123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812 |
- // Copyright 2019 The Ebiten Authors
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- // Package vector provides functions for vector graphics rendering.
- //
- // This package is under experiments and the API might be changed with breaking backward compatibility.
- package vector
- import (
- "math"
- "github.com/hajimehoshi/ebiten/v2"
- )
- // Direction represents clockwise or counterclockwise.
- type Direction int
- const (
- Clockwise Direction = iota
- CounterClockwise
- )
- type opType int
- const (
- opTypeMoveTo opType = iota
- opTypeLineTo
- opTypeQuadTo
- opTypeCubicTo
- opTypeClose
- )
- type op struct {
- typ opType
- p1 point
- p2 point
- p3 point
- }
- func abs(x float32) float32 {
- if x < 0 {
- return -x
- }
- return x
- }
- type point struct {
- x float32
- y float32
- }
- type subpath struct {
- points []point
- closed bool
- }
- // reset resets the subpath.
- // reset doesn't release the allocated memory so that the memory can be reused.
- func (s *subpath) reset() {
- s.points = s.points[:0]
- s.closed = false
- }
- func (s subpath) pointCount() int {
- return len(s.points)
- }
- func (s subpath) lastPoint() point {
- return s.points[len(s.points)-1]
- }
- func (s *subpath) appendPoint(pt point) {
- if s.closed {
- panic("vector: a closed subpathment cannot append a new point")
- }
- if len(s.points) > 0 {
- // Do not add a too close point to the last point.
- // This can cause unexpected rendering results.
- if lp := s.lastPoint(); abs(lp.x-pt.x) < 1e-2 && abs(lp.y-pt.y) < 1e-2 {
- return
- }
- }
- s.points = append(s.points, pt)
- }
- func (s *subpath) close() {
- if s.closed {
- return
- }
- s.appendPoint(s.points[0])
- s.closed = true
- }
- // Path represents a collection of path subpathments.
- type Path struct {
- ops []op
- // subpaths is a cached actual rendering positions.
- subpaths []subpath
- }
- // Reset resets the path.
- // Reset doesn't release the allocated memory so that the memory can be reused.
- func (p *Path) Reset() {
- p.ops = p.ops[:0]
- p.subpaths = p.subpaths[:0]
- }
- func (p *Path) appendNewSubpath(pt point) {
- if cap(p.subpaths) > len(p.subpaths) {
- // Reuse the last subpath since the last subpath might have an already allocated slice.
- p.subpaths = p.subpaths[:len(p.subpaths)+1]
- p.subpaths[len(p.subpaths)-1].reset()
- p.subpaths[len(p.subpaths)-1].appendPoint(pt)
- return
- }
- p.subpaths = append(p.subpaths, subpath{
- points: []point{pt},
- })
- }
- func (p *Path) ensureSubpaths() []subpath {
- if len(p.subpaths) > 0 || len(p.ops) == 0 {
- return p.subpaths
- }
- var cur point
- for _, op := range p.ops {
- switch op.typ {
- case opTypeMoveTo:
- p.appendNewSubpath(op.p1)
- cur = op.p1
- case opTypeLineTo:
- p.lineTo(op.p1)
- cur = op.p1
- case opTypeQuadTo:
- p.quadTo(cur, op.p1, op.p2, 0)
- cur = op.p2
- case opTypeCubicTo:
- p.cubicTo(cur, op.p1, op.p2, op.p3, 0)
- cur = op.p3
- case opTypeClose:
- p.close()
- cur = point{}
- }
- }
- return p.subpaths
- }
- // MoveTo starts a new subpath with the given position (x, y) without adding a subpath,
- func (p *Path) MoveTo(x, y float32) {
- p.subpaths = p.subpaths[:0]
- p.ops = append(p.ops, op{
- typ: opTypeMoveTo,
- p1: point{x: x, y: y},
- })
- }
- // LineTo adds a line segment to the path, which starts from the last position of the current subpath
- // and ends to the given position (x, y).
