// Copyright 2015 Matthew Holt and The Caddy Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package caddy import ( "bytes" "encoding/json" "fmt" "reflect" "sort" "strings" "sync" ) // Module is a type that is used as a Caddy module. In // addition to this interface, most modules will implement // some interface expected by their host module in order // to be useful. To learn which interface(s) to implement, // see the documentation for the host module. At a bare // minimum, this interface, when implemented, only provides // the module's ID and constructor function. // // Modules will often implement additional interfaces // including Provisioner, Validator, and CleanerUpper. // If a module implements these interfaces, their // methods are called during the module's lifespan. // // When a module is loaded by a host module, the following // happens: 1) ModuleInfo.New() is called to get a new // instance of the module. 2) The module's configuration is // unmarshaled into that instance. 3) If the module is a // Provisioner, the Provision() method is called. 4) If the // module is a Validator, the Validate() method is called. // 5) The module will probably be type-asserted from // interface{} to some other, more useful interface expected // by the host module. For example, HTTP handler modules are // type-asserted as caddyhttp.MiddlewareHandler values. // 6) When a module's containing Context is canceled, if it is // a CleanerUpper, its Cleanup() method is called. type Module interface { // This method indicates that the type is a Caddy // module. The returned ModuleInfo must have both // a name and a constructor function. This method // must not have any side-effects. CaddyModule() ModuleInfo } // ModuleInfo represents a registered Caddy module. type ModuleInfo struct { // ID is the "full name" of the module. It // must be unique and properly namespaced. ID ModuleID // New returns a pointer to a new, empty // instance of the module's type. This // function must not have any side-effects. New func() Module } // ModuleID is a string that uniquely identifies a Caddy module. A // module ID is lightly structured. It consists of dot-separated // labels which form a simple hierarchy from left to right. The last // label is the module name, and the labels before that constitute // the namespace (or scope). // // Thus, a module ID has the form: <namespace>.<name> // // An ID with no dot has the empty namespace, which is appropriate // for app modules (these are "top-level" modules that Caddy core // loads and runs). // // Module IDs should be lowercase and use underscores (_) instead of // spaces. // // Examples of valid IDs: // - http // - http.handlers.file_server // - caddy.logging.encoders.json type ModuleID string // Namespace returns the namespace (or scope) portion of a module ID, // which is all but the last label of the ID. If the ID has only one // label, then the namespace is empty. func (id ModuleID) Namespace() string { lastDot := strings.LastIndex(string(id), ".") if lastDot < 0 { return string(id) } return string(id)[:lastDot] } // Name returns the Name (last element) of a module name. func (id ModuleID) Name() string { if id == "" { return "" } parts := strings.Split(string(id), ".") return parts[len(parts)-1] } func (mi ModuleInfo) String() string { return string(mi.ID) } // ModuleMap is a map that can contain multiple modules, // where the map key is the module's name. (The namespace // is usually read from an associated field's struct tag.) // Because the module's name is given as the key in a // module map, the name does not have to be given in the // json.RawMessage. type ModuleMap map[string]json.RawMessage // RegisterModule registers a module by receiving a // plain/empty value of the module. For registration to // be properly recorded, this should be called in the // init phase of runtime. Typically, the module package // will do this as a side-effect of being imported. // This function returns an error if the module's info // is incomplete or invalid, or if the module is // already registered. func RegisterModule(instance Module) error { mod := instance.CaddyModule() if mod.ID == "" { return fmt.Errorf("module ID missing") } if mod.ID == "caddy" || mod.ID == "admin" { return fmt.Errorf("module ID '%s' is reserved", mod.ID) } if mod.New == nil { return fmt.Errorf("missing ModuleInfo.New") } if val := mod.New(); val == nil { return fmt.Errorf("ModuleInfo.New must return a non-nil module instance") } modulesMu.Lock() defer modulesMu.Unlock() if _, ok := modules[string(mod.ID)]; ok { return fmt.Errorf("module already registered: %s", mod.ID) } modules[string(mod.ID)] = mod return nil } // GetModule returns module information from its ID (full name). func GetModule(name string) (ModuleInfo, error) { modulesMu.RLock() defer modulesMu.RUnlock() m, ok := modules[name] if !ok { return ModuleInfo{}, fmt.Errorf("module not registered: %s", name) } return m, nil } // GetModuleName returns a module's name (the last label of its ID) // from an instance of its value. If the value is not a module, an // empty string will be returned. func GetModuleName(instance interface{}) string { var name string if mod, ok := instance.(Module); ok { name = mod.CaddyModule().ID.Name() } return name } // GetModuleID returns a module's ID from an instance of its value. // If the value is not a module, an empty string will be returned. func GetModuleID(instance interface{}) string { var id string if mod, ok := instance.