subject), and in absense of those headers we
also by only base subject (against messages received max 4 weeks ago).
we store a threadid with messages. all messages in a thread have the same
threadid. messages also have a "thread parent ids", which holds all id's of
parent messages up to the thread root. then there is "thread missing link",
which is set when a referenced immediate parent wasn't found (but possibly
earlier ancestors can still be found and will be in thread parent ids".
threads can be muted: newly delivered messages are automatically marked as
read/seen. threads can be marked as collapsed: if set, the webmail collapses
the thread to a single item in the basic threading view (default is to expand
threads). the muted and collapsed fields are copied from their parent on
message delivery.
the threading is implemented in the webmail. the non-threading mode still works
as before. the new default threading mode "unread" automatically expands only
the threads with at least one unread (not seen) meessage. the basic threading
mode "on" expands all threads except when explicitly collapsed (as saved in the
thread collapsed field). new shortcuts for navigation/interaction threads have
been added, e.g. go to previous/next thread root, toggle collapse/expand of
thread (or double click), toggle mute of thread. some previous shortcuts have
changed, see the help for details.
the message threading are added with an explicit account upgrade step,
automatically started when an account is opened. the upgrade is done in the
background because it will take too long for large mailboxes to block account
operations. the upgrade takes two steps: 1. updating all message records in the
database to add a normalized message-id and thread base subject (with "re:",
"fwd:" and several other schemes stripped). 2. going through all messages in
the database again, reading the "references" and "in-reply-to" headers from
disk, and matching against their parents. this second step is also done at the
end of each import of mbox/maildir mailboxes. new deliveries are matched
immediately against other existing messages, currently no attempt is made to
rematch previously delivered messages (which could be useful for related
messages being delivered out of order).
the threading is not yet exposed over imap.
2023-09-13 09:51:50 +03:00
// ChangeMsgThread
api . ThreadCollapse ( ctx , [ ] int64 { inboxAltReply . ID } , true )
var chmsgthread ChangeMsgThread
getChanges ( & chmsgthread )
tcompare ( t , chmsgthread . ChangeThread , store . ChangeThread { MessageIDs : [ ] int64 { inboxAltReply . ID } , Muted : false , Collapsed : true } )
// Now collapsing the thread root, the child is already collapsed so no change.
api . ThreadCollapse ( ctx , [ ] int64 { trashAlt . ID } , true )
getChanges ( & chmsgthread )
tcompare ( t , chmsgthread . ChangeThread , store . ChangeThread { MessageIDs : [ ] int64 { trashAlt . ID } , Muted : false , Collapsed : true } )
// Expand thread root, including change for child.
api . ThreadCollapse ( ctx , [ ] int64 { trashAlt . ID } , false )
var chmsgthread2 ChangeMsgThread
getChanges ( & chmsgthread , & chmsgthread2 )
tcompare ( t , chmsgthread . ChangeThread , store . ChangeThread { MessageIDs : [ ] int64 { trashAlt . ID } , Muted : false , Collapsed : false } )
tcompare ( t , chmsgthread2 . ChangeThread , store . ChangeThread { MessageIDs : [ ] int64 { inboxAltReply . ID } , Muted : false , Collapsed : false } )
// Mute thread, including child, also collapses.
api . ThreadMute ( ctx , [ ] int64 { trashAlt . ID } , true )
getChanges ( & chmsgthread , & chmsgthread2 )
tcompare ( t , chmsgthread . ChangeThread , store . ChangeThread { MessageIDs : [ ] int64 { trashAlt . ID } , Muted : true , Collapsed : true } )
tcompare ( t , chmsgthread2 . ChangeThread , store . ChangeThread { MessageIDs : [ ] int64 { inboxAltReply . ID } , Muted : true , Collapsed : true } )
// And unmute Mute thread, including child. Messages are not expanded.
api . ThreadMute ( ctx , [ ] int64 { trashAlt . ID } , false )
getChanges ( & chmsgthread , & chmsgthread2 )
tcompare ( t , chmsgthread . ChangeThread , store . ChangeThread { MessageIDs : [ ] int64 { trashAlt . ID } , Muted : false , Collapsed : true } )
tcompare ( t , chmsgthread2 . ChangeThread , store . ChangeThread { MessageIDs : [ ] int64 { inboxAltReply . ID } , Muted : false , Collapsed : true } )
add webmail
it was far down on the roadmap, but implemented earlier, because it's
interesting, and to help prepare for a jmap implementation. for jmap we need to
implement more client-like functionality than with just imap. internal data
structures need to change. jmap has lots of other requirements, so it's already
a big project. by implementing a webmail now, some of the required data
structure changes become clear and can be made now, so the later jmap
implementation can do things similarly to the webmail code. the webmail
frontend and webmail are written together, making their interface/api much
smaller and simpler than jmap.
one of the internal changes is that we now keep track of per-mailbox
total/unread/unseen/deleted message counts and mailbox sizes. keeping this
data consistent after any change to the stored messages (through the code base)
is tricky, so mox now has a consistency check that verifies the counts are
correct, which runs only during tests, each time an internal account reference
is closed. we have a few more internal "changes" that are propagated for the
webmail frontend (that imap doesn't have a way to propagate on a connection),
like changes to the special-use flags on mailboxes, and used keywords in a
mailbox. more changes that will be required have revealed themselves while
implementing the webmail, and will be implemented next.
