// Copyright 2020 The Ebiten Authors // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package shader import ( "fmt" "go/ast" gconstant "go/constant" "go/token" "strings" "github.com/hajimehoshi/ebiten/v2/internal/shaderir" ) func (cs *compileState) forceToInt(node ast.Node, expr *shaderir.Expr) bool { if !canTruncateToInteger(expr.Const) { cs.addError(node.Pos(), fmt.Sprintf("constant %s truncated to integer", expr.Const.String())) return false } expr.Const = gconstant.ToInt(expr.Const) return true } func (cs *compileState) parseStmt(block *block, fname string, stmt ast.Stmt, inParams, outParams []variable, returnType shaderir.Type) ([]shaderir.Stmt, bool) { var stmts []shaderir.Stmt switch stmt := stmt.(type) { case *ast.AssignStmt: switch stmt.Tok { case token.DEFINE: if len(stmt.Lhs) != len(stmt.Rhs) && len(stmt.Rhs) != 1 { cs.addError(stmt.Pos(), "single-value context and multiple-value context cannot be mixed") return nil, false } ss, ok := cs.assign(block, fname, stmt.Pos(), stmt.Lhs, stmt.Rhs, inParams, true) if !ok { return nil, false } stmts = append(stmts, ss...) case token.ASSIGN: if len(stmt.Lhs) != len(stmt.Rhs) && len(stmt.Rhs) != 1 { cs.addError(stmt.Pos(), "single-value context and multiple-value context cannot be mixed") return nil, false } ss, ok := cs.assign(block, fname, stmt.Pos(), stmt.Lhs, stmt.Rhs, inParams, false) if !ok { return nil, false } stmts = append(stmts, ss...) case token.ADD_ASSIGN, token.SUB_ASSIGN, token.MUL_ASSIGN, token.QUO_ASSIGN, token.REM_ASSIGN, token.AND_ASSIGN, token.OR_ASSIGN, token.XOR_ASSIGN, token.AND_NOT_ASSIGN, token.SHL_ASSIGN, token.SHR_ASSIGN: rhs, rts, ss, ok := cs.parseExpr(block, fname, stmt.Rhs[0], true) if !ok { return nil, false } stmts = append(stmts, ss...) lhs, lts, ss, ok := cs.parseExpr(block, fname, stmt.Lhs[0], true) if !ok { return nil, false } stmts = append(stmts, ss...) if lhs[0].Type == shaderir.UniformVariable { cs.addError(stmt.Pos(), "a uniform variable cannot be assigned") return nil, false } var op shaderir.Op switch stmt.Tok { case token.ADD_ASSIGN: op = shaderir.Add case token.SUB_ASSIGN: op = shaderir.Sub case token.MUL_ASSIGN: if lts[0].IsMatrix() || rts[0].IsMatrix() { op = shaderir.MatrixMul } else { op = shaderir.ComponentWiseMul } case token.QUO_ASSIGN: op = shaderir.Div case token.REM_ASSIGN: op = shaderir.ModOp case token.AND_ASSIGN: op = shaderir.And case token.OR_ASSIGN: op = shaderir.Or case token.XOR_ASSIGN: op = shaderir.Xor case token.SHL_ASSIGN: op = shaderir.LeftShift case token.SHR_ASSIGN: op = shaderir.RightShift default: cs.addError(stmt.Pos(), fmt.Sprintf("unexpected token: %s", stmt.Tok)) return nil, false } if lts[0].Main == rts[0].Main { if op == shaderir.Div && rts[0].IsMatrix() { cs.addError(stmt.Pos(), fmt.Sprintf("invalid operation: operator / not defined on %s", rts[0].String())) return nil, false } if op == shaderir.And || op == shaderir.Or || op == shaderir.Xor || op == shaderir.LeftShift || op == shaderir.RightShift { if lts[0].Main != shaderir.Int && !lts[0].IsIntVector() { cs.addError(stmt.Pos(), fmt.Sprintf("invalid operation: operator %s not defined on %s", stmt.Tok, lts[0].String())) return nil, false } if rts[0].Main != shaderir.Int && !rts[0].IsIntVector() { cs.addError(stmt.Pos(), fmt.Sprintf("invalid operation: operator %s not defined on %s", stmt.Tok, rts[0].String())) return nil, false } } if lts[0].Main == shaderir.Int && rhs[0].Const != nil { if !cs.forceToInt(stmt, &rhs[0]) { return nil, false } } } else { switch lts[0].Main { case shaderir.Int, shaderir.IVec2, shaderir.IVec3, shaderir.IVec4: if rts[0].Main != shaderir.Int { if !rts[0].Equal(&shaderir.Type{}) { cs.addError(stmt.Pos(), fmt.Sprintf("invalid operation: mismatched types %s and %s", lts[0].String(), rts[0].String())) return nil, false } if !cs.forceToInt(stmt, &rhs[0]) { return nil, false } } case shaderir.Float: if op == shaderir.And || op == shaderir.Or || op == shaderir.Xor || op == shaderir.LeftShift || op == shaderir.RightShift { cs.addError(stmt.Pos(), fmt.Sprintf("invalid operation: operator %s not defined on %s", stmt.Tok, lts[0].String())) } else if rhs[0].Const != nil && (rts[0].Main == shaderir.None || rts[0].Main == shaderir.Float) && gconstant.ToFloat(rhs[0].Const).Kind() != gconstant.Unknown { rhs[0].Const = gconstant.ToFloat(rhs[0].Const) } else { cs.addError(stmt.Pos(), fmt.Sprintf("invalid operation: mismatched types %s and %s", lts[0].String(), rts[0].String())) return nil, false } case shaderir.Vec2, shaderir.Vec3, shaderir.Vec4, shaderir.Mat2, shaderir.Mat3, shaderir.Mat4: if op == shaderir.And || op == shaderir.Or || op == shaderir.Xor || op == shaderir.LeftShift || op == shaderir.RightShift { cs.addError(stmt.Pos(), fmt.Sprintf("invalid operation: operator %s not defined on %s", stmt.Tok, lts[0].String())) } else if (op == shaderir.MatrixMul || op == shaderir.Div) && (rts[0].Main == shaderir.Float || (rhs[0].Const != nil && (rts[0].Main == shaderir.None || rts[0].Main == shaderir.Float) && gconstant.ToFloat(rhs[0].Const).Kind() != gconstant.Unknown)) { if rhs[0].Const != nil { rhs[0].Const = gconstant.ToFloat(rhs[0].Const) } } else if op == shaderir.MatrixMul && ((lts[0].Main == shaderir.Vec2 && rts[0].Main == shaderir.Mat2) || (lts[0].Main == shaderir.Vec3 && rts[0].Main == shaderir.Mat3) || (lts[0].Main == shaderir.Vec4 && rts[0].Main == shaderir.Mat4)) { // OK } else if (op == shaderir.MatrixMul || op == shaderir.ComponentWiseMul || lts[0].IsFloatVector()) && (rts[0].Main == shaderir.Float || (rhs[0].Const != nil && (rts[0].Main == shaderir.None || rts[0].Main == shaderir.Float) && gconstant.ToFloat(rhs[0].Const).Kind() != gconstant.Unknown)) { if rhs[0].Const != nil { rhs[0].Const = gconstant.ToFloat(rhs[0].Const) } } else { cs.addError(stmt.Pos(), fmt.Sprintf("invalid operation: mismatched types %s and %s", lts[0].String(), rts[0].String())) return nil, false } default: cs.addError(stmt.Pos(), fmt.Sprintf("invalid operation: mismatched types %s and %s", lts[0].String(), rts[0].String())) return nil, false } } if op == shaderir.ModOp && lts[0].Main != shaderir.Int && lts[0].Main != shaderir.IVec2 && lts[0].Main != shaderir.IVec3 && lts[0].Main != shaderir.IVec4 { cs.addError(stmt.Pos(), fmt.Sprintf("invalid operation: operator %% not defined on %s", lts[0].String())) return nil, false } stmts = append(stmts, shaderir.Stmt{ Type: shaderir.Assign, Exprs: []shaderir.Expr{ lhs[0], { Type: shaderir.Binary, Op: op, Exprs: []shaderir.Expr{ lhs[0], rhs[0], }, }, }, }) default: cs.addError(stmt.Pos(), fmt.Sprintf("unexpected token: %s", stmt.Tok)) } case *ast.BlockStmt: b, ok := cs.parseBlock(block, fname, stmt.List, inParams, outParams, returnType, true) if !ok { return nil, false } stmts = append(stmts, shaderir.Stmt{ Type: shaderir.BlockStmt, Blocks: []*shaderir.Block{ b.ir, }, }) case *ast.DeclStmt: ss, ok := cs.parseDecl(block, fname, stmt.Decl) if !ok { return nil, false } stmts = append(stmts, ss...) case *ast.ForStmt: ss, ok := cs.parseFor(block, fname, stmt, inParams, outParams, returnType, true) if !ok { return nil, false } stmts = append(stmts, ss...) case *ast.IfStmt: if stmt.Init != nil { init := stmt.Init stmt.Init = nil b, ok := cs.parseBlock(block, fname, []ast.Stmt{init, stmt}, inParams, outParams, returnType, true) if !ok { return nil, false } stmts = append(stmts, shaderir.Stmt{ Type: shaderir.BlockStmt, Blocks: []*shaderir.Block{b.ir}, }) return stmts, true } exprs, ts, ss, ok := cs.parseExpr(block, fname, stmt.Cond, true) if !ok { return nil, false } if len(ts) != 1 { var tss []string for _, t := range ts { tss = append(tss, t.String()) } cs.addError(stmt.Pos(), fmt.Sprintf("if-condition must be bool but: %s", strings.Join(tss, ", "))) return nil, false } if !(ts[0].Main == shaderir.Bool || (ts[0].Main == shaderir.None && exprs[0].Const != nil && exprs[0].Const.Kind() == gconstant.Bool)) { cs.addError(stmt.Pos(), fmt.Sprintf("if-condition must be bool but: %s", ts[0].String())) return nil, false } stmts = append(stmts, ss...) var bs []*shaderir.Block b, ok := cs.parseBlock(block, fname, stmt.Body.List, inParams, outParams, returnType, true) if !ok { return nil, false } bs = append(bs, b.ir) if stmt.Else != nil { switch s := stmt.Else.(type) { case *ast.BlockStmt: b, ok := cs.parseBlock(block, fname, s.List, inParams, outParams, returnType, true) if !ok { return nil, false } bs = append(bs, b.ir) default: b, ok := cs.parseBlock(block, fname, []ast.Stmt{s}, inParams, outParams, returnType, true) if !ok { return nil, false } bs = append(bs, b.ir) } } stmts = append(stmts, shaderir.Stmt{ Type: shaderir.If, Exprs: exprs, Blocks: bs, }) case *ast.IncDecStmt: exprs, ts, ss, ok := cs.parseExpr(block, fname, stmt.X, true) if !ok { return nil, false } stmts = append(stmts, ss...) var op shaderir.Op switch stmt.Tok { case token.INC: op = shaderir.Add case token.DEC: op = shaderir.Sub } var c gconstant.Value switch { case ts[0].Main == shaderir.Int, ts[0].IsIntVector(): c = gconstant.MakeInt64(1) case ts[0].Main == shaderir.Float, ts[0].IsFloatVector(): c = gconstant.MakeFloat64(1) default: cs.addError(stmt.Pos(), fmt.Sprintf("invalid operation %s (non-numeric type %s)", stmt.Tok.String(), ts[0].String())) return nil, false } stmts = append(stmts, shaderir.Stmt{ Type: shaderir.Assign, Exprs: []shaderir.Expr{ exprs[0], { Type: shaderir.Binary, Op: op, Exprs: []shaderir.Expr{ exprs[0], { Type: shaderir.NumberExpr, Const: c, }, }, }, }, }) case *ast.ReturnStmt: if len(stmt.Results) != len(outParams) && len(stmt.Results) != 1 { if !(len(stmt.Results) == 0 && len(outParams) > 0 && outParams[0].name != "") { // TODO: Check variable shadowings. // https://go.dev/ref/spec#Return_statements cs.addError(stmt.Pos(), fmt.Sprintf("the number of returning variables must be %d but %d", len(outParams), len(stmt.Results))) return nil, false } } var exprs []shaderir.Expr var types []shaderir.Type for _, r := range stmt.Results { es, ts, ss, ok := cs.parseExpr(block, fname, r, true) if !ok { return nil, false } stmts = append(stmts, ss...) if len(es) > 1 && (len(stmt.Results) > 1 || len(outParams) == 1) { cs.addError(r.Pos(), "single-value