package runtime import ( "fmt" "sync/atomic" "github.com/d5/tengo/compiler" "github.com/d5/tengo/compiler/source" "github.com/d5/tengo/compiler/token" "github.com/d5/tengo/objects" ) const ( // StackSize is the maximum stack size. StackSize = 2048 // GlobalsSize is the maximum number of global variables. GlobalsSize = 1024 // MaxFrames is the maximum number of function frames. MaxFrames = 1024 ) // VM is a virtual machine that executes the bytecode compiled by Compiler. type VM struct { constants []objects.Object stack [StackSize]objects.Object sp int globals []objects.Object fileSet *source.FileSet frames [MaxFrames]Frame framesIndex int curFrame *Frame curInsts []byte ip int aborting int64 maxAllocs int64 allocs int64 err error } // NewVM creates a VM. func NewVM(bytecode *compiler.Bytecode, globals []objects.Object, maxAllocs int64) *VM { if globals == nil { globals = make([]objects.Object, GlobalsSize) } v := &VM{ constants: bytecode.Constants, sp: 0, globals: globals, fileSet: bytecode.FileSet, framesIndex: 1, ip: -1, maxAllocs: maxAllocs, } v.frames[0].fn = bytecode.MainFunction v.frames[0].ip = -1 v.curFrame = &v.frames[0] v.curInsts = v.curFrame.fn.Instructions return v } // Abort aborts the execution. func (v *VM) Abort() { atomic.StoreInt64(&v.aborting, 1) } // Run starts the execution. func (v *VM) Run() (err error) { // reset VM states v.sp = 0 v.curFrame = &(v.frames[0]) v.curInsts = v.curFrame.fn.Instructions v.framesIndex = 1 v.ip = -1 v.allocs = v.maxAllocs + 1 v.run() err = v.err if err != nil { filePos := v.fileSet.Position(v.curFrame.fn.SourcePos(v.ip - 1)) err = fmt.Errorf("Runtime Error: %s\n\tat %s", err.Error(), filePos) for v.framesIndex > 1 { v.framesIndex-- v.curFrame = &v.frames[v.framesIndex-1] filePos = v.fileSet.Position(v.curFrame.fn.SourcePos(v.curFrame.ip - 1)) err = fmt.Errorf("%s\n\tat %s", err.Error(), filePos) } return err } return nil } func (v *VM) run() { defer func() { if r := recover(); r != nil { if v.sp >= StackSize || v.framesIndex >= MaxFrames { v.err = ErrStackOverflow return } if v.ip < len(v.curInsts)-1 { if err, ok := r.(error); ok { v.err = err } else { v.err = fmt.Errorf("panic: %v", r) } } } }() for atomic.CompareAndSwapInt64(&v.aborting, 0, 0) { v.ip++ switch v.curInsts[v.ip] { case compiler.OpConstant: v.ip += 2 cidx := int(v.curInsts[v.ip]) | int(v.curInsts[v.ip-1])<<8 v.stack[v.sp] = v.constants[cidx] v.sp++ case compiler.OpNull: v.stack[v.sp] = objects.UndefinedValue v.sp++ case compiler.OpBinaryOp: v.ip++ right := v.stack[v.sp-1] left := v.stack[v.sp-2] tok := token.Token(v.curInsts[v.ip]) res, e := left.BinaryOp(tok, right) if e != nil { v.sp -= 2 if e == objects.ErrInvalidOperator { v.err = fmt.Errorf("invalid operation: %s %s %s", left.TypeName(), tok.String(), right.TypeName()) return } v.err = e return } v.allocs-- if v.allocs == 0 { v.err = ErrObjectAllocLimit return } v.stack[v.sp-2] = res v.sp-- case compiler.OpEqual: right := v.stack[v.sp-1] left := v.stack[v.sp-2] v.sp -= 2 if left.Equals(right) { v.stack[v.sp] = objects.TrueValue } else { v.stack[v.sp] = objects.FalseValue } v.sp++ case compiler.OpNotEqual: right := v.stack[v.sp-1] left := v.stack[v.sp-2] v.sp -= 2 if left.Equals(right) { v.stack[v.sp] = objects.FalseValue } else { v.stack[v.sp] = objects.TrueValue } v.sp++ case compiler.OpPop: v.sp-- case compiler.OpTrue: v.stack[v.sp] = objects.TrueValue v.sp++ case compiler.OpFalse: v.stack[v.sp] = objects.FalseValue v.sp++ case compiler.OpLNot: operand := v.stack[v.sp-1] v.sp-- if operand.IsFalsy() { v.stack[v.sp] = objects.TrueValue } else { v.stack[v.sp] = objects.FalseValue } v.sp++ case compiler.OpBComplement: operand := v.stack[v.sp-1] v.sp-- switch x := operand.