If a placeholder in the path component injects a query string such as
the {http.request.uri} placeholder is wont to do, we need to separate it
out from the path.
See https://caddy.community/t/v2-match-any-path-but-files/7326/8?u=matt
If rewrites (or redirects, for that matter) match on file existence,
the file matcher would need to know the root of the site.
Making this change implies that root directives that depend on rewritten
URIs will not work as expected. However, I think this is very uncommon,
and am not sure I have ever seen that. Usually, dynamic roots are based
on host, not paths or query strings.
I suspect that rewrites based on file existence will be more common than
roots based on rewritten URIs, so I am moving root to be the first in
the list.
Users can always override this ordering with the 'order' global option.
Either Dial or LookupSRV will be set, but if we rely on Dial always
being set, we could run into bugs.
Note: Health checks don't support SRV upstreams.
The comments in the code should explain the new logic thoroughly.
The basic problem for the issue was that we were overriding a catch-all
automation policy's explicitly-configured issuer with our own, for names
that we thought looked like public names. In other words, one could
configure an internal issuer for all names, but then our auto HTTPS
would create a new policy for public-looking names that uses the
default ACME issuer, because we assume public<==>ACME and
nonpublic<==>Internal, but that is not always the case. The new logic
still assumes nonpublic<==>Internal (on catch-all policies only), but
no longer assumes that public-looking names always use an ACME issuer.
Also fix a bug where HTTPPort and HTTPSPort from the HTTP app weren't
being carried through to ACME issuers properly. It required a bit of
refactoring.
Adds `Alt-Svc` to the list of headers that get removed when proxying
to a backend.
This fixes the issue of having the contents of the Alt-Svc header
duplicated when proxying to another Caddy server.
* caddyhttp: Implement CEL matcher (see #3051)
CEL (Common Expression Language) is a very fast, flexible way to express
complex logic, useful for matching requests when the conditions are not
easy to express with JSON.
This matcher may be considered experimental even after the 2.0 release.
* Improve CEL module docs
* rewrite: strip_prefix, strip_suffix, uri_replace -> uri (closes#3140)
* Add period, to satisfy @whitestrake :) and my own OCD
* Restore implied / prefix
Wrapping listeners is useful for composing custom behavior related
to accepting, closing, reading/writing connections (etc) below the
application layer; for example, the PROXY protocol.
* pki: Initial commit of PKI app (WIP) (see #2502 and #3021)
* pki: Ability to use root/intermediates, and sign with root
* pki: Fix benign misnamings left over from copy+paste
* pki: Only install root if not already trusted
* Make HTTPS port the default; all names use auto-HTTPS; bug fixes
* Fix build - what happened to our CI tests??
* Fix go.mod
It's still not perfect but I think it should be more correct for
slightly more complex configs. Might still fall apart for complex
configs that use on-demand TLS or at a large scale (workarounds are
to just implement your own redirects, very easy to do anyway).
This is a breaking change primarily in two areas:
- Storage paths for certificates have changed
- Slight changes to JSON config parameters
Huge improvements in this commit, to be detailed more in
the release notes.
The upcoming PKI app will be powered by Smallstep libraries.
This makes it more convenient to configure quick proxies that use HTTPS
but also introduces a lot of logical complexity. We have to do a lot of
verification for consistency and errors.
Path and query string is not supported (i.e. no rewriting).
Scheme and port can be inferred from each other if HTTP(S)/80/443.
If omitted, defaults to HTTP.
Any explicit transport config must be consistent with the upstream
schemes, and the upstream schemes must all match too.
But, this change allows a config that used to require this:
reverse_proxy example.com:443 {
transport http {
tls
}
}
to be reduced to this:
reverse_proxy https://example.com
which is really nice syntactic sugar (and is reminiscent of Caddy 1).
* caddytls: Add CipherSuiteName and ProtocolName functions
The cipher_suites.go file is derived from a commit to the Go master
branch that's slated for Go 1.14. Once Go 1.14 is released, this file
can be removed.
* caddyhttp: Use commonLogEmptyValue in common_log replacer
* caddyhttp: Add TLS placeholders
* caddytls: update unsupportedProtocols
Don't export unsupportedProtocols and update its godoc to mention that
it's used for logging only.
* caddyhttp: simplify getRegTLSReplacement signature
getRegTLSReplacement should receive a string instead of a pointer.
* caddyhttp: Remove http.request.tls.client.cert replacer
The previous behavior of printing the raw certificate bytes was ported
from Caddy 1, but the usefulness of that approach is suspect. Remove
the client cert replacer from v2 until a use case is presented.
* caddyhttp: Use tls.CipherSuiteName from Go 1.14
Remove ported version of CipherSuiteName in the process.
* Add handler for unhandled errors in errorChain
Currently, when an error chain is defined, the default error handler is
bypassed entirely - even if the error chain doesn't handle every error.
This results in pages returning a blank 200 OK page.
For instance, it's possible for an error chain to match on the error
status code and only handle a certain subtype of errors (like 403s). In
this case, we'd want any other errors to still go through the default
handler and return an empty page with the status code.
This PR changes the "suffix handler" passed to errorChain.Compile to
set the status code of the response to the error status code.
Fixes#3053
* Move the errorHandlerChain middleware to variable
* Style fix
* Fix crash when specifying "*" to header directive.
Fixes#3060
* Look Host header in header and header_regexp.
Also, if more than one header is provided, header_regexp now looks for
extra headers values to reflect the behavior from header.
Fixes#3059
* Fix parsing of named header_regexp in Caddyfile.
See #3059
The documentation specifies that the hash algorithm defaults to bcrypt.
However, the implementation returns an error in provision if no hash is
provided.
Fix this inconsistency by *actually* defaulting to bcrypt.