- // If p doesn't have any subpaths or the last subpath is closed, LineTo sets (x, y) as the start position of a new subpath.
- func (p *Path) LineTo(x, y float32) {
- p.subpaths = p.subpaths[:0]
- p.ops = append(p.ops, op{
- typ: opTypeLineTo,
- p1: point{x: x, y: y},
- })
- }
- // QuadTo adds a quadratic Bézier curve to the path.
- // (x1, y1) is the control point, and (x2, y2) is the destination.
- func (p *Path) QuadTo(x1, y1, x2, y2 float32) {
- p.subpaths = p.subpaths[:0]
- p.ops = append(p.ops, op{
- typ: opTypeQuadTo,
- p1: point{x: x1, y: y1},
- p2: point{x: x2, y: y2},
- })
- }
- // CubicTo adds a cubic Bézier curve to the path.
- // (x1, y1) and (x2, y2) are the control points, and (x3, y3) is the destination.
- func (p *Path) CubicTo(x1, y1, x2, y2, x3, y3 float32) {
- p.subpaths = p.subpaths[:0]
- p.ops = append(p.ops, op{
- typ: opTypeCubicTo,
- p1: point{x: x1, y: y1},
- p2: point{x: x2, y: y2},
- p3: point{x: x3, y: y3},
- })
- }
- // Close adds a new line from the last position of the current subpath to the first position of the current subpath,
- // and marks the current subpath closed.
- // Following operations for this path will start with a new subpath.
- func (p *Path) Close() {
- p.subpaths = p.subpaths[:0]
- p.ops = append(p.ops, op{
- typ: opTypeClose,
- })
- }
- func (p *Path) lineTo(pt point) {
- if len(p.subpaths) == 0 || p.subpaths[len(p.subpaths)-1].closed {
- p.appendNewSubpath(pt)
- return
- }
- p.subpaths[len(p.subpaths)-1].appendPoint(pt)
- }
- // lineForTwoPoints returns parameters for a line passing through p0 and p1.
- func lineForTwoPoints(p0, p1 point) (a, b, c float32) {
- // Line passing through p0 and p1 in the form of ax + by + c = 0
- a = p1.y - p0.y
- b = -(p1.x - p0.x)
- c = (p1.x-p0.x)*p0.y - (p1.y-p0.y)*p0.x
- return
- }
- // isPointCloseToSegment detects the distance between a segment (x0, y0)-(x1, y1) and a point (x, y) is less than allow.
- // If p0 and p1 are the same, isPointCloseToSegment returns true when the distance between p0 and p is less than allow.
- func isPointCloseToSegment(p, p0, p1 point, allow float32) bool {
- if p0 == p1 {
- return allow*allow >= (p0.x-p.x)*(p0.x-p.x)+(p0.y-p.y)*(p0.y-p.y)
- }
- a, b, c := lineForTwoPoints(p0, p1)
- // The distance between a line ax+by+c=0 and (x0, y0) is
- // |ax0 + by0 + c| / √(a² + b²)
- return allow*allow*(a*a+b*b) >= (a*p.x+b*p.y+c)*(a*p.x+b*p.y+c)
- }
- // crossingPointForTwoLines returns a crossing point for two lines.
