caddy/caddyconfig/caddyfile/dispenser.go
2023-02-26 00:34:27 +00:00

503 lines
14 KiB
Go

// Copyright 2015 Matthew Holt and The Caddy Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package caddyfile
import (
"errors"
"fmt"
"io"
"log"
"strconv"
)
// Dispenser is a type that dispenses tokens, similarly to a lexer,
// except that it can do so with some notion of structure. An empty
// Dispenser is invalid; call NewDispenser to make a proper instance.
type Dispenser struct {
tokens []Token
cursor int
nesting int
}
// NewDispenser returns a Dispenser filled with the given tokens.
func NewDispenser(tokens []Token) *Dispenser {
return &Dispenser{
tokens: tokens,
cursor: -1,
}
}
// NewTestDispenser parses input into tokens and creates a new
// Dispenser for test purposes only; any errors are fatal.
func NewTestDispenser(input string) *Dispenser {
tokens, err := allTokens("Testfile", []byte(input))
if err != nil && err != io.EOF {
log.Fatalf("getting all tokens from input: %v", err)
}
return NewDispenser(tokens)
}
// Next loads the next token. Returns true if a token
// was loaded; false otherwise. If false, all tokens
// have been consumed.
func (d *Dispenser) Next() bool {
if d.cursor < len(d.tokens)-1 {
d.cursor++
return true
}
return false
}
// Prev moves to the previous token. It does the inverse
// of Next(), except this function may decrement the cursor
// to -1 so that the next call to Next() points to the
// first token; this allows dispensing to "start over". This
// method returns true if the cursor ends up pointing to a
// valid token.
func (d *Dispenser) Prev() bool {
if d.cursor > -1 {
d.cursor--
return d.cursor > -1
}
return false
}
// NextArg loads the next token if it is on the same
// line and if it is not a block opening (open curly
// brace). Returns true if an argument token was
// loaded; false otherwise. If false, all tokens on
// the line have been consumed except for potentially
// a block opening. It handles imported tokens
// correctly.
func (d *Dispenser) NextArg() bool {
if !d.nextOnSameLine() {
return false
}
if d.Val() == "{" {
// roll back; a block opening is not an argument
d.cursor--
return false
}
return true
}
// nextOnSameLine advances the cursor if the next
// token is on the same line of the same file.
func (d *Dispenser) nextOnSameLine() bool {
if d.cursor < 0 {
d.cursor++
return true
}
if d.cursor >= len(d.tokens)-1 {
return false
}
curr := d.tokens[d.cursor]
next := d.tokens[d.cursor+1]
if curr.File == next.File && curr.Line+curr.NumLineBreaks() == next.Line {
d.cursor++
return true
}
return false
}
// NextLine loads the next token only if it is not on the same
// line as the current token, and returns true if a token was
// loaded; false otherwise. If false, there is not another token
// or it is on the same line. It handles imported tokens correctly.
func (d *Dispenser) NextLine() bool {
if d.cursor < 0 {
d.cursor++
return true
}
if d.cursor >= len(d.tokens)-1 {
return false
}
curr := d.tokens[d.cursor]
next := d.tokens[d.cursor+1]
if curr.File != next.File || curr.Line+curr.NumLineBreaks() < next.Line {
d.cursor++
return true
}
return false
}
// NextBlock can be used as the condition of a for loop
// to load the next token as long as it opens a block or
// is already in a block nested more than initialNestingLevel.
// In other words, a loop over NextBlock() will iterate
// all tokens in the block assuming the next token is an
// open curly brace, until the matching closing brace.
// The open and closing brace tokens for the outer-most
// block will be consumed internally and omitted from
// the iteration.
//
// Proper use of this method looks like this:
//
// for nesting := d.Nesting(); d.NextBlock(nesting); {
// }
//
// However, in simple cases where it is known that the
// Dispenser is new and has not already traversed state
// by a loop over NextBlock(), this will do:
//
// for d.NextBlock(0) {
// }
//
// As with other token parsing logic, a loop over
// NextBlock() should be contained within a loop over
// Next(), as it is usually prudent to skip the initial
// token.
func (d *Dispenser) NextBlock(initialNestingLevel int) bool {
if d.nesting > initialNestingLevel {
if !d.Next() {
return false // should be EOF error
}
if d.Val() == "}" && !d.nextOnSameLine() {
d.nesting--
} else if d.Val() == "{" && !d.nextOnSameLine() {
d.nesting++
}
return d.nesting > initialNestingLevel
}
if !d.nextOnSameLine() { // block must open on same line
return false
}
if d.Val() != "{" {
d.cursor-- // roll back if not opening brace
return false
}
d.Next() // consume open curly brace
if d.Val() == "}" {
return false // open and then closed right away
}
d.nesting++
return true
}
// Nesting returns the current nesting level. Necessary
// if using NextBlock()
func (d *Dispenser) Nesting() int {
return d.nesting
}
// Val gets the text of the current token. If there is no token
// loaded, it returns empty string.
func (d *Dispenser) Val() string {
if d.cursor < 0 || d.cursor >= len(d.tokens) {
return ""
}
return d.tokens[d.cursor].Text
}
// ValRaw gets the raw text of the current token (including quotes).