context and multiple-value context cannot be mixed") return nil, false } if len(outParams) > 1 && len(stmt.Results) == 1 { if len(es) == 1 { cs.addError(stmt.Pos(), fmt.Sprintf("the number of returning variables must be %d but %d", len(outParams), len(stmt.Results))) return nil, false } if len(es) > 1 && len(es) != len(outParams) { cs.addError(stmt.Pos(), fmt.Sprintf("the number of returning variables must be %d but %d", len(outParams), len(es))) return nil, false } } exprs = append(exprs, es...) types = append(types, ts...) } for i, t := range types { expr := exprs[i] var outT shaderir.Type if len(outParams) == 0 { outT = returnType } else { outT = outParams[i].typ } if expr.Const != nil { switch outT.Main { case shaderir.Bool: if expr.Const.Kind() != gconstant.Bool { cs.addError(stmt.Pos(), fmt.Sprintf("cannot use type %s as type %s in return argument", t.String(), &outT)) return nil, false } t = shaderir.Type{Main: shaderir.Bool} case shaderir.Int: if gconstant.ToInt(expr.Const).Kind() == gconstant.Unknown { cs.addError(stmt.Pos(), fmt.Sprintf("cannot use type %s as type %s in return argument", t.String(), &outT)) return nil, false } expr.Const = gconstant.ToInt(expr.Const) t = shaderir.Type{Main: shaderir.Int} case shaderir.Float: if gconstant.ToFloat(expr.Const).Kind() == gconstant.Unknown { cs.addError(stmt.Pos(), fmt.Sprintf("cannot use type %s as type %s in return argument", t.String(), &outT)) return nil, false } expr.Const = gconstant.ToFloat(expr.Const) t = shaderir.Type{Main: shaderir.Float} } } if !t.Equal(&outT) { cs.addError(stmt.Pos(), fmt.Sprintf("cannot use type %s as type %s in return argument", t.String(), &outT)) return nil, false } if len(outParams) > 0 { stmts = append(stmts, shaderir.Stmt{ Type: shaderir.Assign, Exprs: []shaderir.Expr{ { Type: shaderir.LocalVariable, Index: len(inParams) + i, }, expr, }, }) } else { stmts = append(stmts, shaderir.Stmt{ Type: shaderir.Return, Exprs: []shaderir.Expr{expr}, }) // When a return type is specified, there should be only one expr here. break } } if len(outParams) > 0 { stmts = append(stmts, shaderir.Stmt{ Type: shaderir.Return, }) } case *ast.BranchStmt: switch stmt.Tok { case token.BREAK: stmts = append(stmts, shaderir.Stmt{ Type: shaderir.Break, }) case token.CONTINUE: stmts = append(stmts, shaderir.Stmt{ Type: shaderir.Continue, }) default: cs.addError(stmt.Pos(), fmt.Sprintf("invalid token: %s", stmt.Tok)) return nil, false } case *ast.ExprStmt: if _, ok := stmt.X.(*ast.CallExpr); !ok { cs.addError(stmt.Pos(), "the statement is evaluated but not used") return nil, false } exprs, _, ss, ok := cs.parseExpr(block, fname, stmt.X, true) if !ok { return nil, false } stmts = append(stmts, ss...) for _, expr := range exprs { // There can be a non-call expr like LocalVariable expressions. // These are necessary to be used as arguments for an outside function callers. if expr.Type != shaderir.Call { continue } if expr.Exprs[0].Type == shaderir.BuiltinFuncExpr { cs.addError(stmt.Pos(), "the statement is evaluated but not used") return nil, false } stmts = append(stmts, shaderir.Stmt{ Type: shaderir.ExprStmt, Exprs: []shaderir.Expr{expr}, }) } default: cs.addError(stmt.Pos(), fmt.Sprintf("unexpected statement: %#v", stmt)) return nil, false } return stmts, true } func (cs *compileState) assign(block *block, fname string, pos token.Pos, lhs, rhs []ast.Expr, inParams []variable, define bool) ([]shaderir.Stmt, bool) { var stmts []shaderir.Stmt var rhsExprs []shaderir.Expr var rhsTypes []shaderir.Type allblank := true if len(lhs) == len(rhs) { for i, e := range lhs { // Prase RHS first for the order of the statements. r, rts, ss, ok := cs.parseExpr(block, fname, rhs[i], true) if !ok { return nil, false } stmts = append(stmts, ss...) if define { if _, ok := e.