caddy/caddyconfig/httpcaddyfile/addresses.go

502 lines
17 KiB
Go
Raw Normal View History

// Copyright 2015 Matthew Holt and The Caddy Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package httpcaddyfile
import (
"fmt"
"net"
"net/netip"
"reflect"
"sort"
"strconv"
"strings"
"unicode"
"github.com/caddyserver/certmagic"
"github.com/caddyserver/caddy/v2"
"github.com/caddyserver/caddy/v2/caddyconfig/caddyfile"
"github.com/caddyserver/caddy/v2/modules/caddyhttp"
)
// mapAddressToProtocolToServerBlocks returns a map of listener address to list of server
// blocks that will be served on that address. To do this, each server block is
// expanded so that each one is considered individually, although keys of a
// server block that share the same address stay grouped together so the config
// isn't repeated unnecessarily. For example, this Caddyfile:
//
// example.com {
// bind 127.0.0.1
// }
// www.example.com, example.net/path, localhost:9999 {
// bind 127.0.0.1 1.2.3.4
// }
//
// has two server blocks to start with. But expressed in this Caddyfile are
// actually 4 listener addresses: 127.0.0.1:443, 1.2.3.4:443, 127.0.0.1:9999,
// and 127.0.0.1:9999. This is because the bind directive is applied to each
// key of its server block (specifying the host part), and each key may have
// a different port. And we definitely need to be sure that a site which is
// bound to be served on a specific interface is not served on others just
// because that is more convenient: it would be a potential security risk
// if the difference between interfaces means private vs. public.
//
// So what this function does for the example above is iterate each server
// block, and for each server block, iterate its keys. For the first, it
// finds one key (example.com) and determines its listener address
// (127.0.0.1:443 - because of 'bind' and automatic HTTPS). It then adds
// the listener address to the map value returned by this function, with
// the first server block as one of its associations.
//
// It then iterates each key on the second server block and associates them
// with one or more listener addresses. Indeed, each key in this block has
// two listener addresses because of the 'bind' directive. Once we know
// which addresses serve which keys, we can create a new server block for
// each address containing the contents of the server block and only those
// specific keys of the server block which use that address.
//
// It is possible and even likely that some keys in the returned map have
// the exact same list of server blocks (i.e. they are identical). This
// happens when multiple hosts are declared with a 'bind' directive and
// the resulting listener addresses are not shared by any other server
// block (or the other server blocks are exactly identical in their token
// contents). This happens with our example above because 1.2.3.4:443
// and 1.2.3.4:9999 are used exclusively with the second server block. This
// repetition may be undesirable, so call consolidateAddrMappings() to map
// multiple addresses to the same lists of server blocks (a many:many mapping).
// (Doing this is essentially a map-reduce technique.)
func (st *ServerType) mapAddressToProtocolToServerBlocks(originalServerBlocks []serverBlock,
2023-08-07 22:40:31 +03:00
options map[string]any,
) (map[string]map[string][]serverBlock, error) {
addrToProtocolToServerBlocks := map[string]map[string][]serverBlock{}
type keyWithParsedKey struct {
key caddyfile.Token
parsedKey Address
}
for i, sblock := range originalServerBlocks {
// within a server block, we need to map all the listener addresses
// implied by the server block to the keys of the server block which
// will be served by them; this has the effect of treating each