(type) { case *objects.Int: var res objects.Object = &objects.Int{Value: ^x.Value} v.allocs-- if v.allocs == 0 { v.err = ErrObjectAllocLimit return } v.stack[v.sp] = res v.sp++ default: v.err = fmt.Errorf("invalid operation: ^%s", operand.TypeName()) return } case compiler.OpMinus: operand := v.stack[v.sp-1] v.sp-- switch x := operand.(type) { case *objects.Int: var res objects.Object = &objects.Int{Value: -x.Value} v.allocs-- if v.allocs == 0 { v.err = ErrObjectAllocLimit return } v.stack[v.sp] = res v.sp++ case *objects.Float: var res objects.Object = &objects.Float{Value: -x.Value} v.allocs-- if v.allocs == 0 { v.err = ErrObjectAllocLimit return } v.stack[v.sp] = res v.sp++ default: v.err = fmt.Errorf("invalid operation: -%s", operand.TypeName()) return } case compiler.OpJumpFalsy: v.ip += 2 v.sp-- if v.stack[v.sp].IsFalsy() { pos := int(v.curInsts[v.ip]) | int(v.curInsts[v.ip-1])<<8 v.ip = pos - 1 } case compiler.OpAndJump: v.ip += 2 if v.stack[v.sp-1].IsFalsy() { pos := int(v.curInsts[v.ip]) | int(v.curInsts[v.ip-1])<<8 v.ip = pos - 1 } else { v.sp-- } case compiler.OpOrJump: v.ip += 2 if v.stack[v.sp-1].IsFalsy() { v.sp-- } else { pos := int(v.curInsts[v.ip]) | int(v.curInsts[v.ip-1])<<8 v.ip = pos - 1 } case compiler.OpJump: pos := int(v.curInsts[v.ip+2]) | int(v.curInsts[v.ip+1])<<8 v.ip = pos - 1 case compiler.OpSetGlobal: v.ip += 2 v.sp-- globalIndex := int(v.curInsts[v.ip]) | int(v.curInsts[v.ip-1])<<8 v.globals[globalIndex] = v.stack[v.sp] case compiler.OpSetSelGlobal: v.ip += 3 globalIndex := int(v.curInsts[v.ip-1]) | int(v.curInsts[v.ip-2])<<8 numSelectors := int(v.curInsts[v.ip]) // selectors and RHS value selectors := make([]objects.Object, numSelectors) for i := 0; i < numSelectors; i++ { selectors[i] = v.stack[v.sp-numSelectors+i] } val := v.stack[v.sp-numSelectors-1] v.sp -= numSelectors + 1 if e := indexAssign(v.globals[globalIndex], val, selectors); e != nil { v.err = e return } case compiler.OpGetGlobal: v.ip += 2 globalIndex := int(v.curInsts[v.ip]) | int(v.curInsts[v.ip-1])<<8 val := v.globals[globalIndex] v.stack[v.sp] = val v.sp++ case compiler.OpArray: v.ip += 2 numElements := int(v.curInsts[v.ip]) | int(v.curInsts[v.ip-1])<<8 var elements []objects.Object for i := v.sp - numElements; i < v.sp; i++ { elements = append(elements, v.stack[i]) } v.sp -= numElements var arr objects.Object = &objects.Array{Value: elements} v.allocs-- if v.allocs == 0 { v.err = ErrObjectAllocLimit return } v.stack[v.sp] = arr v.sp++ case compiler.OpMap: v.ip += 2 numElements := int(v.curInsts[v.ip]) | int(v.curInsts[v.ip-1])<<8 kv := make(map[string]objects.Object) for i := v.sp - numElements; i < v.sp; i += 2 { key := v.stack[i] value := v.stack[i+1] kv[key.