- func crossingPointForTwoLines(p00, p01, p10, p11 point) point {
- a0, b0, c0 := lineForTwoPoints(p00, p01)
- a1, b1, c1 := lineForTwoPoints(p10, p11)
- det := a0*b1 - a1*b0
- return point{
- x: (b0*c1 - b1*c0) / det,
- y: (a1*c0 - a0*c1) / det,
- }
- }
- func (p *Path) quadTo(p0, p1, p2 point, level int) {
- if level > 10 {
- return
- }
- if isPointCloseToSegment(p1, p0, p2, 0.5) {
- p.lineTo(p2)
- return
- }
- p01 := point{
- x: (p0.x + p1.x) / 2,
- y: (p0.y + p1.y) / 2,
- }
- p12 := point{
- x: (p1.x + p2.x) / 2,
- y: (p1.y + p2.y) / 2,
- }
- p012 := point{
- x: (p01.x + p12.x) / 2,
- y: (p01.y + p12.y) / 2,
- }
- p.quadTo(p0, p01, p012, level+1)
- p.quadTo(p012, p12, p2, level+1)
- }
- func (p *Path) cubicTo(p0, p1, p2, p3 point, level int) {
- if level > 10 {
- return
- }
- if isPointCloseToSegment(p1, p0, p3, 0.5) && isPointCloseToSegment(p2, p0, p3, 0.5) {
- p.lineTo(p3)
- return
- }
- p01 := point{
- x: (p0.x + p1.x) / 2,
- y: (p0.y + p1.y) / 2,
- }
- p12 := point{
- x: (p1.x + p2.x) / 2,
- y: (p1.y + p2.y) / 2,
- }
- p23 := point{
- x: (p2.x + p3.x) / 2,
- y: (p2.y + p3.y) / 2,
- }
- p012 := point{
- x: (p01.x + p12.x) / 2,
- y: (p01.y + p12.y) / 2,
- }
- p123 := point{
- x: (p12.x + p23.x) / 2,
- y: (p12.y + p23.y) / 2,
- }
- p0123 := point{
- x: (p012.x + p123.x) / 2,
- y: (p012.y + p123.y) / 2,
- }
- p.cubicTo(p0, p01, p012, p0123, level+1)
- p.cubicTo(p0123, p123, p23, p3, level+1)
- }
- func normalize(p point) point {
- len := float32(math.Hypot(float64(p.x), float64(p.y)))
- return point{x: p.x / len, y: p.y / len}
- }
- func cross(p0, p1 point) float32 {
- return p0.x*p1.y - p1.x*p0.y
- }
- func (p *Path) currentPosition() (point, bool) {
- if len(p.ops) == 0 {
- return point{}, false
- }
- op := p.ops[len(p.ops)-1]
- switch op.typ {
- case opTypeMoveTo:
- return op.p1, true
- case opTypeLineTo:
- return op.p1, true
- case opTypeQuadTo:
- return op.p2, true
- case opTypeCubicTo:
- return op.p3, true
- case opTypeClose:
- return point{}, false
- }
- return point{}, false
- }
- // ArcTo adds an arc curve to the path.
- // (x1, y1) is the first control point, and (x2, y2) is the second control point.
- func (p *Path) ArcTo(x1, y1, x2, y2, radius float32) {
- p0, ok := p.currentPosition()
- if !ok {
- p0 = point{x: x1, y: y1}
- }
- d0 := point{
- x: p0.x - x1,
- y: p0.y - y1,
- }
- d1 := point{
- x: x2 - x1,
- y: y2 - y1,
- }
- if d0 == (point{}) || d1 == (point{}) {
- p.LineTo(x1, y1)
- return
- }
- d0 = normalize(d0)
- d1 = normalize(d1)
- // theta is the angle between two vectors d0 and d1.
- theta := math.Acos(float64(d0.x*d1.x + d0.y*d1.y))
- // TODO: When theta is bigger than π/2, the arc should be split into two.
- // dist is the distance between the control point and the arc's beginning and ending points.
- dist := radius / float32(math.Tan(theta/2))
- // TODO: What if dist is too big?
- // (ax0, ay0) is the start of the arc.