(Module); ok { id = string(mod.CaddyModule().ID) } return id } // GetModules returns all modules in the given scope/namespace. // For example, a scope of "foo" returns modules named "foo.bar", // "foo.loo", but not "bar", "foo.bar.loo", etc. An empty scope // returns top-level modules, for example "foo" or "bar". Partial // scopes are not matched (i.e. scope "foo.ba" does not match // name "foo.bar"). // // Because modules are registered to a map under the hood, the // returned slice will be sorted to keep it deterministic. func GetModules(scope string) []ModuleInfo { modulesMu.RLock() defer modulesMu.RUnlock() scopeParts := strings.Split(scope, ".") // handle the special case of an empty scope, which // should match only the top-level modules if scope == "" { scopeParts = []string{} } var mods []ModuleInfo iterateModules: for id, m := range modules { modParts := strings.Split(string(id), ".") // match only the next level of nesting if len(modParts) != len(scopeParts)+1 { continue } // specified parts must be exact matches for i := range scopeParts { if modParts[i] != scopeParts[i] { continue iterateModules } } mods = append(mods, m) } // make return value deterministic sort.Slice(mods, func(i, j int) bool { return mods[i].ID < mods[j].ID }) return mods } // Modules returns the names of all registered modules // in ascending lexicographical order. func Modules() []string { modulesMu.RLock() defer modulesMu.RUnlock() var names []string for name := range modules { names = append(names, string(name)) } sort.Strings(names) return names } // getModuleNameInline loads the string value from raw of moduleNameKey, // where raw must be a JSON encoding of a map. It returns that value, // along with the result of removing that key from raw. func getModuleNameInline(moduleNameKey string, raw json.RawMessage) (string, json.RawMessage, error) { var tmp map[string]interface{} err := json.Unmarshal(raw, &tmp) if err != nil { return "", nil, err } moduleName, ok := tmp[moduleNameKey].(string) if !ok || moduleName == "" { return "", nil, fmt.Errorf("module name not specified with key '%s' in %+v", moduleNameKey, tmp) } // remove key from the object, otherwise decoding it later // will yield an error because the struct won't recognize it // (this is only needed because we strictly enforce that // all keys are recognized when loading modules) delete(tmp, moduleNameKey) result, err := json.Marshal(tmp) if err != nil { return "", nil, fmt.Errorf("re-encoding module configuration: %v", err) } return moduleName, result, nil } // Provisioner is implemented by modules which may need to perform // some additional "setup" steps immediately after being loaded. // Provisioning should be fast (imperceptible running time). If // any side-effects result in the execution of this function (e.g. // creating global state, any other allocations which require // garbage collection, opening files, starting goroutines etc.), // be sure to clean up properly by implementing the CleanerUpper // interface to avoid leaking resources. type Provisioner interface { Provision(Context) error } // Validator is implemented by modules which can verify that their // configurations are valid. This method will be called after // Provision() (if implemented). Validation should always be fast // (imperceptible running time) and an error should be returned only // if the value's configuration is invalid. type Validator interface { Validate() error } // CleanerUpper is implemented by modules which may have side-effects // such as opened files, spawned goroutines, or allocated some sort // of non-stack state when they were provisioned. This method should // deallocate/cleanup those resources to prevent memory leaks. Cleanup // should be fast and efficient. Cleanup should work even if Provision // returns an error, to allow cleaning up from partial provisionings. type CleanerUpper interface { Cleanup() error } // ParseStructTag parses a caddy struct tag into its keys and values. // It is very simple. The expected syntax is: // `caddy:"key1=val1 key2=val2 ..."` func ParseStructTag(tag string) (map[string]string, error) { results := make(map[string]string) pairs := strings.Split(tag, " ") for i, pair := range pairs { if pair == "" { continue } parts := strings.SplitN(pair, "=", 2) if len(parts) != 2 { return nil, fmt.Errorf("missing key in '%s' (pair %d)", pair, i) } results[parts[0]] = parts[1] } return results, nil } // strictUnmarshalJSON is like json.Unmarshal but returns an error // if any of the fields are unrecognized. Useful when decoding // module configurations, where you want to be more sure they're // correct. func strictUnmarshalJSON(data []byte, v interface{}) error { dec := json.NewDecoder(bytes.NewReader(data)) dec.DisallowUnknownFields() return dec.Decode(v) } // isJSONRawMessage returns true if the type is encoding/json.RawMessage. func isJSONRawMessage(typ reflect.Type) bool { return typ.PkgPath() == "encoding/json" && typ.Name() == "RawMessage" } // isModuleMapType returns true if the type is map[string]json.RawMessage. // It assumes that the string key is the module name, but this is not // always the case. To know for sure, this function must return true, but // also the struct tag where this type appears must NOT define an inline_key // attribute, which would mean that the module names appear inline with the // values, not in the key. func isModuleMapType(typ reflect.Type) bool { return typ.Kind() == reflect.Map && typ.Key().Kind() == reflect.String && isJSONRawMessage(typ.Elem()) } var ( modules = make(map[string]ModuleInfo) modulesMu sync.RWMutex )