package xgo import ( "strconv" "sync" "unicode/utf8" ) // Strings for use with fmtbuf.WriteString. This is less overhead than using // fmtbuf.Write with byte arrays. const ( commaSpaceString = ", " nilParenString = "(nil)" percentBangString = "%!" missingString = "(MISSING)" badIndexString = "(BADINDEX)" extraString = "%!(EXTRA " badWidthString = "%!(BADWIDTH)" badPrecString = "%!(BADPREC)" noVerbString = "%!(NOVERB)" ) const ( ldigits = "0123456789abcdefx" udigits = "0123456789ABCDEFX" ) const ( signed = true unsigned = false ) // flags placed in a separate struct for easy clearing. type fmtFlags struct { widPresent bool precPresent bool minus bool plus bool sharp bool space bool zero bool // For the formats %+v %#v, we set the plusV/sharpV flags // and clear the plus/sharp flags since %+v and %#v are in effect // different, flagless formats set at the top level. plusV bool sharpV bool // error-related flags. inDetail bool needNewline bool needColon bool } // A formatter is the raw formatter used by Printf etc. // It prints into a fmtbuf that must be set up separately. type formatter struct { buf *fmtbuf fmtFlags wid int // width prec int // precision // intbuf is large enough to store %b of an int64 with a sign and // avoids padding at the end of the struct on 32 bit architectures. intbuf [68]byte } func (f *formatter) clearFlags() { f.fmtFlags = fmtFlags{} } func (f *formatter) init(buf *fmtbuf) { f.buf = buf f.clearFlags() } // writePadding generates n bytes of padding. func (f *formatter) writePadding(n int) { if n <= 0 { // No padding bytes needed. return } buf := *f.buf oldLen := len(buf) newLen := oldLen + n if newLen > MaxStringLen { panic(ErrStringLimit) } // Make enough room for padding. if newLen > cap(buf) { buf = make(fmtbuf, cap(buf)*2+n) copy(buf, *f.buf) } // Decide which byte the padding should be filled with. padByte := byte(' ') if f.zero { padByte = byte('0') } // Fill padding with padByte. padding := buf[oldLen:newLen] for i := range padding { padding[i] = padByte } *f.buf = buf[:newLen] } // pad appends b to f.buf, padded on left (!f.minus) or right (f.minus). func (f *formatter) pad(b []byte) { if !f.widPresent || f.wid == 0 { f.buf.Write(b) return } width := f.wid - utf8.RuneCount(b) if !f.minus { // left padding f.writePadding(width) f.buf.Write(b) } else { // right padding f.buf.Write(b) f.writePadding(width) } } // padString appends s to f.buf, padded on left (!f.minus) or right (f.minus). func (f *formatter) padString(s string) { if !f.widPresent || f.wid == 0 { f.buf.WriteString(s) return } width := f.wid - utf8.RuneCountInString(s) if !f.minus { // left padding f.writePadding(width) f.buf.WriteString(s) } else { // right padding f.buf.WriteString(s) f.writePadding(width) } } // fmtBoolean formats a boolean. func (f *formatter) fmtBoolean(v bool) { if v { f.padString("true") } else { f.padString("false") } } // fmtUnicode formats a uint64 as "U+0078" or with f.sharp set as "U+0078 'x'". func (f *formatter) fmtUnicode(u uint64) { buf := f.intbuf[0:] // With default precision set the maximum needed buf length is 18 // for formatting -1 with %#U ("U+FFFFFFFFFFFFFFFF") which fits // into the already allocated intbuf with a capacity of 68 bytes. prec := 4 if f.precPresent && f.prec > 4 { prec = f.prec // Compute space needed for "U+" , number, " '", character, "'". width := 2 + prec + 2 + utf8.UTFMax + 1 if width > len(buf) { buf = make([]byte, width) } } // Format into buf, ending at buf[i]. Formatting numbers is easier // right-to-left. i := len(buf) // For %#U we want to add a space and a quoted character at the end of // the fmtbuf. if f.sharp && u <= utf8.MaxRune && strconv.IsPrint(rune(u)) { i-- buf[i] = '\'' i -= utf8.RuneLen(rune(u)) utf8.EncodeRune(buf[i:], rune(u)) i-- buf[i] = '\'' i-- buf[i] = ' ' } // Format