(*objects.String).Value] = value } v.sp -= numElements var m objects.Object = &objects.Map{Value: kv} v.allocs-- if v.allocs == 0 { v.err = ErrObjectAllocLimit return } v.stack[v.sp] = m v.sp++ case compiler.OpError: value := v.stack[v.sp-1] var e objects.Object = &objects.Error{ Value: value, } v.allocs-- if v.allocs == 0 { v.err = ErrObjectAllocLimit return } v.stack[v.sp-1] = e case compiler.OpImmutable: value := v.stack[v.sp-1] switch value := value.(type) { case *objects.Array: var immutableArray objects.Object = &objects.ImmutableArray{ Value: value.Value, } v.allocs-- if v.allocs == 0 { v.err = ErrObjectAllocLimit return } v.stack[v.sp-1] = immutableArray case *objects.Map: var immutableMap objects.Object = &objects.ImmutableMap{ Value: value.Value, } v.allocs-- if v.allocs == 0 { v.err = ErrObjectAllocLimit return } v.stack[v.sp-1] = immutableMap } case compiler.OpIndex: index := v.stack[v.sp-1] left := v.stack[v.sp-2] v.sp -= 2 switch left := left.(type) { case objects.Indexable: val, e := left.IndexGet(index) if e != nil { if e == objects.ErrInvalidIndexType { v.err = fmt.Errorf("invalid index type: %s", index.TypeName()) return } v.err = e return } if val == nil { val = objects.UndefinedValue } v.stack[v.sp] = val v.sp++ case *objects.Error: // e.value key, ok := index.(*objects.String) if !ok || key.Value != "value" { v.err = fmt.Errorf("invalid index on error") return } v.stack[v.sp] = left.Value v.sp++ default: v.err = fmt.Errorf("not indexable: %s", left.TypeName()) return } case compiler.OpSliceIndex: high := v.stack[v.sp-1] low := v.stack[v.sp-2] left := v.stack[v.sp-3] v.sp -= 3 var lowIdx int64 if low != objects.UndefinedValue { if low, ok := low.(*objects.Int); ok { lowIdx = low.Value } else { v.err = fmt.Errorf("invalid slice index type: %s", low.TypeName()) return } } switch left := left.(type) { case *objects.Array: numElements := int64(len(left.Value)) var highIdx int64 if high == objects.UndefinedValue { highIdx = numElements } else if high, ok := high.(*objects.Int); ok { highIdx = high.Value } else { v.err = fmt.Errorf("invalid slice index type: %s", high.TypeName()) return } if lowIdx > highIdx { v.err = fmt.Errorf("invalid slice index: %d > %d", lowIdx, highIdx) return } if lowIdx < 0 { lowIdx = 0 } else if lowIdx > numElements { lowIdx = numElements } if highIdx < 0 { highIdx = 0 } else if highIdx > numElements { highIdx = numElements } var val objects.Object = &objects.Array{Value: left.Value[lowIdx:highIdx]} v.allocs-- if v.allocs == 0 { v.err = ErrObjectAllocLimit return } v.stack[v.sp] = val v.sp++ case *objects.ImmutableArray: numElements := int64(len(left.Value)) var highIdx int64 if high == objects.UndefinedValue { highIdx = numElements } else if high, ok := high.(*objects.Int); ok { highIdx = high.Value } else { v.err = fmt.Errorf("invalid slice index type: %s", high.TypeName()) return } if lowIdx > highIdx { v.err = fmt.Errorf("invalid slice index: %d > %d", lowIdx, highIdx) return } if lowIdx < 0 { lowIdx = 0 } else if lowIdx > numElements { lowIdx = numElements } if highIdx < 0 { highIdx = 0 } else if highIdx > numElements { highIdx = numElements } var val objects.Object = &objects.Array{Value: left.Value[lowIdx:highIdx]} v.allocs-- if v.allocs == 0 { v.err = ErrObjectAllocLimit return } v.stack[v.sp] = val v.sp++ case *objects.String: numElements := int64(len(left.Value)) var highIdx int64 if high == objects.UndefinedValue { highIdx = numElements } else if high, ok := high.