// If the token was a heredoc, then the delimiter is not included,
// because that is not relevant to any unmarshaling logic at this time.
// If there is no token loaded, it returns empty string.
func (d *Dispenser) ValRaw() string {
if d.cursor < 0 || d.cursor >= len(d.tokens) {
return ""
}
quote := d.tokens[d.cursor].wasQuoted
if quote > 0 && quote != '<' {
// string literal
return string(quote) + d.tokens[d.cursor].Text + string(quote)
}
return d.tokens[d.cursor].Text
}
// ScalarVal gets value of the current token, converted to the closest
// scalar type. If there is no token loaded, it returns nil.
func (d *Dispenser) ScalarVal() any {
if d.cursor < 0 || d.cursor >= len(d.tokens) {
return nil
}
quote := d.tokens[d.cursor].wasQuoted
text := d.tokens[d.cursor].Text
if quote > 0 {
return text // string literal
}
if num, err := strconv.Atoi(text); err == nil {
return num
}
if num, err := strconv.ParseFloat(text, 64); err == nil {
return num
}
if bool, err := strconv.ParseBool(text); err == nil {
return bool
}
return text
}
// Line gets the line number of the current token.
// If there is no token loaded, it returns 0.
func (d *Dispenser) Line() int {
if d.cursor < 0 || d.cursor >= len(d.tokens) {
return 0
}
return d.tokens[d.cursor].Line
}
// File gets the filename where the current token originated.
func (d *Dispenser) File() string {
if d.cursor < 0 || d.cursor >= len(d.tokens) {
return ""
}
return d.tokens[d.cursor].File
}
// Args is a convenience function that loads the next arguments
// (tokens on the same line) into an arbitrary number of strings
// pointed to in targets. If there are not enough argument tokens
// available to fill targets, false is returned and the remaining
// targets are left unchanged. If all the targets are filled,
// then true is returned.
func (d *Dispenser) Args(targets ...*string) bool {
for i := 0; i < len(targets); i++ {
if !d.NextArg() {
return false
}
*targets[i] = d.Val()
}
return true
}
// AllArgs is like Args, but if there are more argument tokens
// available than there are targets, false is returned. The
// number of available argument tokens must match the number of
// targets exactly to return true.
func (d *Dispenser) AllArgs(targets ...*string) bool {
if !d.Args(targets...) {
return false
}
if d.NextArg() {
d.Prev()
return false
}
return true
}
// CountRemainingArgs counts the amount of remaining arguments
// (tokens on the same line) without consuming the tokens.
func (d *Dispenser) CountRemainingArgs() int {
count := 0
for d.NextArg() {
count++
}
for i := 0; i < count; i++ {
d.Prev()
}
return count
}
// RemainingArgs loads any more arguments (tokens on the same line)
// into a slice and returns them. Open curly brace tokens also indicate
// the end of arguments, and the curly brace is not included in
// the return value nor is it loaded.
func (d *Dispenser) RemainingArgs() []string {
var args []string
for d.NextArg() {
args = append(args, d.Val())
}
return args
}
// RemainingArgsRaw loads any more arguments (tokens on the same line,
// retaining quotes) into a slice and returns them. Open curly brace
// tokens also indicate the end of arguments, and the curly brace is
// not included in the return value nor is it loaded.
func (d *Dispenser) RemainingArgsRaw() []string {
var args []string
for d.NextArg() {
args = append(args, d.ValRaw())
}
return args
}
// NewFromNextSegment returns a new dispenser with a copy of
// the tokens from the current token until the end of the
// "directive" whether that be to the end of the line or
// the end of a block that starts at the end of the line;
// in other words, until the end of the segment.
func (d *Dispenser) NewFromNextSegment() *Dispenser {
return NewDispenser(d.NextSegment())
}
// NextSegment returns a copy of the tokens from the current
// token until the end of the line or block that starts at
// the end of the line.