the Unicode code point u as a hexadecimal number. for u >= 16 { i-- buf[i] = udigits[u&0xF] prec-- u >>= 4 } i-- buf[i] = udigits[u] prec-- // Add zeros in front of the number until requested precision is reached. for prec > 0 { i-- buf[i] = '0' prec-- } // Add a leading "U+". i-- buf[i] = '+' i-- buf[i] = 'U' oldZero := f.zero f.zero = false f.pad(buf[i:]) f.zero = oldZero } // fmtInteger formats signed and unsigned integers. func (f *formatter) fmtInteger( u uint64, base int, isSigned bool, verb rune, digits string, ) { negative := isSigned && int64(u) < 0 if negative { u = -u } buf := f.intbuf[0:] // The already allocated f.intbuf with a capacity of 68 bytes // is large enough for integer formatting when no precision or width is set. if f.widPresent || f.precPresent { // Account 3 extra bytes for possible addition of a sign and "0x". width := 3 + f.wid + f.prec // wid and prec are always positive. if width > len(buf) { // We're going to need a bigger boat. buf = make([]byte, width) } } // Two ways to ask for extra leading zero digits: %.3d or %03d. // If both are specified the f.zero flag is ignored and // padding with spaces is used instead. prec := 0 if f.precPresent { prec = f.prec // Precision of 0 and value of 0 means "print nothing" but padding. if prec == 0 && u == 0 { oldZero := f.zero f.zero = false f.writePadding(f.wid) f.zero = oldZero return } } else if f.zero && f.widPresent { prec = f.wid if negative || f.plus || f.space { prec-- // leave room for sign } } // Because printing is easier right-to-left: format u into buf, ending at // buf[i]. We could make things marginally faster by splitting the 32-bit // case out into a separate block but it's not worth the duplication, so // u has 64 bits. i := len(buf) // Use constants for the division and modulo for more efficient code. // Switch cases ordered by popularity. switch base { case 10: for u >= 10 { i-- next := u / 10 buf[i] = byte('0' + u - next*10) u = next } case 16: for u >= 16 { i-- buf[i] = digits[u&0xF] u >>= 4 } case 8: for u >= 8 { i-- buf[i] = byte('0' + u&7) u >>= 3 } case 2: for u >= 2 { i-- buf[i] = byte('0' + u&1) u >>= 1 } default: panic("fmt: unknown base; can't happen") } i-- buf[i] = digits[u] for i > 0 && prec > len(buf)-i { i-- buf[i] = '0' } // Various prefixes: 0x, -, etc. if f.sharp { switch base { case 2: // Add a leading 0b. i-- buf[i] = 'b' i-- buf[i] = '0' case 8: if buf[i] != '0' { i-- buf[i] = '0' } case 16: // Add a leading 0x or 0X. i-- buf[i] = digits[16] i-- buf[i] = '0' } } if verb == 'O' { i-- buf[i] = 'o' i-- buf[i] = '0' } if negative { i-- buf[i] = '-' } else if f.plus { i-- buf[i] = '+' } else if f.space { i-- buf[i] = ' ' } // Left padding with zeros has already been handled like precision earlier // or the f.zero flag is ignored due to an explicitly set precision. oldZero := f.zero f.zero = false f.pad(buf[i:]) f.zero = oldZero } // truncate truncates the string s to the specified precision, if present. func (f *formatter) truncateString(s string) string { if f.precPresent { n := f.prec for i := range s { n-- if n < 0 { return s[:i] } } } return s } // truncate truncates the byte slice b as a string of the specified precision, // if present. func (f *formatter) truncate(b []byte) []byte { if f.precPresent { n := f.prec for i := 0; i < len(b); { n-- if n < 0 { return b[:i] } wid := 1 if b[i] >= utf8.RuneSelf { _, wid = utf8.DecodeRune(b[i:]) } i += wid } } return b } // fmtS formats a string. func (f *formatter) fmtS(s string) { s = f.truncateString(s) f.padString(s) } // fmtBs formats the byte slice b as if it was formatted as string with fmtS. func (f *formatter) fmtBs(b []byte) { b = f.truncate(b) f.pad(b) } // fmtSbx formats a string or byte slice as a hexadecimal encoding of its bytes. func (f *formatter) fmtSbx(s string, b []byte, digits string) { length := len(b) if b == nil { // No byte slice present. Assume string s should be encoded. length = len(s) } // Set length to not process more bytes than the precision demands. if f.precPresent && f.prec < length { length = f.prec } // Compute width of the encoding taking into account the f.sharp and // f.space flag. width := 2 * length if width > 0 { if f.space { // Each element encoded by two hexadecimals will get a leading // 0x or 0X. if f.sharp { width *= 2 } // Elements will be separated by a space. width += length - 1 } else if f.sharp { // Only a leading 0x or 0X will be added for the whole string. width += 2 } } else { // The byte slice or string that should be encoded is empty. if f.widPresent { f.writePadding(f.wid) } return } // Handle padding to the left. if f.widPresent && f.wid > width && !f.minus { f.writePadding(f.wid - width) } // Write the encoding directly into the output fmtbuf. buf := *f.buf if f.sharp { // Add leading 0x or 0X. buf = append(buf, '0', digits[16]) } var c byte for i := 0; i < length; i++ { if f.space && i > 0 { // Separate elements with a space. buf = append(buf, ' ') if f.sharp { // Add leading 0x or 0X for each element. buf = append(buf, '0', digits[16]) } } if b != nil { c = b[i] // Take a byte from the input byte slice. } else { c = s[i] // Take a byte from the input string. } // Encode each byte as two hexadecimal digits. buf = append(buf, digits[c>>4], digits[c&0xF]) } *f.buf = buf // Handle padding to the right. if f.widPresent && f.wid > width && f.minus { f.writePadding(f.wid - width) } } // fmtSx formats a string as a hexadecimal encoding of its bytes. func (f *formatter) fmtSx(s, digits string) { f.fmtSbx(s, nil, digits) } // fmtBx formats a byte slice as a hexadecimal encoding of its bytes. func (f *formatter) fmtBx(b []byte, digits string) { f.fmtSbx("", b, digits) } // fmtQ formats a string as a double-quoted, escaped Go string constant. // If f.sharp is set a raw (backquoted) string may be returned instead // if the string does not contain any control characters other than tab. func (f *formatter) fmtQ(s string) { s = f.truncateString(s) if f.sharp && strconv.CanBackquote(s) { f.padString("`" + s + "`") return } buf := f.intbuf[:0] if f.plus { f.pad(strconv.AppendQuoteToASCII(buf, s)) } else { f.pad(strconv.AppendQuote(buf, s)) } } // fmtC formats an integer as a Unicode character. // If the character is not valid Unicode, it will print '\ufffd'. func (f *formatter) fmtC(c uint64) { r := rune(c) if c > utf8.MaxRune { r = utf8.RuneError } buf := f.intbuf[:0] w := utf8.EncodeRune(buf[:utf8.UTFMax], r) f.pad(buf[:w]) } // fmtQc formats an integer as a single-quoted, escaped Go character constant. // If the character is not valid Unicode, it will print '\ufffd'. func (f *formatter) fmtQc(c uint64) { r := rune(c) if c > utf8.MaxRune { r = utf8.RuneError } buf := f.intbuf[:0] if f.plus { f.pad(strconv.AppendQuoteRuneToASCII(buf, r)) } else { f.pad(strconv.AppendQuoteRune(buf, r)) } } // fmtFloat formats a float64. It assumes that verb is a valid format specifier // for strconv.AppendFloat and therefore fits into a byte. func (f *formatter) fmtFloat(v float64, size int, verb rune, prec int) { // Explicit precision in format specifier overrules default precision. if f.precPresent { prec = f.prec } // Format number, reserving space for leading + sign if needed. num := strconv.AppendFloat(f.intbuf[:1], v, byte(verb), prec, size) if num[1] == '-' || num[1] == '+' { num = num[1:] } else { num[0] = '+' } // f.space means to add a leading space instead of a "+" sign unless // the sign is explicitly asked for by f.plus. if f.space && num[0] == '+' && !f.plus { num[0] = ' ' } // Special handling for infinities and NaN, // which don't