(*objects.Int); ok { highIdx = high.Value } else { v.err = fmt.Errorf("invalid slice index type: %s", high.TypeName()) return } if lowIdx > highIdx { v.err = fmt.Errorf("invalid slice index: %d > %d", lowIdx, highIdx) return } if lowIdx < 0 { lowIdx = 0 } else if lowIdx > numElements { lowIdx = numElements } if highIdx < 0 { highIdx = 0 } else if highIdx > numElements { highIdx = numElements } var val objects.Object = &objects.String{Value: left.Value[lowIdx:highIdx]} v.allocs-- if v.allocs == 0 { v.err = ErrObjectAllocLimit return } v.stack[v.sp] = val v.sp++ case *objects.Bytes: numElements := int64(len(left.Value)) var highIdx int64 if high == objects.UndefinedValue { highIdx = numElements } else if high, ok := high.(*objects.Int); ok { highIdx = high.Value } else { v.err = fmt.Errorf("invalid slice index type: %s", high.TypeName()) return } if lowIdx > highIdx { v.err = fmt.Errorf("invalid slice index: %d > %d", lowIdx, highIdx) return } if lowIdx < 0 { lowIdx = 0 } else if lowIdx > numElements { lowIdx = numElements } if highIdx < 0 { highIdx = 0 } else if highIdx > numElements { highIdx = numElements } var val objects.Object = &objects.Bytes{Value: left.Value[lowIdx:highIdx]} v.allocs-- if v.allocs == 0 { v.err = ErrObjectAllocLimit return } v.stack[v.sp] = val v.sp++ } case compiler.OpCall: numArgs := int(v.curInsts[v.ip+1]) v.ip++ value := v.stack[v.sp-1-numArgs] switch callee := value.(type) { case *objects.Closure: if numArgs != callee.Fn.NumParameters { v.err = fmt.Errorf("wrong number of arguments: want=%d, got=%d", callee.Fn.NumParameters, numArgs) return } // test if it's tail-call if callee.Fn == v.curFrame.fn { // recursion nextOp := v.curInsts[v.ip+1] if nextOp == compiler.OpReturn || (nextOp == compiler.OpPop && compiler.OpReturn == v.curInsts[v.ip+2]) { for p := 0; p < numArgs; p++ { v.stack[v.curFrame.basePointer+p] = v.stack[v.sp-numArgs+p] } v.sp -= numArgs + 1 v.ip = -1 // reset IP to beginning of the frame continue } } // update call frame v.curFrame.ip = v.ip // store current ip before call v.curFrame = &(v.frames[v.framesIndex]) v.curFrame.fn = callee.Fn v.curFrame.freeVars = callee.Free v.curFrame.basePointer = v.sp - numArgs v.curInsts = callee.Fn.Instructions v.ip = -1 v.framesIndex++ v.sp = v.sp - numArgs + callee.Fn.NumLocals case *objects.CompiledFunction: if numArgs != callee.NumParameters { v.err = fmt.Errorf("wrong number of arguments: want=%d, got=%d", callee.NumParameters, numArgs) return } // test if it's tail-call if callee == v.curFrame.fn { // recursion nextOp := v.curInsts[v.ip+1] if nextOp == compiler.OpReturn || (nextOp == compiler.OpPop && compiler.OpReturn == v.curInsts[v.ip+2]) { for p := 0; p < numArgs; p++ { v.stack[v.curFrame.basePointer+p] = v.stack[v.sp-numArgs+p] } v.sp -= numArgs + 1 v.ip = -1 // reset IP to beginning of the frame continue } } // update call frame v.curFrame.ip = v.ip // store current ip before call v.curFrame = &(v.frames[v.framesIndex]) v.curFrame.fn = callee v.curFrame.freeVars = nil v.curFrame.basePointer = v.sp - numArgs v.curInsts = callee.Instructions v.ip = -1 v.framesIndex++ v.sp = v.sp - numArgs + callee.NumLocals case objects.Callable: var args []objects.Object for _, arg := range v.stack[v.sp-numArgs : v.sp] { args = append(args, arg) } ret, e := callee.Call(args...) v.sp -= numArgs + 1 // runtime error if e != nil { if e == objects.ErrWrongNumArguments { v.err = fmt.Errorf("wrong number of arguments in call to '%s'", value.TypeName()) return } if e, ok := e.