- ax0 := x1 + d0.x*dist
- ay0 := y1 + d0.y*dist
- var cx, cy, a0, a1 float32
- var dir Direction
- if cross(d0, d1) >= 0 {
- cx = ax0 - d0.y*radius
- cy = ay0 + d0.x*radius
- a0 = float32(math.Atan2(float64(-d0.x), float64(d0.y)))
- a1 = float32(math.Atan2(float64(d1.x), float64(-d1.y)))
- dir = CounterClockwise
- } else {
- cx = ax0 + d0.y*radius
- cy = ay0 - d0.x*radius
- a0 = float32(math.Atan2(float64(d0.x), float64(-d0.y)))
- a1 = float32(math.Atan2(float64(-d1.x), float64(d1.y)))
- dir = Clockwise
- }
- p.Arc(cx, cy, radius, a0, a1, dir)
- }
- // Arc adds an arc to the path.
- // (x, y) is the center of the arc.
- func (p *Path) Arc(x, y, radius, startAngle, endAngle float32, dir Direction) {
- // Adjust the angles.
- var da float64
- if dir == Clockwise {
- for startAngle > endAngle {
- endAngle += 2 * math.Pi
- }
- da = float64(endAngle - startAngle)
- } else {
- for startAngle < endAngle {
- startAngle += 2 * math.Pi
- }
- da = float64(startAngle - endAngle)
- }
- if da >= 2*math.Pi {
- da = 2 * math.Pi
- if dir == Clockwise {
- endAngle = startAngle + 2*math.Pi
- } else {
- startAngle = endAngle + 2*math.Pi
- }
- }
- // If the angle is big, splict this into multiple Arc calls.
- if da > math.Pi/2 {
- const delta = math.Pi / 3
- a := float64(startAngle)
- if dir == Clockwise {
- for {
- p.Arc(x, y, radius, float32(a), float32(math.Min(a+delta, float64(endAngle))), dir)
- if a+delta >= float64(endAngle) {
- break
- }
- a += delta
- }
- } else {
- for {
- p.Arc(x, y, radius, float32(a), float32(math.Max(a-delta, float64(endAngle))), dir)
- if a-delta <= float64(endAngle) {
- break
- }
- a -= delta
- }
- }
- return
- }
- sin0, cos0 := math.Sincos(float64(startAngle))
- x0 := x + radius*float32(cos0)
- y0 := y + radius*float32(sin0)
- sin1, cos1 := math.Sincos(float64(endAngle))
- x1 := x + radius*float32(cos1)
- y1 := y + radius*float32(sin1)
- p.LineTo(x0, y0)
- // Calculate the control points for an approximated Bézier curve.
- // See https://learn.microsoft.com/en-us/previous-versions/xamarin/xamarin-forms/user-interface/graphics/skiasharp/curves/beziers.
- l := radius * float32(math.Tan(da/4)*4/3)
- var cx0, cy0, cx1, cy1 float32
- if dir == Clockwise {
- cx0 = x0 + l*float32(-sin0)
- cy0 = y0 + l*float32(cos0)
- cx1 = x1 + l*float32(sin1)
- cy1 = y1 + l*float32(-cos1)
- } else {
- cx0 = x0 + l*float32(sin0)
- cy0 = y0 + l*float32(-cos0)
- cx1 = x1 + l*float32(-sin1)
- cy1 = y1 + l*float32(cos1)
- }
- p.CubicTo(cx0, cy0, cx1, cy1, x1, y1)
- }
- func (p *Path) close() {
- if len(p.subpaths) == 0 {
- return
- }
- p.subpaths[len(p.subpaths)-1].close()
- }
- // AppendVerticesAndIndicesForFilling appends vertices and indices to fill this path and returns them.
- // AppendVerticesAndIndicesForFilling works in a similar way to the built-in append function.
- // If the arguments are nils, AppendVerticesAndIndicesForFilling returns new slices.
- //
- // The returned vertice's SrcX and SrcY are 0, and ColorR, ColorG, ColorB, and ColorA are 1.
- //
- // The returned values are intended to be passed to DrawTriangles or DrawTrianglesShader with FileRuleNonZero or FillRuleEvenOdd
- // in order to render a complex polygon like a concave polygon, a polygon with holes, or a self-intersecting polygon.