look like a number so shouldn't be padded with zeros. if num[1] == 'I' || num[1] == 'N' { oldZero := f.zero f.zero = false // Remove sign before NaN if not asked for. if num[1] == 'N' && !f.space && !f.plus { num = num[1:] } f.pad(num) f.zero = oldZero return } // The sharp flag forces printing a decimal point for non-binary formats // and retains trailing zeros, which we may need to restore. if f.sharp && verb != 'b' { digits := 0 switch verb { case 'v', 'g', 'G', 'x': digits = prec // If no precision is set explicitly use a precision of 6. if digits == -1 { digits = 6 } } // Buffer pre-allocated with enough room for // exponent notations of the form "e+123" or "p-1023". var tailBuf [6]byte tail := tailBuf[:0] hasDecimalPoint := false // Starting from i = 1 to skip sign at num[0]. for i := 1; i < len(num); i++ { switch num[i] { case '.': hasDecimalPoint = true case 'p', 'P': tail = append(tail, num[i:]...) num = num[:i] case 'e', 'E': if verb != 'x' && verb != 'X' { tail = append(tail, num[i:]...) num = num[:i] break } fallthrough default: digits-- } } if !hasDecimalPoint { num = append(num, '.') } for digits > 0 { num = append(num, '0') digits-- } num = append(num, tail...) } // We want a sign if asked for and if the sign is not positive. if f.plus || num[0] != '+' { // If we're zero padding to the left we want the sign before the // leading zeros. Achieve this by writing the sign out and then padding // the unsigned number. if f.zero && f.widPresent && f.wid > len(num) { f.buf.WriteSingleByte(num[0]) f.writePadding(f.wid - len(num)) f.buf.Write(num[1:]) return } f.pad(num) return } // No sign to show and the number is positive; just print the unsigned // number. f.pad(num[1:]) } // Use simple []byte instead of bytes.Buffer to avoid large dependency. type fmtbuf []byte func (b *fmtbuf) Write(p []byte) { if len(*b)+len(p) > MaxStringLen { panic(ErrStringLimit) } *b = append(*b, p...) } func (b *fmtbuf) WriteString(s string) { if len(*b)+len(s) > MaxStringLen { panic(ErrStringLimit) } *b = append(*b, s...) } func (b *fmtbuf) WriteSingleByte(c byte) { if len(*b) >= MaxStringLen { panic(ErrStringLimit) } *b = append(*b, c) } func (b *fmtbuf) WriteRune(r rune) { if len(*b)+utf8.RuneLen(r) > MaxStringLen { panic(ErrStringLimit) } if r < utf8.RuneSelf { *b = append(*b, byte(r)) return } b2 := *b n := len(b2) for n+utf8.UTFMax > cap(b2) { b2 = append(b2, 0) } w := utf8.EncodeRune(b2[n:n+utf8.UTFMax], r) *b = b2[:n+w] } // pp is used to store a printer's state and is reused with sync.Pool to avoid // allocations. type pp struct { buf fmtbuf // arg holds the current item. arg Object // fmt is used to format basic items such as integers or strings. fmt formatter // reordered records whether the format string used argument reordering. reordered bool // goodArgNum records whether the most recent reordering directive was // valid. goodArgNum bool // erroring is set when printing an error string to guard against calling // handleMethods. erroring bool } var ppFree = sync.Pool{ New: func() interface{} { return new(pp) }, } // newPrinter allocates a new pp struct or grabs a cached one. func newPrinter() *pp { p := ppFree.Get().(*pp) p.erroring = false p.fmt.init(&p.buf) return p } // free saves used pp structs in ppFree; avoids an allocation per invocation. func (p *pp) free() { // Proper usage of a sync.Pool requires each entry to have approximately // the same memory cost. To obtain this property when the stored type // contains a variably-sized fmtbuf, we add a hard limit on the maximum // fmtbuf to place back in the pool. // // See https://golang.org/issue/23199 if cap(p.buf) > 64<<10 { return } p.buf = p.buf[:0] p.arg = nil ppFree.Put(p) } func (p *pp) Width() (wid int, ok bool) { return p.fmt.wid, p.fmt.widPresent } func (p *pp) Precision() (prec int, ok bool) { return p.fmt.prec, p.fmt.precPresent } func (p *pp) Flag(b int) bool { switch b { case '-': return p.fmt.minus case '+': return p.fmt.plus || p.fmt.plusV case '#': return p.fmt.sharp || p.fmt.sharpV case ' ': return p.fmt.space case '0': return p.fmt.zero } return false } // Implement Write so we can call Fprintf on a pp (through State), for // recursive use in custom verbs. func (p *pp) Write(b []byte) (ret int, err error) { p.buf.Write(b) return len(b), nil } // Implement WriteString so that we can call io.WriteString // on a pp (through state), for efficiency. func (p *pp) WriteString(s string) (ret int, err error) { p.buf.WriteString(s) return len(s), nil } func (p *pp) WriteRune(r rune) (ret int, err error) { p.buf.WriteRune(r) return utf8.RuneLen(r), nil } func (p *pp) WriteSingleByte(c byte) (ret int, err error) { p.buf.WriteSingleByte(c) return 1, nil } // tooLarge reports whether the magnitude of the integer is // too large to be used as a formatting width or precision. func tooLarge(x int) bool { const max int = 1e6 return x > max || x < -max } // parsenum converts ASCII to integer. num is 0 (and isnum is false) if no // number present. func parsenum(s string, start, end int) (num int, isnum bool, newi int) { if start >= end { return 0, false, end } for newi = start; newi < end && '0' <= s[newi] && s[newi] <= '9'; newi++ { if tooLarge(num) { return 0, false, end // Overflow; crazy long number most likely. } num = num*10 + int(s[newi]-'0') isnum = true } return } func (p *pp) badVerb(verb rune) { p.erroring = true _, _ = p.WriteString(percentBangString) _, _ = p.WriteRune(verb) _, _ = p.WriteSingleByte('(') switch { case p.arg != nil: _, _ = p.WriteString(p.arg.String()) _, _ = p.WriteSingleByte('=') p.printArg(p.arg, 'v') default: _, _ = p.WriteString(UndefinedValue.String()) } _, _ = p.WriteSingleByte(')') p.erroring = false } func (p *pp) fmtBool(v bool, verb rune) { switch verb { case 't', 'v': p.fmt.fmtBoolean(v) default: p.badVerb(verb) } } // fmt0x64 formats a uint64 in hexadecimal and prefixes it with 0x or // not, as requested, by temporarily setting the sharp flag. func (p *pp) fmt0x64(v uint64, leading0x bool) { sharp := p.fmt.sharp p.fmt.sharp = leading0x p.fmt.fmtInteger(v, 16, unsigned, 'v', ldigits) p.fmt.sharp = sharp } // fmtInteger formats a signed or unsigned integer. func (p *pp) fmtInteger(v uint64, isSigned bool, verb rune) { switch verb { case 'v': if p.fmt.sharpV && !isSigned { p.fmt0x64(v, true) } else { p.fmt.fmtInteger(v, 10, isSigned, verb, ldigits) } case 'd': p.fmt.fmtInteger(v, 10, isSigned, verb, ldigits) case 'b': p.fmt.fmtInteger(v, 2, isSigned, verb, ldigits) case 'o', 'O': p.fmt.fmtInteger(v, 8, isSigned, verb, ldigits) case 'x': p.fmt.fmtInteger(v, 16, isSigned, verb, ldigits) case 'X': p.fmt.fmtInteger(v, 16, isSigned, verb, udigits) case 'c': p.fmt.fmtC(v) case 'q': if v <= utf8.MaxRune { p.fmt.fmtQc(v) } else { p.badVerb(verb) } case 'U': p.fmt.fmtUnicode(v) default: p.badVerb(verb) } } // fmtFloat formats a float. The default precision for each verb // is specified as last argument in the call to fmt_float. func (p *pp) fmtFloat(v float64, size int, verb rune) { switch verb { case 'v': p.fmt.fmtFloat(v, size, 'g', -1) case 'b', 'g', 'G', 'x', 'X': p.fmt.fmtFloat(v, size, verb, -1) case 'f', 'e', 'E': p.fmt.fmtFloat(v, size, verb, 6) case 'F': p.fmt.fmtFloat(v, size, 'f', 6) default: p.badVerb(verb) } } func (p *pp) fmtString(v string, verb rune) { switch verb { case 'v': if p.fmt.sharpV { p.fmt.fmtQ(v) } else { p.fmt.fmtS(v) } case 's': p.fmt.fmtS(v) case 'x': p.fmt.fmtSx(v, ldigits) case 'X': p.fmt.fmtSx(v, udigits) case 'q': p.fmt.fmtQ(v) default: p.badVerb(verb) } } func (p *pp) fmtBytes(v []byte, verb rune, typeString string) { switch verb { case 'v', 'd': if p.fmt.sharpV { _, _ = p.WriteString(typeString) if v == nil { _, _ = p.WriteString(nilParenString) return } _, _ = p.WriteSingleByte('{') for i, c := range v { if i > 0 { _, _ = p.WriteString(commaSpaceString) } p.fmt0x64(uint64(c), true) } _, _ = p.WriteSingleByte('}') } else { _, _ = p.WriteSingleByte('[') for i, c := range v { if i > 0 { _, _ = p.WriteSingleByte(' ') } p.fmt.fmtInteger(uint64(c), 10, unsigned, verb, ldigits) } _, _ = p.WriteSingleByte(']') } case 's': p.fmt.fmtBs(v) case 'x': p.fmt.fmtBx(v, ldigits) case 'X': p.fmt.fmtBx(v, udigits) case 'q': p.fmt.fmtQ(string(v)) } } func (p *pp) printArg(arg Object, verb rune) { p.arg = arg if arg == nil { arg = UndefinedValue } // Special processing considerations. // %T (the value's type) and %p (its address) are special; we always do // them first. switch verb { case 'T': p.fmt.fmtS(arg.TypeName()) return case 'v': p.fmt.fmtS(arg.String()) return } // Some types can be done without reflection. switch f := arg.(type) { case *Bool: p.fmtBool(!f.IsFalsy(), verb) case *Float: p.fmtFloat(f.Value, 64, verb) case *Int: p.fmtInteger(uint64(f.Value), signed, verb) case *String: p.fmtString(f.Value, verb) case *Bytes: p.fmtBytes(f.Value, verb, "[]byte") default: p.fmtString(f.String(), verb) } } // intFromArg gets the argNumth element of a. On return, isInt reports whether // the argument has integer type. func intFromArg(a []Object, argNum int) (num int, isInt bool, newArgNum int) { newArgNum = argNum if argNum < len(a) { var num64 int64 num64, isInt = ToInt64(a[argNum]) num = int(num64) newArgNum = argNum + 1 if tooLarge(num) { num = 0 isInt = false } } return } // parseArgNumber returns the value of the bracketed number, minus 1 // (explicit argument numbers are one-indexed but we want zero-indexed). // The opening bracket is known to be present at format[0]. // The returned values are the index, the number of bytes to consume // up to the closing paren, if present, and whether the number parsed // ok. The bytes to consume will be 1 if no closing paren is present. func parseArgNumber(format string) (index int, wid int, ok bool) { // There must be at least 3 bytes: [n]. if len(format) < 3 { return 0, 1, false } // Find closing bracket. for i := 1; i < len(format); i++ { if format[i] == ']' { width, ok, newi := parsenum(format, 1, i) if !ok || newi != i { return 0, i + 1, false } // arg numbers are one-indexed andskip paren. return width - 1, i + 1, true } } return 0, 1, false } // argNumber returns the next argument to evaluate, which is either the value // of the passed-in argNum or the value of the bracketed integer that begins // format[i:]. It also returns the new value of i, that is, the index of the // next byte of the format to process. func (p *pp) argNumber( argNum int, format string, i int, numArgs int, ) (newArgNum, newi int, found bool) { if len(format) <= i || format[i] != '[' { return argNum, i, false } p.reordered = true index, wid, ok := parseArgNumber(format[i:]) if ok && 0 <= index && index < numArgs { return index, i + wid, true } p.goodArgNum = false return argNum, i + wid, ok } func (p *pp) badArgNum(verb rune) { _, _ = p.WriteString(percentBangString) _, _ = p.WriteRune(verb) _, _ = p.WriteString(badIndexString) } func (p *pp) missingArg(verb rune) { _, _ = p.WriteString(percentBangString) _, _ = p.WriteRune(verb) _, _ = p.WriteString(missingString) } func (p *pp) doFormat(format string, a []Object) (err error) { defer func() { if r := recover(); r != nil { if e, ok := r.