(*ast.Ident); !ok { cs.addError(pos, "non-name on the left side of :=") return nil, false } name := e.(*ast.Ident).Name if name != "_" { for _, v := range block.vars { if v.name == name { cs.addError(pos, fmt.Sprintf("duplicated local variable name: %s", name)) return nil, false } } } ts, ok := cs.functionReturnTypes(block, rhs[i]) if !ok { ts = rts } if len(ts) > 1 { cs.addError(pos, "single-value context and multiple-value context cannot be mixed") return nil, false } t := ts[0] if t.Main == shaderir.None { t = toDefaultType(r[0].Const) } block.addNamedLocalVariable(name, t, e.Pos()) } if len(r) > 1 { cs.addError(pos, "single-value context and multiple-value context cannot be mixed") return nil, false } l, lts, ss, ok := cs.parseExpr(block, fname, lhs[i], false) if !ok { return nil, false } stmts = append(stmts, ss...) if len(l) != len(r) { if len(r) == 0 { cs.addError(pos, "right-hand side (no value) used as value") } else { cs.addError(pos, fmt.Sprintf("assignment mismatch: %d variables but the right-hand side has %d values", len(l), len(r))) } return nil, false } if l[0].Type == shaderir.Blank { continue } var isAssignmentForbidden func(e *shaderir.Expr) bool isAssignmentForbidden = func(e *shaderir.Expr) bool { switch e.Type { case shaderir.UniformVariable: return true case shaderir.LocalVariable: if fname == cs.vertexEntry || fname == cs.fragmentEntry { return e.Index < len(inParams) } case shaderir.FieldSelector: return isAssignmentForbidden(&e.Exprs[0]) case shaderir.Index: return isAssignmentForbidden(&e.Exprs[0]) } return false } if isAssignmentForbidden(&l[0]) { cs.addError(pos, "a uniform variable cannot be assigned") return nil, false } allblank = false for i := range lts { if !canAssign(<s[i], &rts[i], r[i].Const) { cs.addError(pos, fmt.Sprintf("cannot use type %s as type %s in variable declaration", rts[i].String(), lts[i].String())) return nil, false } switch lts[0].Main { case shaderir.Int: r[i].Const = gconstant.ToInt(r[i].Const) case shaderir.Float: r[i].Const = gconstant.ToFloat(r[i].Const) } } if len(lhs) == 1 { stmts = append(stmts, shaderir.Stmt{ Type: shaderir.Assign, Exprs: []shaderir.Expr{l[0], r[0]}, }) } else { // For variable swapping, use temporary variables. t := rts[0] if t.Main == shaderir.None { t = toDefaultType(r[0].Const) } block.vars = append(block.vars, variable{ typ: t, }) idx := block.totalLocalVariableCount() - 1 stmts = append(stmts, shaderir.Stmt{ Type: shaderir.Assign, Exprs: []shaderir.Expr{ { Type: shaderir.LocalVariable, Index: idx, }, r[0], }, }, shaderir.Stmt{ Type: shaderir.Assign, Exprs: []shaderir.Expr{ l[0], { Type: shaderir.LocalVariable, Index: idx, }, }, }) } } } else { var ss []shaderir.Stmt var ok bool rhsExprs, rhsTypes, ss, ok = cs.parseExpr(block, fname, rhs[0], true) if !ok { return nil, false } if len(lhs) != len(rhsExprs) { cs.addError(pos, fmt.Sprintf("assignment mismatch: %d variables but %d", len(lhs), len(rhsExprs))) return nil, false } stmts = append(stmts, ss...) for i, e := range lhs { if define { if _, ok := e.