- //
- // The returned vertices and indices should be rendered with a solid (non-transparent) color with the default Blend (source-over).
- // Otherwise, there is no guarantee about the rendering result.
- func (p *Path) AppendVerticesAndIndicesForFilling(vertices []ebiten.Vertex, indices []uint16) ([]ebiten.Vertex, []uint16) {
- // TODO: Add tests.
- base := uint16(len(vertices))
- for _, subpath := range p.ensureSubpaths() {
- if subpath.pointCount() < 3 {
- continue
- }
- for i, pt := range subpath.points {
- vertices = append(vertices, ebiten.Vertex{
- DstX: pt.x,
- DstY: pt.y,
- SrcX: 0,
- SrcY: 0,
- ColorR: 1,
- ColorG: 1,
- ColorB: 1,
- ColorA: 1,
- })
- if i < 2 {
- continue
- }
- indices = append(indices, base, base+uint16(i-1), base+uint16(i))
- }
- base += uint16(subpath.pointCount())
- }
- return vertices, indices
- }
- // ApplyGeoM applies the given GeoM to the path and returns a new path.
- func (p *Path) ApplyGeoM(geoM ebiten.GeoM) *Path {
- // subpaths are not copied.
- np := &Path{
- ops: make([]op, len(p.ops)),
- }
- for i, o := range p.ops {
- x1, y1 := geoM.Apply(float64(o.p1.x), float64(o.p1.y))
- x2, y2 := geoM.Apply(float64(o.p2.x), float64(o.p2.y))
- x3, y3 := geoM.Apply(float64(o.p3.x), float64(o.p3.y))
- np.ops[i] = op{
- typ: o.typ,
- p1: point{x: float32(x1), y: float32(y1)},
- p2: point{x: float32(x2), y: float32(y2)},
- p3: point{x: float32(x3), y: float32(y3)},
- }
- }
- return np
- }
- // LineCap represents the way in which how the ends of the stroke are rendered.
- type LineCap int
- const (
- LineCapButt LineCap = iota
- LineCapRound
- LineCapSquare
- )
- // LineJoin represents the way in which how two segments are joined.
- type LineJoin int
- const (
- LineJoinMiter LineJoin = iota
- LineJoinBevel
- LineJoinRound
- )
- // StrokeOptions is options to render a stroke.
- type StrokeOptions struct {
- // Width is the stroke width in pixels.
- //
- // The default (zero) value is 0.
- Width float32
- // LineCap is the way in which how the ends of the stroke are rendered.
- // Line caps are not rendered when the subpath is marked as closed.
- //
- // The default (zero) value is LineCapButt.
- LineCap LineCap
- // LineJoin is the way in which how two segments are joined.
- //
- // The default (zero) value is LineJoiMiter.
- LineJoin LineJoin
- // MiterLimit is the miter limit for LineJoinMiter.
- // For details, see https://developer.mozilla.org/en-US/docs/Web/SVG/Attribute/stroke-miterlimit.
- //
- // The default (zero) value is 0.
- MiterLimit float32
- }
- // AppendVerticesAndIndicesForStroke appends vertices and indices to render a stroke of this path and returns them.
- // AppendVerticesAndIndicesForStroke works in a similar way to the built-in append function.
- // If the arguments are nils, AppendVerticesAndIndicesForStroke returns new slices.
- //
- // The returned vertice's SrcX and SrcY are 0, and ColorR, ColorG, ColorB, and ColorA are 1.
- //
- // The returned values are intended to be passed to DrawTriangles or DrawTrianglesShader with a solid (non-transparent) color
- // with FillRuleFillAll or FillRuleNonZero, not FileRuleEvenOdd.