(error); ok && e == ErrStringLimit { err = e return } panic(r) } }() end := len(format) argNum := 0 // we process one argument per non-trivial format afterIndex := false // previous item in format was an index like [3]. p.reordered = false formatLoop: for i := 0; i < end; { p.goodArgNum = true lasti := i for i < end && format[i] != '%' { i++ } if i > lasti { _, _ = p.WriteString(format[lasti:i]) } if i >= end { // done processing format string break } // Process one verb i++ // Do we have flags? p.fmt.clearFlags() simpleFormat: for ; i < end; i++ { c := format[i] switch c { case '#': p.fmt.sharp = true case '0': // Only allow zero padding to the left. p.fmt.zero = !p.fmt.minus case '+': p.fmt.plus = true case '-': p.fmt.minus = true p.fmt.zero = false // Do not pad with zeros to the right. case ' ': p.fmt.space = true default: // Fast path for common case of ascii lower case simple verbs // without precision or width or argument indices. if 'a' <= c && c <= 'z' && argNum < len(a) { if c == 'v' { // Go syntax p.fmt.sharpV = p.fmt.sharp p.fmt.sharp = false // Struct-field syntax p.fmt.plusV = p.fmt.plus p.fmt.plus = false } p.printArg(a[argNum], rune(c)) argNum++ i++ continue formatLoop } // Format is more complex than simple flags and a verb or is // malformed. break simpleFormat } } // Do we have an explicit argument index? argNum, i, afterIndex = p.argNumber(argNum, format, i, len(a)) // Do we have width? if i < end && format[i] == '*' { i++ p.fmt.wid, p.fmt.widPresent, argNum = intFromArg(a, argNum) if !p.fmt.widPresent { _, _ = p.WriteString(badWidthString) } // We have a negative width, so take its value and ensure // that the minus flag is set if p.fmt.wid < 0 { p.fmt.wid = -p.fmt.wid p.fmt.minus = true p.fmt.zero = false // Do not pad with zeros to the right. } afterIndex = false } else { p.fmt.wid, p.fmt.widPresent, i = parsenum(format, i, end) if afterIndex && p.fmt.widPresent { // "%[3]2d" p.goodArgNum = false } } // Do we have precision? if i+1 < end && format[i] == '.' { i++ if afterIndex { // "%[3].2d" p.goodArgNum = false } argNum, i, afterIndex = p.argNumber(argNum, format, i, len(a)) if i < end && format[i] == '*' { i++ p.fmt.prec, p.fmt.precPresent, argNum = intFromArg(a, argNum) // Negative precision arguments don't make sense if p.fmt.prec < 0 { p.fmt.prec = 0 p.fmt.precPresent = false } if !p.fmt.precPresent { _, _ = p.WriteString(badPrecString) } afterIndex = false } else { p.fmt.prec, p.fmt.precPresent, i = parsenum(format, i, end) if !p.fmt.precPresent { p.fmt.prec = 0 p.fmt.precPresent = true } } } if !afterIndex { argNum, i, afterIndex = p.argNumber(argNum, format, i, len(a)) } if i >= end { _, _ = p.WriteString(noVerbString) break } verb, size := rune(format[i]), 1 if verb >= utf8.RuneSelf { verb, size = utf8.DecodeRuneInString(format[i:]) } i += size switch { case verb == '%': // Percent does not absorb operands and ignores f.wid and f.prec. _, _ = p.WriteSingleByte('%') case !p.goodArgNum: p.badArgNum(verb) case argNum >= len(a): // No argument left over to print for the current verb. p.missingArg(verb) case verb == 'v': // Go syntax p.fmt.sharpV = p.fmt.sharp p.fmt.sharp = false // Struct-field syntax p.fmt.plusV = p.fmt.plus p.fmt.plus = false fallthrough default: p.printArg(a[argNum], verb) argNum++ } } // Check for extra arguments unless the call accessed the arguments // out of order, in which case it's too expensive to detect if they've all // been used and arguably OK if they're not. if !p.reordered && argNum < len(a) { p.fmt.clearFlags() _, _ = p.WriteString(extraString) for i, arg := range a[argNum:] { if i > 0 { _, _ = p.WriteString(commaSpaceString) } if arg == nil { _, _ = p.WriteString(UndefinedValue.String()) } else { _, _ = p.WriteString(arg.TypeName()) _, _ = p.WriteSingleByte('=') p.printArg(arg, 'v') } } _, _ = p.WriteSingleByte(')') } return nil } // Format is like fmt.Sprintf but using Objects. func Format(format string, a ...Object) (string, error) { p := newPrinter() err := p.doFormat(format, a) s := string(p.buf) p.free() return s, err }