This is temporary as we prepare for a stable v2 release. We don't want
to make promises we don't know we can keep, and the Starlark integration
deserves much more focused attention which resources and funding do not
currently permit. When the project is financially stable, I will be able
to revisit this properly and add flexible, robust Starlark scripting
support to Caddy 2.
This is necessary to avoid a race for sockets. Both the HTTP servers and
CertMagic solvers will try to bind the HTTP/HTTPS ports, but we need to
make sure that our HTTP servers bind first. This is kind of a new thing
now that management is async in Caddy 2.
Also update to CertMagic 0.9.2, which fixes some async use cases at
scale.
See https://caddy.community/t/caddy-server-that-returns-only-ip-address-as-text/6928/6?u=matt
In most cases, we will want to apply header operations immediately,
rather than waiting until the response is written. The exceptions are
generally going to be if we are deleting a header field or if a field is
to be overwritten. We now automatically defer header ops if deleting a
header field, and allow the user to manually enable deferred mode with
the defer subdirective.
Paths always begin with a slash, and omitting the leading slash could be
convenient to avoid confusion with a path matcher in the Caddyfile. I do
not think there would be any harm to implicitly add the leading slash.
* v2: add documentation for circuit breaker config and "random selection" load balancing policy
* v2: rename circuit breaker config inline key from `type` to `breaker` to avoid json key clash between the `circuit_breaker` type and the `type` field of the generic circuit breaker Config struct used by circuit breaking implementations
* v2: restore the circuit breaker inline key to `type` and rename the name circuit breaker config field from `Type` to `Factor`
The fix that was initially put forth in #2971 was good, but only for
up to one layer of nesting. The real problem was that we forgot to
increment nesting when already inside a block if we saw another open
curly brace that opens another block (dispenser.go L157-158).
The new 'handle' directive allows HTTP Caddyfiles to be designed more
like nginx location blocks if the user prefers. Inside a handle block,
directives are still ordered just like they are outside of them, but
handler blocks at a given level of nesting are mutually exclusive.
This work benefitted from some refactoring and cleanup.
Before, modifying the path might have affected how a new query string
was built if the query string relied on the path. Now, we build each
component in isolation and only change the URI on the request later.
Also, prevent trailing & in query string.
This splits automatic HTTPS into two phases. The first provisions the
route matchers and uses them to build the domain set and configure
auto HTTP->HTTPS redirects. This happens before the rest of the
provisioning does.
The second phase takes place at the beginning of the app start. It
attaches pointers to the tls app to each server, and begins certificate
management for the domains that were found in the first phase.
Our new parser also preserves original parameter order, rather than
re-encoding using the std lib (which sorts).
The renamed parameters are a breaking change but they're new enough
that I don't think anyone is using them.
* http: path matcher: exact match by default; substring matches (#2959)
This is a breaking change.
* caddyfile: Change "matcher" directive to "@matcher" syntax (#2959)
* cmd: Assume caddyfile adapter for config files named Caddyfile
* Sub-sort handlers by path matcher length (#2959)
Caddyfile-generated subroutes have handlers, which are sorted first by
directive order (this is unchanged), but within directives we now sort
by specificity of path matcher in descending order (longest path first,
assuming that longest path is most specific).
This only applies if there is only one matcher set, and the path
matcher in that set has only one path in it. Path matchers with two or
more paths are not sorted like this; and routes with more than one
matcher set are not sorted like this either, since specificity is
difficult or impossible to infer correctly.
This is a special case, but definitely a very common one, as a lot of
routing decisions are based on paths.
* caddyfile: New 'route' directive for appearance-order handling (#2959)
* caddyfile: Make rewrite directives mutually exclusive (#2959)
This applies only to rewrites in the top-level subroute created by the
HTTP caddyfile.
Previously, all matchers in a route would be evaluated before any
handlers were executed, and a composite route of the matching routes
would be created. This made rewrites especially tricky, since the only
way to defer later matchers' evaluation was to wrap them in a subroute,
or to invoke a "rehandle" which often caused bugs.
Instead, this new sequential design evaluates each route's matchers then
its handlers in lock-step; matcher-handlers-matcher-handlers...
If the first matching route consists of a rewrite, then the second route
will be evaluated against the rewritten request, rather than the original
one, and so on.
This should do away with any need for rehandling.
I've also taken this opportunity to avoid adding new values to the
request context in the handler chain, as this creates a copy of the
Request struct, which may possibly lead to bugs like it has in the past
(see PR #1542, PR #1481, and maybe issue #2463). We now add all the
expected context values in the top-level handler at the server, then
any new values can be added to the variable table via the VarsCtxKey
context key, or just the GetVar/SetVar functions. In particular, we are
using this facility to convey dial information in the reverse proxy.
Had to be careful in one place as the middleware compilation logic has
changed, and moved a bit. We no longer compile a middleware chain per-
request; instead, we can compile it at provision-time, and defer only the
evaluation of matchers to request-time, which should slightly improve
performance. Doing this, however, we take advantage of multiple function
closures, and we also changed the use of HandlerFunc (function pointer)
to Handler (interface)... this led to a situation where, if we aren't
careful, allows one request routed a certain way to permanently change
the "next" handler for all/most other requests! We avoid this by making
a copy of the interface value (which is a lightweight pointer copy) and
using exclusively that within our wrapped handlers. This way, the
original stack frame is preserved in a "read-only" fashion. The comments
in the code describe this phenomenon.
This may very well be a breaking change for some configurations, however
I do not expect it to impact many people. I will make it clear in the
release notes that this change has occurred.
Allows specifying ca certs with by filename in
`reverse_proxy.transport`.
Example
```
reverse_proxy /api api:443 {
transport http {
tls
tls_trusted_ca_certs certs/rootCA.pem
}
}
```