123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220 |
- // Copyright 2014 Hajime Hoshi
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- package ebiten
- import (
- "fmt"
- "math"
- )
- // GeoMDim is a dimension of a GeoM.
- const GeoMDim = 3
- // A GeoM represents a matrix to transform geometry when rendering an image.
- //
- // The initial value is identity.
- type GeoM struct {
- a_1 float64 // The actual 'a' value minus 1
- b float64
- c float64
- d_1 float64 // The actual 'd' value minus 1
- tx float64
- ty float64
- }
- // String returns a string representation of GeoM.
- func (g *GeoM) String() string {
- return fmt.Sprintf("[[%f, %f, %f], [%f, %f, %f]]", g.a_1+1, g.b, g.tx, g.c, g.d_1+1, g.ty)
- }
- // Reset resets the GeoM as identity.
- func (g *GeoM) Reset() {
- g.a_1 = 0
- g.b = 0
- g.c = 0
- g.d_1 = 0
- g.tx = 0
- g.ty = 0
- }
- // Apply pre-multiplies a vector (x, y, 1) by the matrix.
- // In other words, Apply calculates GeoM * (x, y, 1)^T.
- // The return value is x and y values of the result vector.
- func (g *GeoM) Apply(x, y float64) (float64, float64) {
- return (g.a_1+1)*x + g.b*y + g.tx, g.c*x + (g.d_1+1)*y + g.ty
- }
- func (g *GeoM) elements32() (a, b, c, d, tx, ty float32) {
- return float32(g.a_1) + 1, float32(g.b), float32(g.c), float32(g.d_1) + 1, float32(g.tx), float32(g.ty)
- }
- // Element returns a value of a matrix at (i, j).
- func (g *GeoM) Element(i, j int) float64 {
- switch {
- case i == 0 && j == 0:
- return g.a_1 + 1
- case i == 0 && j == 1:
- return g.b
- case i == 0 && j == 2:
- return g.tx
- case i == 1 && j == 0:
- return g.c
- case i == 1 && j == 1:
- return g.d_1 + 1
- case i == 1 && j == 2:
- return g.ty
- default:
- panic("ebiten: i or j is out of index")
- }
- }
- // Concat multiplies a geometry matrix with the other geometry matrix.
- // This is same as multiplying the matrix other and the matrix g in this order.
- func (g *GeoM) Concat(other GeoM) {
- a := (other.a_1+1)*(g.a_1+1) + other.b*g.c
- b := (other.a_1+1)*g.b + other.b*(g.d_1+1)
- tx := (other.a_1+1)*g.tx + other.b*g.ty + other.tx
- c := other.c*(g.a_1+1) + (other.d_1+1)*g.c
- d := other.c*g.b + (other.d_1+1)*(g.d_1+1)
- ty := other.c*g.tx + (other.d_1+1)*g.ty + other.ty
- g.a_1 = a - 1
- g.b = b
- g.c = c
- g.d_1 = d - 1
- g.tx = tx
- g.ty = ty
- }
- // Scale scales the matrix by (x, y).
- func (g *GeoM) Scale(x, y float64) {
- a := (g.a_1 + 1) * x
- b := g.b * x
- tx := g.tx * x
- c := g.c * y
- d := (g.d_1 + 1) * y
- ty := g.ty * y
- g.a_1 = a - 1
- g.b = b
- g.c = c
- g.d_1 = d - 1
- g.tx = tx
- g.ty = ty
- }
- // Translate translates the matrix by (tx, ty).
- func (g *GeoM) Translate(tx, ty float64) {
- g.tx += tx
- g.ty += ty
- }
- // Rotate rotates the matrix clockwise by theta.
- // The unit is radian.
- func (g *GeoM) Rotate(theta float64) {
- if theta == 0 {
- return
- }
- sin, cos := math.Sincos(theta)
- a := cos*(g.a_1+1) - sin*g.c
- b := cos*g.b - sin*(g.d_1+1)
- tx := cos*g.tx - sin*g.ty
- c := sin*(g.a_1+1) + cos*g.c
- d := sin*g.b + cos*(g.d_1+1)
- ty := sin*g.tx + cos*g.ty
- g.a_1 = a - 1
- g.b = b
- g.c = c
- g.d_1 = d - 1
- g.tx = tx
- g.ty = ty
- }
- // Skew skews the matrix by (skewX, skewY). The unit is radian.
- func (g *GeoM) Skew(skewX, skewY float64) {
- sx := math.Tan(skewX)
- sy := math.Tan(skewY)
- a := (g.a_1 + 1) + g.c*sx
- b := g.b + (g.d_1+1)*sx
- c := (g.a_1+1)*sy + g.c
- d := g.b*sy + (g.d_1 + 1)
- tx := g.tx + g.ty*sx
- ty := g.ty + g.tx*sy
- g.a_1 = a - 1
- g.b = b
- g.c = c
- g.d_1 = d - 1
- g.tx = tx
- g.ty = ty
- }
- func (g *GeoM) det2x2() float64 {
- return (g.a_1+1)*(g.d_1+1) - g.b*g.c
- }
- // IsInvertible returns a boolean value indicating
- // whether the matrix g is invertible or not.
- func (g *GeoM) IsInvertible() bool {
- return g.det2x2() != 0
- }
- // Invert inverts the matrix.
- // If g is not invertible, Invert panics.
- func (g *GeoM) Invert() {
- det := g.det2x2()
- if det == 0 {
- panic("ebiten: g is not invertible")
- }
- a := (g.d_1 + 1) / det
- b := -g.b / det
- c := -g.c / det
- d := (g.a_1 + 1) / det
- tx := (-(g.d_1+1)*g.tx + g.b*g.ty) / det
- ty := (g.c*g.tx + -(g.a_1+1)*g.ty) / det
- g.a_1 = a - 1
- g.b = b
- g.c = c
- g.d_1 = d - 1
- g.tx = tx
- g.ty = ty
- }
- // SetElement sets an element at (i, j).
- func (g *GeoM) SetElement(i, j int, element float64) {
- e := element
- switch {
- case i == 0 && j == 0:
- g.a_1 = e - 1
- case i == 0 && j == 1:
- g.b = e
- case i == 0 && j == 2:
- g.tx = e
- case i == 1 && j == 0:
- g.c = e
- case i == 1 && j == 1:
- g.d_1 = e - 1
- case i == 1 && j == 2:
- g.ty = e
- default:
- panic("ebiten: i or j is out of index")
- }
- }
|