func (d *Dispenser) NextSegment() Segment {
tkns := Segment{d.Token()}
for d.NextArg() {
tkns = append(tkns, d.Token())
}
var openedBlock bool
for nesting := d.Nesting(); d.NextBlock(nesting); {
if !openedBlock {
// because NextBlock() consumes the initial open
// curly brace, we rewind here to append it, since
// our case is special in that we want the new
// dispenser to have all the tokens including
// surrounding curly braces
d.Prev()
tkns = append(tkns, d.Token())
d.Next()
openedBlock = true
}
tkns = append(tkns, d.Token())
}
if openedBlock {
// include closing brace
tkns = append(tkns, d.Token())
// do not consume the closing curly brace; the
// next iteration of the enclosing loop will
// call Next() and consume it
}
return tkns
}
// Token returns the current token.
func (d *Dispenser) Token() Token {
if d.cursor < 0 || d.cursor >= len(d.tokens) {
return Token{}
}
return d.tokens[d.cursor]
}
// Reset sets d's cursor to the beginning, as
// if this was a new and unused dispenser.
func (d *Dispenser) Reset() {
d.cursor = -1
d.nesting = 0
}
// ArgErr returns an argument error, meaning that another
// argument was expected but not found. In other words,
// a line break or open curly brace was encountered instead of
// an argument.
func (d *Dispenser) ArgErr() error {
if d.Val() == "{" {
return d.Err("Unexpected token '{', expecting argument")
}
return d.Errf("Wrong argument count or unexpected line ending after '%s'", d.Val())
}
// SyntaxErr creates a generic syntax error which explains what was
// found and what was expected.
func (d *Dispenser) SyntaxErr(expected string) error {
msg := fmt.Sprintf("%s:%d - Syntax error: Unexpected token '%s', expecting '%s'", d.File(), d.Line(), d.Val(), expected)
return errors.New(msg)
}
// EOFErr returns an error indicating that the dispenser reached
// the end of the input when searching for the next token.
func (d *Dispenser) EOFErr() error {
return d.Errf("Unexpected EOF")
}
// Err generates a custom parse-time error with a message of msg.
func (d *Dispenser) Err(msg string) error {
return d.Errf(msg)
}
// Errf is like Err, but for formatted error messages
func (d *Dispenser) Errf(format string, args ...any) error {
return d.WrapErr(fmt.Errorf(format, args...))
}
// WrapErr takes an existing error and adds the Caddyfile file and line number.
func (d *Dispenser) WrapErr(err error) error {
return fmt.Errorf("%s:%d - Error during parsing: %w", d.File(), d.Line(), err)
}
// Delete deletes the current token and returns the updated slice
// of tokens. The cursor is not advanced to the next token.
// Because deletion modifies the underlying slice, this method
// should only be called if you have access to the original slice
// of tokens and/or are using the slice of tokens outside this
// Dispenser instance. If you do not re-assign the slice with the
// return value of this method, inconsistencies in the token
// array will become apparent (or worse, hide from you like they
// did me for 3 and a half freaking hours late one night).
func (d *Dispenser) Delete() []Token {
if d.cursor >= 0 && d.cursor <= len(d.tokens)-1 {
d.tokens = append(d.tokens[:d.cursor], d.tokens[d.cursor+1:]...)
d.cursor--
}
return d.tokens
}
// DeleteN is the same as Delete, but can delete many tokens at once.
// If there aren't N tokens available to delete, none are deleted.
func (d *Dispenser) DeleteN(amount int) []Token {
if amount > 0 && d.cursor >= (amount-1) && d.cursor <= len(d.tokens)-1 {
d.tokens = append(d.tokens[:d.cursor-(amount-1)], d.tokens[d.cursor+1:]...)
d.cursor -= amount
}
return d.tokens
}
// isNewLine determines whether the current token is on a different
// line (higher line number) than the previous token. It handles imported
// tokens correctly. If there isn't a previous token, it returns true.
func (d *Dispenser) isNewLine() bool {
if d.cursor < 1 {
return true
}
if d.cursor > len(d.tokens)-1 {
return false
}
prev := d.tokens[d.cursor-1]
curr := d.tokens[d.cursor]
// If the previous token is from a different file,
// we can assume it's from a different line
if prev.File != curr.File {
return true
}
// If the previous token (incl line breaks) ends
// on a line earlier than the current token,
// then the current token is on a new line
return prev.Line+prev.NumLineBreaks() < curr.Line
}
// isNextOnNewLine determines whether the current token is on a different
// line (higher line number) than the next token. It handles imported
// tokens correctly. If there isn't a next token, it returns true.
func (d *Dispenser) isNextOnNewLine() bool {
if d.cursor < 0 {
return false
}
if d.cursor >= len(d.tokens)-1 {
return true
}
curr := d.tokens[d.cursor]
next := d.tokens[d.cursor+1]
// If the next token is from a different file,
// we can assume it's from a different line
if curr.File != next.File {
return true
}
// If the current token (incl line breaks) ends
// on a line earlier than the next token,
// then the next token is on a new line
return curr.Line+curr.NumLineBreaks() < next.Line
}