the webmail user interface is modeled after the mail clients i use or have
used: thunderbird, macos mail, mutt; and webmails i normally only use for
testing: gmail, proton, yahoo, outlook. a somewhat technical user is assumed,
but still the goal is to make this webmail client easy to use for everyone. the
user interface looks like most other mail clients: a list of mailboxes, a
search bar, a message list view, and message details. there is a top/bottom and
a left/right layout for the list/message view, default is automatic based on
screen size. the panes can be resized by the user. buttons for actions are just
text, not icons. clicking a button briefly shows the shortcut for the action in
the bottom right, helping with learning to operate quickly. any text that is
underdotted has a title attribute that causes more information to be displayed,
e.g. what a button does or a field is about. to highlight potential phishing
attempts, any text (anywhere in the webclient) that switches unicode "blocks"
(a rough approximation to (language) scripts) within a word is underlined
orange. multiple messages can be selected with familiar ui interaction:
clicking while holding control and/or shift keys. keyboard navigation works
with arrows/page up/down and home/end keys, and also with a few basic vi-like
keys for list/message navigation. we prefer showing the text instead of
html (with inlined images only) version of a message. html messages are shown
in an iframe served from an endpoint with CSP headers to prevent dangerous
resources (scripts, external images) from being loaded. the html is also
sanitized, with javascript removed. a user can choose to load external
resources (e.g. images for tracking purposes).
the frontend is just (strict) typescript, no external frameworks. all
incoming/outgoing data is typechecked, both the api request parameters and
response types, and the data coming in over SSE. the types and checking code
are generated with sherpats, which uses the api definitions generated by
sherpadoc based on the Go code. so types from the backend are automatically
propagated to the frontend. since there is no framework to automatically
propagate properties and rerender components, changes coming in over the SSE
connection are propagated explicitly with regular function calls. the ui is
separated into "views", each with a "root" dom element that is added to the
visible document. these views have additional functions for getting changes
propagated, often resulting in the view updating its (internal) ui state (dom).
we keep the frontend compilation simple, it's just a few typescript files that
get compiled (combined and types stripped) into a single js file, no additional
runtime code needed or complicated build processes used. the webmail is served
is served from a compressed, cachable html file that includes style and the
javascript, currently just over 225kb uncompressed, under 60kb compressed (not
minified, including comments). we include the generated js files in the
repository, to keep Go's easily buildable self-contained binaries.
authentication is basic http, as with the account and admin pages. most data
comes in over one long-term SSE connection to the backend. api requests signal
which mailbox/search/messages are requested over the SSE connection. fetching
individual messages, and making changes, are done through api calls. the
operations are similar to imap, so some code has been moved from package
imapserver to package store. the future jmap implementation will benefit from
these changes too. more functionality will probably be moved to the store
package in the future.
the quickstart enables webmail on the internal listener by default (for new
installs). users can enable it on the public listener if they want to. mox
localserve enables it too. to enable webmail on existing installs, add settings
like the following to the listeners in mox.conf, similar to AccountHTTP(S):
WebmailHTTP:
Enabled: true
WebmailHTTPS:
Enabled: true
special thanks to liesbeth, gerben, andrii for early user feedback.
there is plenty still to do, see the list at the top of webmail/webmail.ts.
feedback welcome as always.
2023-08-07 22:57:03 +03:00
// todo: check move operations and their changes, e.g. MailboxDelete, MailboxEmpty, MessageRemove.
}
type eventReader struct {
t * testing . T
br * bufio . Reader
r io . Closer
}
func ( r eventReader ) Get ( name string , event any ) {
timer := time . AfterFunc ( 2 * time . Second , func ( ) {
r . r . Close ( )
xlog . Print ( "event timeout" )
} )
defer timer . Stop ( )
t := r . t
t . Helper ( )
var ev string
var data [ ] byte
var keepalive bool
for {
line , err := r . br . ReadBytes ( byte ( '\n' ) )
tcheck ( t , err , "read line" )
line = bytes . TrimRight ( line , "\n" )
// fmt.Printf("have line %s\n", line)
if bytes . HasPrefix ( line , [ ] byte ( "event: " ) ) {
ev = string ( line [ len ( "event: " ) : ] )
} else if bytes . HasPrefix ( line , [ ] byte ( "data: " ) ) {
data = line [ len ( "data: " ) : ]
} else if bytes . HasPrefix ( line , [ ] byte ( ":" ) ) {
keepalive = true
} else if len ( line ) == 0 {
if keepalive {
keepalive = false
continue
}
if ev != name {
t . Fatalf ( "got event %q (%s), expected %q" , ev , data , name )
}
dec := json . NewDecoder ( bytes . NewReader ( data ) )
dec . DisallowUnknownFields ( )
err := dec . Decode ( event )
tcheck ( t , err , "unmarshal json" )
return
}
}
}