(*ast.Ident); !ok { cs.addError(pos, "non-name on the left side of :=") return nil, false } name := e.(*ast.Ident).Name if name != "_" { for _, v := range block.vars { if v.name == name { cs.addError(pos, fmt.Sprintf("duplicated local variable name: %s", name)) return nil, false } } } t := rhsTypes[i] if t.Main == shaderir.None { // TODO: This is to determine a type when the rhs values are constants (not literals), // but there are no actual cases when len(lhs) != len(rhs). Is this correct? t = toDefaultType(rhsExprs[i].Const) } block.addNamedLocalVariable(name, t, e.Pos()) } l, lts, ss, ok := cs.parseExpr(block, fname, lhs[i], false) if !ok { return nil, false } stmts = append(stmts, ss...) if len(l) != 1 { cs.addError(pos, fmt.Sprintf("unexpected count of types in lhs: %d", len(l))) return nil, false } if len(lts) != 1 { cs.addError(pos, fmt.Sprintf("unexpected count of expressions in lhs: %d", len(l))) return nil, false } if l[0].Type == shaderir.Blank { continue } allblank = false if !canAssign(<s[0], &rhsTypes[i], rhsExprs[i].Const) { cs.addError(pos, fmt.Sprintf("cannot use type %s as type %s in variable declaration", rhsTypes[i].String(), lts[0].String())) return nil, false } stmts = append(stmts, shaderir.Stmt{ Type: shaderir.Assign, Exprs: []shaderir.Expr{l[0], rhsExprs[i]}, }) } } if define && allblank { cs.addError(pos, "no new variables on left side of :=") return nil, false } return stmts, true } func toDefaultType(v gconstant.Value) shaderir.Type { switch v.Kind() { case gconstant.Bool: return shaderir.Type{Main: shaderir.Bool} case gconstant.Int: return shaderir.Type{Main: shaderir.Int} case gconstant.Float: return shaderir.Type{Main: shaderir.Float} } // TODO: Should this be an error? return shaderir.Type{} } func canAssign(lt *shaderir.Type, rt *shaderir.Type, rc gconstant.Value) bool { if lt.Equal(rt) { return true } if rc == nil { return false } if !rt.Equal(&shaderir.Type{}) { return false } switch lt.Main { case shaderir.Bool: return rc.Kind() == gconstant.Bool case shaderir.Int: return gconstant.ToInt(rc).Kind() != gconstant.Unknown case shaderir.Float: return gconstant.ToFloat(rc).Kind() != gconstant.Unknown } return false } func (cs *compileState) parseFor(block *block, fname string, stmt *ast.ForStmt, inParams, outParams []variable, returnType shaderir.Type, checkLocalVariableUsage bool) ([]shaderir.Stmt, bool) { msg := "for-statement must follow this format: for (varname) := (constant); (varname) (op) (constant); (varname) (op) (constant) { ..." if stmt.Init == nil { cs.addError(stmt.Pos(), msg) return nil, false } if stmt.Cond == nil { cs.addError(stmt.Pos(), msg) return nil, false } if stmt.Post == nil { cs.addError(stmt.Pos(), msg) return nil, false } // Create a new pseudo block for the initial statement, so that the counter variable belongs to the // new pseudo block for each for-loop. Without this, the same-named counter variables in different // for-loops confuses the parser. pseudoBlock, ok := cs.parseBlock(block, fname, []ast.Stmt{stmt.Init}, inParams, outParams, returnType, false) if !ok { return nil, false } ss := pseudoBlock.ir.Stmts if len(ss) != 1 { cs.addError(stmt.Pos(), msg) return nil, false } if ss[0].Type != shaderir.Assign { cs.addError(stmt.Pos(), msg) return nil, false } if ss[0].Exprs[0].Type != shaderir.LocalVariable { cs.addError(stmt.Pos(), msg) return nil, false } varidx := ss[0].Exprs[0].Index if ss[0].Exprs[1].Const == nil { cs.addError(stmt.Pos(), msg) return nil, false } if len(pseudoBlock.vars) != 1 { cs.addError(stmt.Pos(), msg) return nil, false } vartype := pseudoBlock.vars[0].typ init := ss[0].Exprs[1].Const exprs, ts, ss, ok := cs.parseExpr(pseudoBlock, fname, stmt.Cond, true) if !ok { return nil, false } if len(exprs) != 1 { cs.addError(stmt.Pos(), msg) return nil, false } if len(ts) != 1 || ts[0].Main != shaderir.Bool { cs.addError(stmt.Pos(), "for-statement's condition must be bool") return nil, false } if len(ss) != 0 { cs.addError(stmt.Pos(), msg) return nil, false } if exprs[0].Type != shaderir.Binary { cs.addError(stmt.Pos(), msg) return nil, false } op := exprs[0].Op if op != shaderir.LessThanOp && op != shaderir.LessThanEqualOp && op != shaderir.GreaterThanOp && op != shaderir.GreaterThanEqualOp && op != shaderir.EqualOp && op != shaderir.NotEqualOp { cs.addError(stmt.Pos(), "for-statement's condition must have one of these operators: <, <=, >, >=, ==, !=") return nil, false } if exprs[0].Exprs[0].Type != shaderir.LocalVariable { cs.addError(stmt.Pos(), msg) return nil, false } if exprs[0].Exprs[0].Index != varidx { cs.addError(stmt.Pos(), msg) return nil, false } if exprs[0].Exprs[1].Const == nil { cs.addError(stmt.Pos(), msg) return nil, false } end := exprs[0].Exprs[1].Const postSs, ok := cs.parseStmt(pseudoBlock, fname, stmt.Post, inParams, outParams, returnType) if !ok { return nil, false } if len(postSs) != 1 { cs.addError(stmt.Pos(), msg) return nil, false } if postSs[0].Type != shaderir.Assign { cs.addError(stmt.Pos(), msg) return nil, false } if postSs[0].Exprs[0].Type != shaderir.LocalVariable { cs.addError(stmt.Pos(), msg) return nil, false } if postSs[0].Exprs[0].Index != varidx { cs.addError(stmt.Pos(), msg) return nil, false } if postSs[0].Exprs[1].Type != shaderir.Binary { cs.addError(stmt.Pos(), msg) return nil, false } if postSs[0].Exprs[1].Exprs[0].Type != shaderir.LocalVariable { cs.addError(stmt.Pos(), msg) return nil, false } if postSs[0].Exprs[1].Exprs[0].Index != varidx { cs.addError(stmt.Pos(), msg) return nil, false } if postSs[0].Exprs[1].Exprs[1].Const == nil { cs.addError(stmt.Pos(), msg) return nil, false } delta := postSs[0].Exprs[1].Exprs[1].Const switch postSs[0].Exprs[1].Op { case shaderir.Add: case shaderir.Sub: delta = gconstant.UnaryOp(token.SUB, delta, 0) default: cs.addError(stmt.Pos(), "for-statement's post statement must have one of these operators: +=, -=, ++, --") return nil, false } b, ok := cs.parseBlock(pseudoBlock, fname, []ast.Stmt{stmt.Body}, inParams, outParams, returnType, true) if !ok { return nil, false } bodyir := b.ir for len(bodyir.Stmts) == 1 && bodyir.Stmts[0].Type == shaderir.BlockStmt { bodyir = bodyir.Stmts[0].Blocks[0] } // As the pseudo block is not actually used, copy the variable part to the actual block. // This must be done after parsing the for-loop is done, or the duplicated variables confuses the // parsing. v := pseudoBlock.vars[0] v.forLoopCounter = true block.vars = append(block.vars, v) return []shaderir.Stmt{ { Type: shaderir.For, Blocks: []*shaderir.Block{bodyir}, ForVarType: vartype, ForVarIndex: varidx, ForInit: init, ForEnd: end, ForOp: op, ForDelta: delta, }, }, true }