(objects.ErrInvalidArgumentType); ok { v.err = fmt.Errorf("invalid type for argument '%s' in call to '%s': expected %s, found %s", e.Name, value.TypeName(), e.Expected, e.Found) return } v.err = e return } // nil return -> undefined if ret == nil { ret = objects.UndefinedValue } v.allocs-- if v.allocs == 0 { v.err = ErrObjectAllocLimit return } v.stack[v.sp] = ret v.sp++ default: v.err = fmt.Errorf("not callable: %s", callee.TypeName()) return } case compiler.OpReturn: v.ip++ var retVal objects.Object if int(v.curInsts[v.ip]) == 1 { retVal = v.stack[v.sp-1] } else { retVal = objects.UndefinedValue } //v.sp-- v.framesIndex-- v.curFrame = &v.frames[v.framesIndex-1] v.curInsts = v.curFrame.fn.Instructions v.ip = v.curFrame.ip //v.sp = lastFrame.basePointer - 1 v.sp = v.frames[v.framesIndex].basePointer // skip stack overflow check because (newSP) <= (oldSP) v.stack[v.sp-1] = retVal //v.sp++ case compiler.OpDefineLocal: v.ip++ localIndex := int(v.curInsts[v.ip]) sp := v.curFrame.basePointer + localIndex // local variables can be mutated by other actions // so always store the copy of popped value val := v.stack[v.sp-1] v.sp-- v.stack[sp] = val case compiler.OpSetLocal: localIndex := int(v.curInsts[v.ip+1]) v.ip++ sp := v.curFrame.basePointer + localIndex // update pointee of v.stack[sp] instead of replacing the pointer itself. // this is needed because there can be free variables referencing the same local variables. val := v.stack[v.sp-1] v.sp-- if obj, ok := v.stack[sp].(*objects.ObjectPtr); ok { *obj.Value = val val = obj } v.stack[sp] = val // also use a copy of popped value case compiler.OpSetSelLocal: localIndex := int(v.curInsts[v.ip+1]) numSelectors := int(v.curInsts[v.ip+2]) v.ip += 2 // selectors and RHS value selectors := make([]objects.Object, numSelectors) for i := 0; i < numSelectors; i++ { selectors[i] = v.stack[v.sp-numSelectors+i] } val := v.stack[v.sp-numSelectors-1] v.sp -= numSelectors + 1 sp := v.curFrame.basePointer + localIndex if e := indexAssign(v.stack[sp], val, selectors); e != nil { v.err = e return } case compiler.OpGetLocal: v.ip++ localIndex := int(v.curInsts[v.ip]) val := v.stack[v.curFrame.basePointer+localIndex] if obj, ok := val.(*objects.ObjectPtr); ok { val = *obj.Value } v.stack[v.sp] = val v.sp++ case compiler.OpGetBuiltin: v.ip++ builtinIndex := int(v.curInsts[v.ip]) v.stack[v.sp] = objects.Builtins[builtinIndex] v.sp++ case compiler.OpClosure: v.ip += 3 constIndex := int(v.curInsts[v.ip-1]) | int(v.curInsts[v.ip-2])<<8 numFree := int(v.curInsts[v.ip]) fn, ok := v.constants[constIndex].(*objects.CompiledFunction) if !ok { v.err = fmt.Errorf("not function: %s", fn.TypeName()) return } free := make([]*objects.ObjectPtr, numFree) for i := 0; i < numFree; i++ { switch freeVar := (v.stack[v.sp-numFree+i]).