- func (p *Path) AppendVerticesAndIndicesForStroke(vertices []ebiten.Vertex, indices []uint16, op *StrokeOptions) ([]ebiten.Vertex, []uint16) {
- if op == nil {
- return vertices, indices
- }
- var rects [][4]point
- var tmpPath Path
- for _, subpath := range p.ensureSubpaths() {
- if subpath.pointCount() < 2 {
- continue
- }
- rects = rects[:0]
- for i := 0; i < subpath.pointCount()-1; i++ {
- pt := subpath.points[i]
- nextPt := subpath.points[i+1]
- dx := nextPt.x - pt.x
- dy := nextPt.y - pt.y
- dist := float32(math.Sqrt(float64(dx*dx + dy*dy)))
- extX := (dy) * op.Width / 2 / dist
- extY := (-dx) * op.Width / 2 / dist
- rects = append(rects, [4]point{
- {
- x: pt.x + extX,
- y: pt.y + extY,
- },
- {
- x: nextPt.x + extX,
- y: nextPt.y + extY,
- },
- {
- x: pt.x - extX,
- y: pt.y - extY,
- },
- {
- x: nextPt.x - extX,
- y: nextPt.y - extY,
- },
- })
- }
- for i, rect := range rects {
- idx := uint16(len(vertices))
- for _, pt := range rect {
- vertices = append(vertices, ebiten.Vertex{
- DstX: pt.x,
- DstY: pt.y,
- SrcX: 0,
- SrcY: 0,
- ColorR: 1,
- ColorG: 1,
- ColorB: 1,
- ColorA: 1,
- })
- }
- // All the triangles are rendered in clockwise order to enable FillRuleNonZero (#2833).
- indices = append(indices, idx, idx+1, idx+2, idx+1, idx+3, idx+2)
- // Add line joints.
- var nextRect [4]point
- if i < len(rects)-1 {
- nextRect = rects[i+1]
- } else if subpath.closed {
- nextRect = rects[0]
- } else {
- continue
- }
- // c is the center of the 'end' edge of the current rect (= the second point of the segment).
- c := point{
- x: (rect[1].x + rect[3].x) / 2,
- y: (rect[1].y + rect[3].y) / 2,
- }
- // Note that the Y direction and the angle direction are opposite from math's.
- a0 := float32(math.Atan2(float64(rect[1].y-c.y), float64(rect[1].x-c.x)))
- a1 := float32(math.Atan2(float64(nextRect[0].y-c.y), float64(nextRect[0].x-c.x)))
- da := a1 - a0
- for da < 0 {
- da += 2 * math.Pi
- }
- if da == 0 {
- continue
- }
- switch op.LineJoin {
- case LineJoinMiter:
- delta := math.Pi - da
- exceed := float32(math.Abs(1/math.Sin(float64(delta/2)))) > op.MiterLimit
- // Quadrilateral
- tmpPath.Reset()
- tmpPath.MoveTo(c.x, c.y)
- if da < math.Pi {
- tmpPath.LineTo(rect[1].x, rect[1].y)
- if !exceed {
- pt := crossingPointForTwoLines(rect[0], rect[1], nextRect[0], nextRect[1])
- tmpPath.LineTo(pt.x, pt.y)
- }
- tmpPath.LineTo(nextRect[0].x, nextRect[0].y)
- } else {
- tmpPath.LineTo(rect[3].x, rect[3].y)
- if !exceed {
- pt := crossingPointForTwoLines(rect[2], rect[3], nextRect[2], nextRect[3])
- tmpPath.LineTo(pt.x, pt.y)
- }
- tmpPath.LineTo(nextRect[2].x, nextRect[2].y)
- }
- vertices, indices = tmpPath.AppendVerticesAndIndicesForFilling(vertices, indices)
- case LineJoinBevel:
- // Triangle
- tmpPath.Reset()
- tmpPath.MoveTo(c.x, c.y)
- if da < math.Pi {
- tmpPath.LineTo(rect[1].x, rect[1].y)
- tmpPath.LineTo(nextRect[0].x, nextRect[0].y)
- } else {
- tmpPath.LineTo(rect[3].x, rect[3].y)
- tmpPath.LineTo(nextRect[2].x, nextRect[2].y)
- }
- vertices, indices = tmpPath.AppendVerticesAndIndicesForFilling(vertices, indices)
- case LineJoinRound:
- // Arc
- tmpPath.Reset()
- tmpPath.MoveTo(c.x, c.y)
- if da < math.Pi {
- tmpPath.Arc(c.x, c.y, op.Width/2, a0, a1, Clockwise)
- } else {
- tmpPath.Arc(c.x, c.y, op.Width/2, a0+math.Pi, a1+math.Pi, CounterClockwise)
- }
- vertices, indices = tmpPath.AppendVerticesAndIndicesForFilling(vertices, indices)
- }
- }
- if len(rects) == 0 {
- continue
- }
- // If the subpath is closed, do not render line caps.