// key of a server block as its own, but without having to repeat its
// contents in cases where multiple keys really can be served together
addrToProtocolToKeyWithParsedKeys := map[string]map[string][]keyWithParsedKey{}
for j, key := range sblock.block.Keys {
parsedKey, err := ParseAddress(key.Text)
if err != nil {
return nil, fmt.Errorf("parsing key: %v", err)
}
parsedKey = parsedKey.Normalize()
// a key can have multiple listener addresses if there are multiple
// arguments to the 'bind' directive (although they will all have
// the same port, since the port is defined by the key or is implicit
// through automatic HTTPS)
listeners, err := st.listenersForServerBlockAddress(sblock, parsedKey, options)
if err != nil {
return nil, fmt.Errorf("server block %d, key %d (%s): determining listener address: %v", i, j, key.Text, err)
}
// associate this key with its protocols and each listener address served with them
kwpk := keyWithParsedKey{key, parsedKey}
for addr, protocols := range listeners {
protocolToKeyWithParsedKeys, ok := addrToProtocolToKeyWithParsedKeys[addr]
if !ok {
protocolToKeyWithParsedKeys = map[string][]keyWithParsedKey{}
addrToProtocolToKeyWithParsedKeys[addr] = protocolToKeyWithParsedKeys
}
// an empty protocol indicates the default, a nil or empty value in the ListenProtocols array
if len(protocols) == 0 {
protocols[""] = struct{}{}
}
for prot := range protocols {
protocolToKeyWithParsedKeys[prot] = append(
protocolToKeyWithParsedKeys[prot],
kwpk)
}
}
}
// make a slice of the map keys so we can iterate in sorted order
addrs := make([]string, 0, len(addrToProtocolToKeyWithParsedKeys))
for addr := range addrToProtocolToKeyWithParsedKeys {
addrs = append(addrs, addr)
}
sort.Strings(addrs)
// now that we know which addresses serve which keys of this
// server block, we iterate that mapping and create a list of
// new server blocks for each address where the keys of the
// server block are only the ones which use the address; but
// the contents (tokens) are of course the same
for _, addr := range addrs {
protocolToKeyWithParsedKeys := addrToProtocolToKeyWithParsedKeys[addr]
prots := make([]string, 0, len(protocolToKeyWithParsedKeys))
for prot := range protocolToKeyWithParsedKeys {
prots = append(prots, prot)
}
sort.Strings(prots)
protocolToServerBlocks, ok := addrToProtocolToServerBlocks[addr]
if !ok {
protocolToServerBlocks = map[string][]serverBlock{}
addrToProtocolToServerBlocks[addr] = protocolToServerBlocks
}
for _, prot := range prots {
keyWithParsedKeys := protocolToKeyWithParsedKeys[prot]
keys := make([]caddyfile.Token, len(keyWithParsedKeys))
parsedKeys := make([]Address, len(keyWithParsedKeys))
for k, keyWithParsedKey := range keyWithParsedKeys {
keys[k] = keyWithParsedKey.key
parsedKeys[k] = keyWithParsedKey.parsedKey
}
protocolToServerBlocks[prot] = append(protocolToServerBlocks[prot], serverBlock{
block: caddyfile.ServerBlock{
Keys: keys,
Segments: sblock.block.Segments,
},
pile: sblock.pile,
parsedKeys: parsedKeys,
})
}
}
}
return addrToProtocolToServerBlocks, nil
}
// consolidateAddrMappings eliminates repetition of identical server blocks in a mapping of
// single listener addresses to protocols to lists of server blocks. Since multiple addresses
// may serve multiple protocols to identical sites (server block contents), this function turns
// a 1:many mapping into a many:many mapping. Server block contents (tokens) must be
// exactly identical so that reflect.DeepEqual returns true in order for the addresses to be combined.
// Identical entries are deleted from the addrToServerBlocks map. Essentially, each pairing (each
// association from multiple addresses to multiple server blocks; i.e. each element of
// the returned slice) becomes a server definition in the output JSON.