(type) { case *objects.ObjectPtr: free[i] = freeVar default: free[i] = &objects.ObjectPtr{Value: &v.stack[v.sp-numFree+i]} } } v.sp -= numFree var cl = &objects.Closure{ Fn: fn, Free: free, } v.allocs-- if v.allocs == 0 { v.err = ErrObjectAllocLimit return } v.stack[v.sp] = cl v.sp++ case compiler.OpGetFreePtr: v.ip++ freeIndex := int(v.curInsts[v.ip]) val := v.curFrame.freeVars[freeIndex] v.stack[v.sp] = val v.sp++ case compiler.OpGetFree: v.ip++ freeIndex := int(v.curInsts[v.ip]) val := *v.curFrame.freeVars[freeIndex].Value v.stack[v.sp] = val v.sp++ case compiler.OpSetFree: v.ip++ freeIndex := int(v.curInsts[v.ip]) *v.curFrame.freeVars[freeIndex].Value = v.stack[v.sp-1] v.sp-- case compiler.OpGetLocalPtr: v.ip++ localIndex := int(v.curInsts[v.ip]) sp := v.curFrame.basePointer + localIndex val := v.stack[sp] var freeVar *objects.ObjectPtr if obj, ok := val.(*objects.ObjectPtr); ok { freeVar = obj } else { freeVar = &objects.ObjectPtr{Value: &val} v.stack[sp] = freeVar } v.stack[v.sp] = freeVar v.sp++ case compiler.OpSetSelFree: v.ip += 2 freeIndex := int(v.curInsts[v.ip-1]) numSelectors := int(v.curInsts[v.ip]) // selectors and RHS value selectors := make([]objects.Object, numSelectors) for i := 0; i < numSelectors; i++ { selectors[i] = v.stack[v.sp-numSelectors+i] } val := v.stack[v.sp-numSelectors-1] v.sp -= numSelectors + 1 if e := indexAssign(*v.curFrame.freeVars[freeIndex].Value, val, selectors); e != nil { v.err = e return } case compiler.OpIteratorInit: var iterator objects.Object dst := v.stack[v.sp-1] v.sp-- iterable, ok := dst.(objects.Iterable) if !ok { v.err = fmt.Errorf("not iterable: %s", dst.TypeName()) return } iterator = iterable.Iterate() v.allocs-- if v.allocs == 0 { v.err = ErrObjectAllocLimit return } v.stack[v.sp] = iterator v.sp++ case compiler.OpIteratorNext: iterator := v.stack[v.sp-1] v.sp-- hasMore := iterator.(objects.Iterator).Next() if hasMore { v.stack[v.sp] = objects.TrueValue } else { v.stack[v.sp] = objects.FalseValue } v.sp++ case compiler.OpIteratorKey: iterator := v.stack[v.sp-1] v.sp-- val := iterator.(objects.Iterator).Key() v.stack[v.sp] = val v.sp++ case compiler.OpIteratorValue: iterator := v.stack[v.sp-1] v.sp-- val := iterator.(objects.Iterator).Value() v.stack[v.sp] = val v.sp++ default: v.err = fmt.Errorf("unknown opcode: %d", v.curInsts[v.ip]) return } } } // IsStackEmpty tests if the stack is empty or not. func (v *VM) IsStackEmpty() bool { return v.sp == 0 } func indexAssign(dst, src objects.Object, selectors []objects.Object) error { numSel := len(selectors) for sidx := numSel - 1; sidx > 0; sidx-- { indexable, ok := dst.(objects.Indexable) if !ok { return fmt.Errorf("not indexable: %s", dst.TypeName()) } next, err := indexable.IndexGet(selectors[sidx]) if err != nil { if err == objects.ErrInvalidIndexType { return fmt.Errorf("invalid index type: %s", selectors[sidx].TypeName()) } return err } dst = next } indexAssignable, ok := dst.(objects.IndexAssignable) if !ok { return fmt.Errorf("not index-assignable: %s", dst.TypeName()) } if err := indexAssignable.IndexSet(selectors[0], src); err != nil { if err == objects.ErrInvalidIndexValueType { return fmt.Errorf("invaid index value type: %s", src.TypeName()) } return err } return nil }