- if subpath.closed {
- continue
- }
- switch op.LineCap {
- case LineCapButt:
- // Do nothing.
- case LineCapRound:
- startR, endR := rects[0], rects[len(rects)-1]
- {
- c := point{
- x: (startR[0].x + startR[2].x) / 2,
- y: (startR[0].y + startR[2].y) / 2,
- }
- a := float32(math.Atan2(float64(startR[0].y-startR[2].y), float64(startR[0].x-startR[2].x)))
- // Arc
- tmpPath.Reset()
- tmpPath.MoveTo(startR[0].x, startR[0].y)
- tmpPath.Arc(c.x, c.y, op.Width/2, a, a+math.Pi, CounterClockwise)
- vertices, indices = tmpPath.AppendVerticesAndIndicesForFilling(vertices, indices)
- }
- {
- c := point{
- x: (endR[1].x + endR[3].x) / 2,
- y: (endR[1].y + endR[3].y) / 2,
- }
- a := float32(math.Atan2(float64(endR[1].y-endR[3].y), float64(endR[1].x-endR[3].x)))
- // Arc
- tmpPath.Reset()
- tmpPath.MoveTo(endR[1].x, endR[1].y)
- tmpPath.Arc(c.x, c.y, op.Width/2, a, a+math.Pi, Clockwise)
- vertices, indices = tmpPath.AppendVerticesAndIndicesForFilling(vertices, indices)
- }
- case LineCapSquare:
- startR, endR := rects[0], rects[len(rects)-1]
- {
- a := math.Atan2(float64(startR[0].y-startR[1].y), float64(startR[0].x-startR[1].x))
- s, c := math.Sincos(a)
- dx, dy := float32(c)*op.Width/2, float32(s)*op.Width/2
- // Quadrilateral
- tmpPath.Reset()
- tmpPath.MoveTo(startR[0].x, startR[0].y)
- tmpPath.LineTo(startR[0].x+dx, startR[0].y+dy)
- tmpPath.LineTo(startR[2].x+dx, startR[2].y+dy)
- tmpPath.LineTo(startR[2].x, startR[2].y)
- vertices, indices = tmpPath.AppendVerticesAndIndicesForFilling(vertices, indices)
- }
- {
- a := math.Atan2(float64(endR[1].y-endR[0].y), float64(endR[1].x-endR[0].x))
- s, c := math.Sincos(a)
- dx, dy := float32(c)*op.Width/2, float32(s)*op.Width/2
- // Quadrilateral
- tmpPath.Reset()
- tmpPath.MoveTo(endR[1].x, endR[1].y)
- tmpPath.LineTo(endR[1].x+dx, endR[1].y+dy)
- tmpPath.LineTo(endR[3].x+dx, endR[3].y+dy)
- tmpPath.LineTo(endR[3].x, endR[3].y)
- vertices, indices = tmpPath.AppendVerticesAndIndicesForFilling(vertices, indices)
- }
- }
- }
- return vertices, indices
- }
|