func (st *ServerType) consolidateAddrMappings(addrToProtocolToServerBlocks map[string]map[string][]serverBlock) []sbAddrAssociation {
sbaddrs := make([]sbAddrAssociation, 0, len(addrToProtocolToServerBlocks))
addrs := make([]string, 0, len(addrToProtocolToServerBlocks))
for addr := range addrToProtocolToServerBlocks {
addrs = append(addrs, addr)
}
sort.Strings(addrs)
for _, addr := range addrs {
protocolToServerBlocks := addrToProtocolToServerBlocks[addr]
prots := make([]string, 0, len(protocolToServerBlocks))
for prot := range protocolToServerBlocks {
prots = append(prots, prot)
}
sort.Strings(prots)
for _, prot := range prots {
serverBlocks := protocolToServerBlocks[prot]
// now find other addresses that map to identical
// server blocks and add them to our map of listener
// addresses and protocols, while removing them from
// the original map
listeners := map[string]map[string]struct{}{}
for otherAddr, otherProtocolToServerBlocks := range addrToProtocolToServerBlocks {
for otherProt, otherServerBlocks := range otherProtocolToServerBlocks {
if addr == otherAddr && prot == otherProt || reflect.DeepEqual(serverBlocks, otherServerBlocks) {
listener, ok := listeners[otherAddr]
if !ok {
listener = map[string]struct{}{}
listeners[otherAddr] = listener
}
listener[otherProt] = struct{}{}
delete(otherProtocolToServerBlocks, otherProt)
}
}
}
addresses := make([]string, 0, len(listeners))
for lnAddr := range listeners {
addresses = append(addresses, lnAddr)
}
sort.Strings(addresses)
addressesWithProtocols := make([]addressWithProtocols, 0, len(listeners))
for _, lnAddr := range addresses {
lnProts := listeners[lnAddr]
prots := make([]string, 0, len(lnProts))
for prot := range lnProts {
prots = append(prots, prot)
}
sort.Strings(prots)
addressesWithProtocols = append(addressesWithProtocols, addressWithProtocols{
address: lnAddr,
protocols: prots,
})
}
sbaddrs = append(sbaddrs, sbAddrAssociation{
addressesWithProtocols: addressesWithProtocols,
serverBlocks: serverBlocks,
})
}
}
return sbaddrs
}
// listenersForServerBlockAddress essentially converts the Caddyfile site addresses to a map from
// Caddy listener addresses and the protocols to serve them with to the parsed address for each server block.
func (st *ServerType) listenersForServerBlockAddress(sblock serverBlock, addr Address,
2023-08-07 22:40:31 +03:00
options map[string]any,
) (map[string]map[string]struct{}, error) {
switch addr.Scheme {
case "wss":
return nil, fmt.Errorf("the scheme wss:// is only supported in browsers; use https:// instead")
case "ws":
return nil, fmt.Errorf("the scheme ws:// is only supported in browsers; use http:// instead")
case "https", "http", "":
// Do nothing or handle the valid schemes
default:
return nil, fmt.Errorf("unsupported URL scheme %s://", addr.Scheme)
}
// figure out the HTTP and HTTPS ports; either
// use defaults, or override with user config
httpPort, httpsPort := strconv.Itoa(caddyhttp.DefaultHTTPPort), strconv.Itoa(caddyhttp.DefaultHTTPSPort)
if hport, ok := options["http_port"]; ok {
httpPort = strconv.Itoa(hport.(int))
}
if hsport, ok := options["https_port"]; ok {
httpsPort = strconv.Itoa(hsport.(int))
}
// default port is the HTTPS port
lnPort := httpsPort
if addr.Port != "" {
// port explicitly defined
lnPort = addr.Port
} else if addr.Scheme == "http" {
// port inferred from scheme
lnPort = httpPort
}
// error if scheme and port combination violate convention
if (addr.Scheme == "http" && lnPort == httpsPort) || (addr.Scheme == "https" && lnPort == httpPort) {
return nil, fmt.Errorf("[%s] scheme and port violate convention", addr.String())
}
// the bind directive specifies hosts (and potentially network), and the protocols to serve them with, but is optional
lnCfgVals := make([]addressesWithProtocols, 0, len(sblock.pile["bind"]))
for _, cfgVal := range sblock.pile["bind"] {
if val, ok := cfgVal.Value.(addressesWithProtocols); ok {
lnCfgVals = append(lnCfgVals, val)
}
}
if len(lnCfgVals) == 0 {
if defaultBindValues, ok := options["default_bind"].([]ConfigValue); ok {
for _, defaultBindValue := range defaultBindValues {
lnCfgVals = append(lnCfgVals, defaultBindValue.Value.(addressesWithProtocols))
}
} else {
lnCfgVals = []addressesWithProtocols{{
addresses: []string{""},
protocols: nil,
}}
}
}
// use a map to prevent duplication
listeners := map[string]map[string]struct{}{}
for _, lnCfgVal := range lnCfgVals {
for _, lnAddr := range lnCfgVal.addresses {
lnNetw, lnHost, _, err := caddy.SplitNetworkAddress(lnAddr)
if err != nil {
return nil, fmt.Errorf("splitting listener address: %v", err)
}
networkAddr, err := caddy.ParseNetworkAddress(caddy.JoinNetworkAddress(lnNetw, lnHost, lnPort))
if err != nil {
return nil, fmt.Errorf("parsing network address: %v", err)
}
if _, ok := listeners[addr.String()]; !ok {
listeners[networkAddr.String()] = map[string]struct{}{}
}
for _, protocol := range lnCfgVal.protocols {
listeners[networkAddr.String()][protocol] = struct{}{}
}
}
}
return listeners, nil
}
// addressesWithProtocols associates a list of listen addresses
// with a list of protocols to serve them with
type addressesWithProtocols struct {
addresses []string
protocols []string
}
// Address represents a site address. It contains
// the original input value, and the component
// parts of an address. The component parts may be
// updated to the correct values as setup proceeds,
// but the original value should never be changed.
//
// The Host field must be in a normalized form.
type Address struct {
Original, Scheme, Host, Port, Path string
}
// ParseAddress parses an address string into a structured format with separate
// scheme, host, port, and path portions, as well as the original input string.
func ParseAddress(str string) (Address, error) {
const maxLen = 4096
if len(str) > maxLen {
str = str[:maxLen]
}
remaining := strings.TrimSpace(str)
a := Address{Original: remaining}
// extract scheme
splitScheme := strings.SplitN(remaining, "://", 2)
switch len(splitScheme) {
case 0:
return a, nil
case 1:
remaining = splitScheme[0]
case 2:
a.Scheme = splitScheme[0]
remaining = splitScheme[1]
}
// extract host and port
hostSplit := strings.SplitN(remaining, "/", 2)
if len(hostSplit) > 0 {
host, port, err := net.SplitHostPort(hostSplit[0])
if err != nil {
host, port, err = net.SplitHostPort(hostSplit[0] + ":")
if err != nil {
host = hostSplit[0]
}
}
a.Host = host
a.Port = port
}
if len(hostSplit) == 2 {
// all that remains is the path
a.Path = "/" + hostSplit[1]
}
// make sure port is valid
if a.Port != "" {
if portNum, err := strconv.Atoi(a.Port); err != nil {
return Address{}, fmt.Errorf("invalid port '%s': %v", a.Port, err)
} else if portNum < 0 || portNum > 65535 {
return Address{}, fmt.Errorf("port %d is out of range", portNum)
}
}
return a, nil
}
// String returns a human-readable form of a. It will
// be a cleaned-up and filled-out URL string.
func (a Address) String() string {
if a.Host == "" && a.Port == "" {
return ""
}
scheme := a.Scheme
if scheme == "" {
if a.Port == strconv.Itoa(certmagic.HTTPSPort) {
scheme = "https"
} else {
scheme = "http"
}
}
s := scheme
if s != "" {
s += "://"
}
if a.Port != "" &&
((scheme == "https" && a.Port != strconv.Itoa(caddyhttp.DefaultHTTPSPort)) ||
(scheme == "http" && a.Port != strconv.Itoa(caddyhttp.DefaultHTTPPort))) {
s += net.JoinHostPort(a.Host, a.Port)
} else {
s += a.Host
}
if a.Path != "" {
s += a.Path
}
return s
}
// Normalize returns a normalized version of a.
func (a Address) Normalize() Address {
path := a.Path
// ensure host is normalized if it's an IP address
host := strings.TrimSpace(a.Host)
if ip, err := netip.ParseAddr(host); err == nil {
if ip.Is6() && !ip.Is4() && !ip.Is4In6() {
host = ip.String()
}
}
return Address{
Original: a.Original,
Scheme: lowerExceptPlaceholders(a.Scheme),
Host: lowerExceptPlaceholders(host),
Port: a.Port,
Path: path,
}
}
// lowerExceptPlaceholders lowercases s except within
// placeholders (substrings in non-escaped '{ }' spans).
// See https://github.com/caddyserver/caddy/issues/3264
func lowerExceptPlaceholders(s string) string {
var sb strings.Builder
var escaped, inPlaceholder bool
for _, ch := range s {
if ch == '\\' && !escaped {
escaped = true
sb.WriteRune(ch)
continue
}
if ch == '{' && !escaped {
inPlaceholder = true
}
if ch == '}' && inPlaceholder && !escaped {
inPlaceholder = false
}
if inPlaceholder {
sb.WriteRune(ch)
} else {
sb.WriteRune(unicode.ToLower(ch))
}
escaped = false
}
return sb.String()
}